环境科学  2022, Vol. 43 Issue (6): 3058-3065   PDF    
湖泊沉积物有机磷释放动力学特征及水质风险
刘哲哲1,2,3, 倪兆奎2,3, 刘思儒4, 李晓秀1, 王圣瑞2,3,5     
1. 首都师范大学资源环境与旅游学院, 北京 100084;
2. 北京师范大学珠海校区水科学研究中心, 粤港水安全保障联合实验室, 珠海 519087;
3. 北京师范大学水科学研究院, 北京 100875;
4. 广州市环境保护科学研究院, 广州 510620;
5. 云南省高原湖泊流域污染过程与管理重点实验室, 昆明 650034
摘要: 为揭示湖泊沉积物有机磷释放特征及对水质影响, 选取我国云南高原及长江中下游6个湖泊沉积物, 研究了溶解态有机磷(DOP)和溶解态无机磷(SRP)释放动力学差异及有机磷形态与溶解性有机质(DOM)特征对沉积物磷释放影响, 并探讨了沉积物DOP释放的水质风险.结果表明: 1沉积物DOP和SRP释放动力学过程相似, 均遵循二级动力学模型, 首先是快速释放阶段, 随后慢速释放, 释放曲线逐渐平缓并达到最大释放量.2沉积物有机磷释放与有机磷形态和有机质有关.活性有机磷(LOP)和中活性有机磷(MLOP)是快速释放阶段主要向上覆水释放的DOP形态.释放后期LOP和MLOP占总有机磷(DTP)比例下降, 而非活性有机磷(NLOP)比例增加; 同时DOM腐殖化程度和芳香性随磷释放过程逐渐升高, DOM活性不断降低, 导致DOP释放速率呈先快后慢趋势.3与SRP相比, DOP释放量较大, 占DTP总释放量的47% ~77%, 释放风险较高; 湖泊营养水平较高, 沉积物DOP释放量较大, 水质下降风险也较高.因此, 湖泊沉积物磷释放不仅应关注无机磷释放, 也应关注有机磷释放, 否则会低估沉积物磷释放量及水质风险.
关键词: 沉积物      有机磷      释放动力学      磷形态      水质风险     
Kinetic Release Characteristics of Organic Phosphorus of Sediment-water and Water Quality Risks
LIU Zhe-zhe1,2,3 , NI Zhao-kui2,3 , LIU Si-ru4 , LI Xiao-xiu1 , WANG Sheng-rui2,3,5     
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100084, China;
2. Guangdong-Hong Kong Joint Laboratory for Water Security, Center of Water Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China;
3. College of Water Sciences, Beijing Normal University, Beijing 100875, China;
4. Guangzhou Research Institute of Environmental Protection, Guangzhou 510620, China;
5. Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, China
Abstract: To reveal the characteristics of organic phosphorus release from lake sediments and its potential impact on water quality, six lake sediments from Yunnan Plateau and the middle and lower reaches of the Yangtze River in China were selected. We studied the differences in the kinetics of dissolved organic phosphorus (DOP) and dissolved inorganic phosphorus (SRP) release from sediments. The effects of organic phosphorus morphology and dissolved organic matter (DOM) characteristics on sediment phosphorus release were investigated, and the water quality risks of sediment DOP release were discussed. The results showed that: ① the release kinetics of sediment DOP and SRP were similar; both followed the second-order kinetic model, starting with a rapid release phase, followed by a slow release, and the release curve gradually leveled off and reached the maximum release. ② The release of organic phosphorus was related to organophosphorus morphology and organic matter. Active organic phosphorus (LOP) and medium active organic phosphorus (MLOP) were the DOP forms mainly released into the overlying water during the rapid release phase. The proportion of LOP and MLOP to total organic phosphorus (DTP) decreased in the late release stage, whereas the proportion of non-active organic phosphorus (NLOP) increased; further, the degree of humification and aromaticity of organic matter gradually increased with phosphorus release, and its activity decreased, resulting in a slower release rate at the later stage. ③ Compared with that of SRP, the risk of DOP release was higher, accounting for 47%-77% of the total amount of DTP. It was also found that the higher the nutrient level of the lake, the greater the release of DOP and the higher the water quality risk. Therefore, not only the release of inorganic phosphorus but also that of organic phosphorus should be of concern in the process of phosphorus release from lake sediments to prevent the underestimation of phosphorus release and water quality risk.
Key words: sediment      organic phosphorus      release kinetics      phosphorous forms      water quality risks     

沉积物磷释放是影响湖泊水质的重要因素[1~3], 磷释放特征是研究磷生物地球化学循环及湖泊水质风险关注的重点之一[4].近年来随沉积物外源磷负荷得到有效防控, 其沉积物内源磷释放正不断成为水体磷负荷的重要贡献来源[5~7].以往湖泊沉积物磷释放研究主要针对总磷和无机磷[8~10], 而很少关注沉积物有机磷释放及其形态变化和对水质影响等问题.但有研究发现, 湖泊沉积物释放溶解性有机磷(DOP)占总磷比重较高, 可转化为溶解态无机磷(SRP)而被生物利用, 从而加重湖泊水污染及富营养化[11, 12].沉积物DOP是湖泊水体一种重要磷源, 其释放的水质风险较大[12, 13].Ni等[14]在研究沉积物有机磷(OP)组成对湖泊营养状况响应时发现, 沉积物OP可能较总磷(TP)更能反映湖泊营养状况; Wang等[15]在不同营养水平湖泊沉积物磷释放动力学研究中也认为, 虽然SRP释放占比较高, 但DOP释放也不容忽视.因此, 综合考虑沉积物有机和无机磷释放特征及差异, 解析沉积物有机磷释放特征及对水质影响, 对深入揭示沉积物磷释放特征及湖泊富营养化机制具有重要意义.

湖泊沉积物有机磷释放主要受有机磷形态和有机磷矿化作用等影响[16]. DOP转化为活性有机磷释放进入水体, 或转化生成无机磷, 进而影响湖泊水质[17, 18].根据以往研究, 并不是所有的磷组分都能从沉积物中释放到上覆水体[19], 表明沉积物DOP释放和其形态之间存在一定的关联[20]. DOP是溶解性有机质(DOM)的重要组分, Long等[21]通过实验发现DOM和磷吸附解析过程密切相关, 是影响沉积物磷释放的重要机制.基于此, 本研究选择长江中下游及云南高原6个典型湖泊, 利用化学连续提取法, 结合沉积物磷释放动力学模型, 对比研究湖泊沉积物DOP和SRP释放动力学差异, 揭示沉积物有机磷释放特征, 以期阐明沉积物有机磷释放影响因素及机制, 并探讨其水质风险.

1 材料与方法 1.1 样品采集

长江中下游和云南高原是我国湖泊水污染及富营养化严重区域[22].本研究选取长江中下游受流域经济和人类活动影响较大的湖泊: 太湖(TH)、巢湖(CH)、鄱阳湖(PYH)和云南高原受农业、藻类和外源污染影响的湖泊: 洱海(EH)、滇池(DC)、异龙湖(YLH); 用彼得森采泥器采集表层(0~5 cm)沉积物样品, 装在密封袋中, 带回实验室真空冷冻干燥机冷干处理, 研磨混匀后过100目筛, 装入封口袋后冷藏密封保存备用.

1.2 沉积物磷释放动力学实验

准确称取10份2.0 g冷冻干燥的沉积物样品于离心管中, 加50 mL超纯水, 放入恒温振荡器振荡(25℃, 200 r ·min-1), 分别于5、15、30、60、90、120、180和300 min取一份样品, 5 000 r ·min-1下离心15 min后用0.45 μm滤膜过滤, 上清液用于测定DTP与SRP浓度.将振荡24 h后的沉积物再次冷冻干燥、研磨过筛, 测定不同形态OP含量[23].

磷释放动力学模型可用于定量研究湖泊沉积物磷释放行为[24, 25].根据初始浓度与平衡浓度之差, 计算沉积物磷释放量[26], 选用二级动力学模型拟合沉积物磷释放动力学过程[27]:

(1)

式中, qtt时刻湖泊沉积物磷释放量(mg ·kg-1); t为释放时间(min); k为磷释放速率常数[mg ·(kg ·min)-1], 可指示沉积物磷释放强度[28]; qe为平衡时沉积物磷释放量(mg ·kg-1). 另外, 以qmax表示磷最大释放量(mg ·kg-1), 二者均可表示本研究条件下沉积物磷释放能力[11], 是表示沉积物磷释放动力学特征的重要参数.

1.3 测定方法

为掌握沉积物磷释放过程中不同活性有机磷形态变化特征, 采用基于Ivanoff等[29]改进的顺序提取法.将沉积物有机磷分为活性有机磷LOP, 即碳酸氢钠提取态有机磷(NaHCO3-Po); 中活性有机磷MLOP, 包括盐酸提取态有机磷(HCl-Po)和富里酸提取态有机磷(Ful-Po); 以及非活性有机磷NLOP, 包括胡敏酸提取态有机磷(Hum-Po)和残渣态有机磷(Res-Po).沉积物溶解性总磷DTP含量测定用过硫酸钾消解-钼锑抗分光光度法, SRP用钼酸铵分光光度法, DOP为二者之差.实验中所有样品测定重复3次并取其平均值, 实验误差控制在5%以内.

DOM的紫外可见光谱是利用紫外分光光度计(Hach DR-5000, 美国), 在1 cm石英比色皿及190~700 nm的扫描波长范围内测定的.紫外参数主要有3个: A253/A203是253 nm与203 nm吸光度的比值; E2/E3表示250 nm处与365 nm处吸光度的比值; SUVA254为254 nm的吸光度乘以100除以该溶液的TOC值.

1.4 数据处理

本研究数据采用Origin 2018(Origin Lab, USA)软件进行二级动力学方程拟合, 利用SPSS 21(IBM, Armonk, New York, USA)和R语言软件进行图、表绘制与分析.

2 结果与分析 2.1 湖泊沉积物有机磷释放动力学特征及与无机磷差异

本研究湖泊沉积物DOP是释放磷的主要组成部分, 其释放量为3.41~13.35 mg ·kg-1, 占DTP释放量的47% ~77%(图 1).和SRP相比, 两者释放动力学过程基本一致, 均经历快速释放阶段和缓慢释放阶段, 并逐步达到释放平衡(图 2), 这与前人研究结果相似[17, 21, 30, 31].其中DOP的快速释放阶段主要在60min内完成, 释放了约90%, 释放量达到3.04~10.99 mg ·kg-1; 相比而言, 与SRP释放存在一定差异, 其快速释放阶段发生在0~90 min, 各沉积物样品SRP释放量较DOP低, 为1.5~6.13mg ·kg-1; 之后释放较为缓慢.在180 min沉积物DOP和SRP释放量达到最大值, DOP为3.26~13.33 mg ·kg-1, SRP为1.61~6.71 mg ·kg-1, 之后释放过程基本趋于平衡.

图 1 湖泊沉积物DOP和SRP释放量比较 Fig. 1 Comparison of DOP and SRP releases from lake sediments

图 2 湖泊沉积物DOP和SRP释放动力学曲线 Fig. 2 Release kinetics curve of DTP and SRP in lake sediments

为探究湖泊沉积物磷释放特征, 选用二级动力学模型拟合磷释放动力学过程, 发现拟合效果较好(RDOP2为0.69~0.94, RSRP2为0.71~0.93), 均达到了显著相关水平(P < 0.05).本研究湖泊沉积物DOP与SRP释放动力学参数值存在差异, 其中DOP释放动力学参数值较大, 结果见表 1.本研究各湖泊沉积物SRP释放速率常数k[(0.015±0.003)~(0.402±0.130)mg ·(kg ·min)-1]大多高于DOP[(0.015±0.004)~(0.139±0.030)mg ·(kg ·min)-1], 是DOP释放速率常数k的1.49~24.20倍, 说明DOP释放强度略低于SRP; 而DOP释放量则均高于SRP, 在DTP中占比较高, 且较快达到最大释放量, DOP模型参数qeqmax均高于SRP, 分别为SRP释放模型参数qeqmax的1.12~3.70倍和1.07~3.40倍.因此, 与SRP相比, 本研究湖泊沉积物DOP释放动力学参数值均较高, 即再悬浮过程中湖泊沉积物DOP释放可更快达平衡, 且释放量较大.

表 1 湖泊沉积物DOP和SRP释放准二级动力学模型参数 Table 1 Kinetic parameters of quasi-second-order kinetic model of DOP and SRP release from lake sediments

2.2 湖泊沉积物磷释放动力学过程中磷形态变化

为进一步了解沉积物有机磷释放, 采用顺序提取法得到5种提取态有机磷[30], 发现沉积物DOP释放动力学过程与DOP形态关系密切[32, 33].而本研究各湖泊沉积物磷释放动力学过程中各形态DOP含量也发生一定变化(图 3), 其中快速释放阶段(0~60 min)HCl-Po与Ful-Po含量呈增加趋势, NaHCO3-Po和Hum-Po含量递减, Res-Po含量有增加趋势; 而慢速释放阶段(60~180 min)NaHCO3-Po、HCl-Po和Ful-Po总体呈降低趋势, Hum-Po和Res-Po则与之相反.具体来看, NaHCO3-Po最先被释放[23], 其含量在释放初期(0 min)占总有机磷的6.3% ~15.7%, 在0~15 min和15~60 min时间段内先降后升, 60 min后下降到6.0% ~15.2%, 整个释放过程呈明显下降趋势.HCl-Po和Ful-Po稳定性较差[34], 其含量先升后降, 释放初期(0 min) HCl-Po占总有机磷的5.1% ~35.9%, 释放5 min后其含量上升至5.4% ~36.3%, 之后的5~300 min其含量整体呈下降趋势. Ful-Po含量也从释放初期的9.9% ~24.6%上升再下降至平衡时的8.8% ~14.1%.Hum-Po释放过程中含量整体呈上升趋势, 从5.0% ~17.7%上升到10.6% ~18.2%. Res-Po在释放有机磷中占有最大比例(35.2% ~72%), 相较其他活性磷稳定, 释放过程中浓度变化不大.

图 3 湖泊沉积物磷释放动力学过程中各有机磷形态含量变化 Fig. 3 Change in organic phosphorus forms in the process of release dynamics

本研究湖泊沉积物各DOP形态含量差异较大, 磷释放过程中大部分湖泊沉积物LOP含量减少, NLOP含量波动性增加, MLOP含量波动性减少, 但含量大小顺序相同, 均呈现NLOP>MLOP>LOP的趋势, 这与已有的研究结果一致[14, 22, 32].同时, 相关性分析也表明湖泊沉积物各DOP形态含量与其磷释放显著正相关(图 4).

1. DTP, 2. DOP, 3.NaHCO3-Po, 4.HCl-Po, 5.Ful-Po, 6.Hum-Po, 7.Res-Po, 8. qmax, 9. k, 10. qe; 圆面积占比和颜色深浅对应相关性的大小; 不同星号表示相关性显著, *表示P < 0.05, **表示P < 0.01 图 4 湖泊沉积物磷形态和有机磷释放特征参数指标皮尔森相关性分析 Fig. 4 Pearson's correlation analysis between phosphorus forms and characteristic parameters of organic phosphorus release

3 讨论 3.1 湖泊沉积物有机磷释放影响因素

湖泊沉积物磷释放过程受沉积物pH、有机质含量、黏土颗粒大小和有机磷形态等多种因素影响[11, 35].其中, DOP形态和DOM对研究磷释放动力学特征及其机制具有重要意义, 本研究沉积物各形态DOP释放量与释放参数kqe显著相关, 其形态是影响各阶段释放速率和释放量差异的重要原因[33]; 除此之外, 沉积物DOM苯环上羟基、羧基和羰基等官能团结构的变化也会影响沉积物磷的释放[36].

3.1.1 磷形态对湖泊沉积物有机磷释放影响

已有研究发现湖泊沉积物磷释放很大程度取决于有机磷形态特征变化[23, 33, 37], 本文在磷释放动力学特征研究中也得到了类似结果.湖泊沉积物磷释放呈现先快后慢趋势, 且释放过程中DOP形态组成均发生了一定变化, 其原因可能是各形态有机磷释放及转化所致[38].水体扰动可促进活性和中活性有机磷释放, 影响沉积物DOP形态分布, 最终影响湖泊沉积物磷释放动力学过程[4, 39, 40].因此本文分析了DOP形态与其释放特征参数间的相关性(图 4).

沉积物NaHCO3-Po与DOP及释放参数qe显著相关(R=0.572, P < 0.01; R=0.677, P < 0.01), 且作为一种活性物质, NaHCO3-Po被松散地吸附在沉积物颗粒表面或者吸收进沉积物间隙水中, 易矿化释放进入水体[38, 41], 转化为生物有效磷, 被微生物、植物等吸收利用[38].快速释放阶段(0~60 min)湖泊沉积物-水界面的相互作用较为强烈[22], 即使活性NaHCO3-Po含量较低, 其释放依旧会影响沉积物DOP的释放速率k[27], 在湖泊沉积物磷释放过程中起重要的释放作用.

Ful-Po在磷释放过程具有中等占比, 与NaHCO3-Po相比其与磷释放参数qe相关性较为显著(R=0.408, P < 0.01), 表明其对DOP的释放也发挥着重要作用(图 4). Ful-Po在整个释放阶段的含量先增后降, 总体含量降低, 显著影响了上覆水体的磷含量[41].这种趋势可能与MLOP与其他OP形态释放转化有关[22], MLOP易水解或矿化, 溶解并易通过孔隙水扩散[42], 释放后期含量逐渐下降.这也解释了前期释放速率k快, 释放量q较大的原因.

即使Res-Po与DOP及释放特征参数qe相关性显著(R=0.714, P < 0.01; R=0.649, P < 0.01), NLOP对沉积物有机磷释放影响依旧很小.一个原因是NLOP总量占DOP含量比例最高(39% ~69%), 且在释放过程中含量变化不大; 另一个原因是Res-Po和Hum-Po主要为大分子有机磷或其他难溶性磷, 难以被生物利用, 不能轻易转化或释放[43].

综上, 磷释放前期沉积物各形态DOP均有贡献, 各形态磷释放量占比为LOP(35%)>MLOP(25.5%)>NLOP(21%), 即LOP和MLOP是主要影响沉积物有机磷释放速率和释放量的OP形态; 释放后期LOP和MLOP占DOP比例下降, 而NLOP占比增加, 导致后期释放速率减慢[23].

3.1.2 沉积物DOM特征对其有机磷释放影响

DOM可在活性基团作用下促进沉积物磷释放[5, 14], 是影响沉积物磷释放关键因素之一[44], 也是DOP在快速释放阶段较慢速释放阶段更易释放、释放速率k更大的另一原因.本研究发现, 沉积物疏水性DOM苯环上羟基、羧基和羰基等官能团结构的变化会影响沉积物磷的释放[33], 沉积物DOM的特征参数SUVA254A253/A203E2/E3值均发生一定变化, 导致磷释放过程中释放速率和释放量产生差异.

SUVA254值已被证实是估算DOM中芳香族化合物比例的有效指标, SUVA254值越高, DOM的腐殖化和芳香性越大, 分子量越小[45]. A253/A203的值可以反映DOM取代基的浓度, 比值越大, 说明芳香环取代基的浓度越高[44].沉积物磷释放动力学过程中, SUVA254A253/A203值呈稳定上升趋势, 且SUVA254值< 3(表 2), 说明DOP快速释放阶段DOM腐殖化程度、取代基及芳香性均低于慢速释放阶段, 利于前期DOP释放, 解释了其释放速率k及释放量q较慢速释放阶段大的原因.表征DOM的另一紫外特征参数E2/E3与DOM腐殖化水平和分子量有关, 比值越低, 其分子量越高[45, 46].本实验E2/E3值从释放开始到平衡后数值变小(表 2), 表明沉积物DOM分子量随释放增大, DOM结构更为复杂.这也解释了释放前期大分子Hum-Po所占比例较小, 以小分子量的Ful-Po为主[42], 同时, 由于小分子物质稳定性低, 且前期DOM腐殖化程度和疏水性(矿化程度)较低, 活性更强; 更易于沉积物磷释放, 与SUVA254A253/A203得出的结论一致.

表 2 湖泊表层沉积物DOP释放过程紫外可见光光谱特征参数 Table 2 Characteristic parameters of UV-vis spectra of DOP release process in surface sediments of each lake

3.2 沉积物有机磷释放的水质风险

沉积物磷释放是影响上覆水磷浓度的重要因素[47], 也是导致富营养化湖泊持续富营养化的重要原因[3].过量磷输入会导致水体富营养化; 湖泊营养化程度较重情况下, 即使减少或控制外部污染负荷, 湖泊水质也较难恢复[48, 49].有研究发现湖泊营养水平较高, 其沉积物SRP释放水平也较大[15], Guo等[50]的研究也发现湖泊营养的水平增加会导致DOP积累, 造成更多的SRP释放.同时也有研究表明不同营养水平湖泊沉积物DOP释放能力可能存在较大差异[15, 22, 38, 47], 本研究也得到相似结果, 长江中下游与云南高原6个不同营养水平湖泊沉积物DOP均以NLOP为主, 但两湖区营养水平较高的湖泊LOP和MLOP占比相较低营养湖泊高.同时, 营养水平高的湖泊沉积物DOP释放量要高于低营养湖泊.如表 3, 处于富营养水平的太湖、巢湖和中营养水平的鄱阳湖分别释放了55.79%、53.93%和46.52%的DOP, 云南高原湖区的异龙湖为重度营养水平, 其沉积物释放了77.31%的DOP, 高于中营养和富营养水平的滇池(75.81%)和洱海(53.69%).由此可见, 湖泊富营养化程度越高, 其沉积物有机磷释放的水质风险越大.

表 3 长江中下游湖泊和云南高原湖泊沉积物有机磷释放特征比较 Table 3 Comparison of organic phosphorus release characteristics from sediments of lakes in the middle and lower reaches of Yangtze River and Yunnan Plateau

湖泊沉积物释放DOP占DTP比例较高, 其水质风险较SRP高; 其中DOP最大释放量较SRP更大, 本研究DTP总释放量为6.35~17.61 mg ·kg-1, 沉积物释放3.41~13.35 mg ·kg-1 DOP进入水体, 磷释放占比较初始阶段明显上升(62% ~70%), 其中有90%会水解为无机磷释放出来, 并最终被生物利用[11].同时DOP与DTP含量间的关系达到极显著水平, 相关系数最高, R=0.912(P < 0.01), 表明扰动条件下DOP的释放在湖泊沉积物磷的释放过程中发挥着重要作用, 同时也表明沉积物磷释放过程DOP不容忽视[15].综上所述, DOP作为湖泊沉积物DTP释放的主要部分, 在湖泊沉积物磷释放过程中占主导作用, 对湖泊沉积物内源磷负荷作用及贡献不容忽视.随着外源磷负荷逐步得到控制, 环境条件变化及微生物等作用, 可能会进一步提高湖泊沉积物DOP的释放风险.因此, 在湖泊沉积物磷释放过程中不仅要关注无机磷的释放, 有机磷释放特征的研究也是很有必要的, 否则会低估沉积物磷释放的水质影响及风险.

4 结论

(1) 沉积物DOP与SRP释放动力学过程相似, 遵循二级动力学模型, 释放速率均呈现先快后慢的变化趋势; DOP快速反应阶段主要发生在前60 min, SRP则主要在0~90 min, DOP最大释放量和总释放量较SRP更大.

(2) 沉积物DOP形态及DOM是影响磷释放动力学过程的重要因素.LOP释放量最大(16% ~54%), 其次为MLOP(18% ~33%), NLOP最小, 增加了约5% ~37%, 表明LOP和MLOP是主要向上覆水体释放的DOP形态. DOM腐殖化程度和芳香性随磷释放过程逐渐升高, DOM活性不断降低, 且有机质活性较低, 导致DOP释放速率先快后慢.

(3) 湖泊沉积物DOP较SRP释放风险高, 其释放量占DTP总释放量的47% ~77%; 且通过对比长江中下游和云南高原6个不同营养水平湖泊表明, 湖泊营养水平较高, 其沉积物DOP释放量也较大, 表现出较大的水质风险.

参考文献
[1] Azam H M, Alam S T, Hasan M, et al. Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems[J]. Environmental Science and Pollution Research, 2019, 26(20): 20183-20207. DOI:10.1007/s11356-019-04732-y
[2] Norton S A, Coolidge K, Amirbahman A, et al. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA[J]. Science of the Total Environment, 2008, 404(2-3): 276-283. DOI:10.1016/j.scitotenv.2008.03.016
[3] Xie L Q, Xie P, Tang H J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake[J]. Environmental Pollution, 2003, 122(3): 391-399. DOI:10.1016/S0269-7491(02)00305-6
[4] Cui Y, Xiao R, Xie Y, et al. Phosphorus fraction and phosphate sorption-release characteristics of the wetland sediments in the Yellow River Delta[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2018, 103: 19-27. DOI:10.1016/j.pce.2017.06.005
[5] 张巧颖, 杜瑛珣, 罗春燕, 等. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展[J]. 湖泊科学, 2019, 31(6): 1499-1509.
Zhang Q Y, Du Y X, Luo C Y, et al. Advances in researches on phosphorus immobilization by lanthanum modified bentonite in lakes and its ecological risk[J]. Journal of Lake Sciences, 2019, 31(6): 1499-1509.
[6] Paytan A, Roberts K, Watson S, et al. Internal loading of phosphate in Lake Erie central basin[J]. Science of the Total Environment, 2017, 579: 1356-1365. DOI:10.1016/j.scitotenv.2016.11.133
[7] Søndergaard M, Bjerring R, Jeppesen E. Persistent internal phosphorus loading during summer in shallow eutrophic lakes[J]. Hydrobiologia, 2013, 710(1): 95-107. DOI:10.1007/s10750-012-1091-3
[8] Shinohara R, Hiroki M, Kohzu A, et al. Role of organic phosphorus in sediment in a shallow eutrophic lake[J]. Water Resources Research, 2017, 53(8): 7175-7189. DOI:10.1002/2017WR020486
[9] 张路, 范成新, 王建军, 等. 太湖水土界面氮磷交换通量的时空差异[J]. 环境科学, 2006, 27(8): 1537-1543.
Zhang L, Fan C X, Wang J J, et al. Space-time dependent variances of ammonia and phosphorus flux on sediment-water interface in Lake Taihu[J]. Environmental Science, 2006, 27(8): 1537-1543. DOI:10.3321/j.issn:0250-3301.2006.08.011
[10] Petticrew E L, Arocena J M. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings[J]. Science of the Total Environment, 2001, 266(1-3): 87-93. DOI:10.1016/S0048-9697(00)00756-7
[11] 龚佳健, 倪兆奎, 肖尚斌, 等. 覆盖材料对洱海不同湖区沉积物溶解态有机磷和无机磷释放影响及差异[J]. 环境科学, 2019, 40(4): 1826-1833.
Gong J J, Ni Z K, Xiao S B, et al. Effects and differences of the release of dissolved organic and inorganic phosphorus in different sediments covered by different materials of Erhai Lake[J]. Environmental Science, 2019, 40(4): 1826-1833.
[12] Wu G F, Zhou X P. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, eastern China[J]. Water Research, 2005, 39(19): 4623-4632. DOI:10.1016/j.watres.2005.08.036
[13] Zhu Y R, Feng W Y, Liu S S, et al. Bioavailability and preservation of organic phosphorus in lake sediments: insights from enzymatic hydrolysis and 31P nuclear magnetic resonance[J]. Chemosphere, 2018, 211: 50-61. DOI:10.1016/j.chemosphere.2018.07.134
[14] Ni Z K, Wang S R, Zhang B T, et al. Response of sediment organic phosphorus composition to lake trophic status in China[J]. Science of the Total Environment, 2019, 652: 495-504. DOI:10.1016/j.scitotenv.2018.10.233
[15] Wang S R, Jin X C, Zhao H C, et al. Effects of organic matter on phosphorus release kinetics in different trophic lake sediments and application of transition state theory[J]. Journal of Environmental Management, 2008, 88(4): 845-852. DOI:10.1016/j.jenvman.2007.04.006
[16] Lü C W, He J, Zuo L, et al. Processes and their explanatory factors governing distribution of organic phosphorous pools in lake sediments[J]. Chemosphere, 2016, 145: 125-134. DOI:10.1016/j.chemosphere.2015.11.038
[17] Kong M, Liu F F, Tao Y, et al. First attempt for in situ capping with lanthanum modified bentonite (LMB) on the immobilization and transformation of organic phosphorus at the sediment-water interface[J]. Science of the Total Environment, 2020, 741. DOI:10.1016/j.scitotenv.2020.140342
[18] Joshi S R, Kukkadapu R K, Burdige D J, et al. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake Bay[J]. Environmental Science & Technology, 2015, 49(10): 5887-5896.
[19] Katsaounos C Z, Giokas D L, Leonardos I D, et al. Speciation of phosphorus fractionation in river sediments by explanatory data analysis[J]. Water Research, 2007, 41(2): 406-418. DOI:10.1016/j.watres.2006.10.028
[20] Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments-lakes Volvi and Koronia, N. Greece[J]. Chemosphere, 2002, 46(8): 1147-1155. DOI:10.1016/S0045-6535(01)00242-9
[21] Long Y C, Hu X J, Jiang J, et al. Phosphorus sorption-Desorption behaviors in the sediments cultured with Hydrilla verticillata and Scripus triqueter as revealed by phosphorus fraction and dissolved organic matter[J]. Chemosphere, 2021, 271. DOI:10.1016/j.chemosphere.2021.129549
[22] Zhang R Y, Wu F C, Liu C Q, et al. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China[J]. Environmental Pollution, 2008, 152(2): 366-372. DOI:10.1016/j.envpol.2007.06.024
[23] 马晓阳, 牛凤霞, 肖尚斌, 等. 高磷沉积物有机磷形态分布及释放动力学特征研究——以宜昌西北口水库为例[J]. 中国环境科学, 2021.
Ma X Y, Niu F X, Xiao S B, et al. Distribution and release kinetics of organic phosphorus in phosphorus-rich sediments: a case study of Xibeikou Reservoir in Yichang[J]. China Environmental Science, 2021. DOI:10.19674/j.cnki.issn1000-6923.20210709.009
[24] Cao X Y, Zhu J M, Lu M, et al. Phosphorus sorption behavior on sediments in Sanggou Bay related with their compositions by sequential fractionation[J]. Ecotoxicology and Environmental Safety, 2019, 169: 144-149. DOI:10.1016/j.ecoenv.2018.11.007
[25] León J G, Pedrozo F L, Temporetti P F. Phosphorus fractions and sorption dynamics in the sediments of two Ca-SO4 water reservoirs in the central Argentine Andes[J]. International Journal of Sediment Research, 2017, 32(3): 442-451. DOI:10.1016/j.ijsrc.2017.03.002
[26] 赵海超, 王圣瑞, 张莉, 等. 有机质含量及其组分对洱海沉积物磷吸附-释放影响[J]. 环境科学学报, 2014, 34(9): 2346-2354.
Zhao H C, Wang S R, Zhang L, et al. Effect of OM content and constituents on phosphorus adsorption-release of the sediment from Erhai Lake[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2346-2354.
[27] AydƖn Y A, Aksoy N D. Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics[J]. Chemical Engineering Journal, 2009, 151(1-3): 188-194. DOI:10.1016/j.cej.2009.02.010
[28] 晏维金, 亢宇, 章申, 等. 磷在土壤中的解吸动力学[J]. 中国环境科学, 2000, 20(2): 97-101.
Yan W J, Kang Y, Zhang S, et al. The desorption kinetics of phosphorus from calcareous soil in China[J]. China Environmental Science, 2000, 20(2): 97-101. DOI:10.3321/j.issn:1000-6923.2000.02.001
[29] Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation of organic phosphorus in selected Histosols[J]. Soil Science, 1998, 163(1): 36-45. DOI:10.1097/00010694-199801000-00006
[30] 金丹越, 王圣瑞, 步青云. 长江中下游浅水湖泊沉积物磷释放动力学[J]. 生态环境, 2007, 16(3): 725-729.
Jin D Y, Wang S R, Bu Q Y. Phosphate release kinetics characteristics of the sediments from shallow lakes in the middle and lower reaches of the Yangtze Rive[J]. Ecology and Environment, 2007, 16(3): 725-729. DOI:10.3969/j.issn.1674-5906.2007.03.002
[31] 王悦敏, 倪兆奎, 冯明雷, 等. 鄱阳湖枯水期沉积物磷释放特征及对水位变化响应[J]. 环境科学学报, 2017, 37(10): 3804-3812.
Wang Y M, Ni Z K, Feng M L, et al. Characteristics of phosphorus release in sediment and its response to the change of water level in Poyang Lake in dry season[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3804-3812.
[32] 霍守亮, 李青芹, 昝逢宇, 等. 我国不同营养状态湖泊沉积物有机磷形态分级特征研究[J]. 环境科学, 2011, 32(4): 1000-1007.
Huo S L, Li Q Q, Zan F Y, et al. Characteristics of organic phosphorus fractions in different trophic sediments of lakes, China[J]. Environmental Science, 2011, 32(4): 1000-1007.
[33] 王庭健, 苏睿, 金相灿, 等. 城市富营养湖泊沉积物中磷负荷及其释放对水质的影响[J]. 环境科学研究, 1994, 7(4): 12-19.
Wang T J, Su R, Jin X C, et al. The effects to water quality of phosphorus loading and its release in the sediments of urban Eutrophic Lakes[J]. Research of Environmental Sciences, 1994, 7(4): 12-19. DOI:10.3321/j.issn:1001-6929.1994.04.004
[34] Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science, 1978, 125(2): 95-101. DOI:10.1097/00010694-197802000-00006
[35] Xu G, Song J W, Zhang Y, et al. Enhancement of phosphorus storage capacity of sediments by coastal wetland restoration, Yellow River Delta, China[J]. Marine Pollution Bulletin, 2020, 150. DOI:10.1016/j.marpolbul.2019.110666
[36] Huang Q Y, Zhao Z H, Chen W L. Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals[J]. Chemosphere, 2003, 52(3): 571-579. DOI:10.1016/S0045-6535(03)00238-8
[37] Murphy T, Lawson A, Kumagai M, et al. Release of phosphorus from sediments in Lake Biwa[J]. Limnology, 2001, 2(2): 119-128. DOI:10.1007/s102010170007
[38] Yuan H Z, Tai Z Q, Li Q, et al. Characterization and source identification of organic phosphorus in sediments of a hypereutrophic lake[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113500
[39] Ni Z K, Wang S R, Wu Y, et al. Response of phosphorus fractionation in lake sediments to anthropogenic activities in China[J]. Science of the Total Environment, 2020, 699. DOI:10.1016/j.scitotenv.2019.134242
[40] Bai J H, Ye X F, Jia J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions[J]. Chemosphere, 2017, 188: 677-688. DOI:10.1016/j.chemosphere.2017.08.117
[41] Fang T H. Partitioning and behaviour of different forms of phosphorus in the Tanshui estuary and one of its tributaries, northern Taiwan[J]. Estuarine, Coastal and Shelf Science, 2000, 50(5): 689-701. DOI:10.1006/ecss.1999.0604
[42] Ni Z K, Wang S R, Wu Y, et al. Influence of exposure time on phosphorus composition and bioavailability in wetland sediments from Poyang lake, since the operation of the Three Gorges Dam[J]. Environmental Pollution, 2020, 263. DOI:10.1016/j.envpol.2020.114591
[43] Zhu Y R, Wu F C, Liu Y, et al. Microbial biomass and community composition involved in cycling of organic phosphorus in sediments of Lake Dianchi, Southwest China[J]. Geomicrobiology Journal, 2017, 34(3): 249-260. DOI:10.1080/01490451.2016.1184726
[44] Li Y P, Wang S R, Zhang L, et al. Composition and spectroscopic characteristics of dissolved organic matter extracted from the sediment of Erhai Lake in China[J]. Journal of Soils and Sediments, 2014, 14(9): 1599-1611. DOI:10.1007/s11368-014-0916-2
[45] Zhang Y, He F, Liu Z S, et al. Release characteristics of sediment phosphorus in all fractions of West Lake, Hang Zhou, China[J]. Ecological Engineering, 2016, 95: 645-651. DOI:10.1016/j.ecoleng.2016.06.014
[46] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2): 133-149. DOI:10.1016/S0003-2670(96)00412-6
[47] 张润宇, 吴丰昌, 刘丛强, 等. 长江中下游与西南高原不同营养水平湖泊沉积物中机磷的形态特征[A]. 见: 第三届贵州省自然科学优秀学术论文评选获奖论文集(2010年)[C]. 贵州省科学技术协会, 2010.
[48] Ahlgren J, Tranvik L, Gogoll A, et al. Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR[J]. Environmental Science & Technology, 2005, 39(3): 867-872.
[49] Feng W Y, Yang F, Zhang C, et al. Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.114838
[50] Guo M L, Li X L, Song C L, et al. Photo-induced phosphate release during sediment resuspension in shallow lakes: A potential positive feedback mechanism of eutrophication[J]. Environmental Pollution, 2020, 258. DOI:10.1016/j.envpol.2019.113679