环境科学  2022, Vol. 43 Issue (5): 2510-2517   PDF    
洪泽湖溶解态有机质与重金属汞的结合特性
胡斌1, 王沛芳1, 张楠楠2, 包天力1, 金秋彤1     
1. 河海大学浅水湖泊综合治理与资源开发教育部重点实验室, 南京 210024;
2. 江苏环保产业技术研究院股份公司, 南京 210019
摘要: 水体中溶解态有机质(DOM)能够与重金属络合形成复合化合物, 进而影响水环境中重金属的迁移转化、生物可利用性和毒性.通过荧光光谱结合不同的光谱分析方法研究了洪泽湖不同季节水体DOM与重金属汞(Hg)的结合特性.结果表明, 春季DOM以类蛋白质为主, 秋季则以类腐殖质为主, 洪泽湖秋、冬季蓄水导致DOM性质存在显著差异.同步荧光光谱结合二维相关光谱分析结果表明, 洪泽湖春季DOM与Hg(Ⅱ)的结合强度依次为: 360~425 nm>290 nm>300~350 nm, 秋季DOM与Hg(Ⅱ)的结合强度依次为: 290 nm>315~355 nm>365~380 nm>380~465 nm.三维荧光光谱和荧光淬灭实验表明, 洪泽湖水体DOM的5种荧光组分均与Hg(Ⅱ)有不同程度地络合.Ryan-Weber模型拟合结果进一步表明, 春季DOM类腐殖质组分与Hg(Ⅱ)结合能力强于类蛋白质, 秋季则是类蛋白质组分的结合能力强于类腐殖质.总体而言, 洪泽湖秋、冬季蓄水能够显著改变DOM的性质, 从而影响DOM与重金属Hg(Ⅱ)的结合特性, 可能会增强洪泽湖水体中Hg的生物可利用性和毒性.
关键词: 溶解态有机质(DOM)      汞(Hg)      荧光光谱      荧光淬灭      洪泽湖     
Binding Affinity Between Heavy Metal Hg and Dissolved Organic Matter in Hongze Lake
HU Bin1 , WANG Pei-fang1 , ZHANG Nan-nan2 , BAO Tian-li1 , JIN Qiu-tong1     
1. Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China;
2. Jiangsu Academy of Environmental Industry and Technology Co., Nanjing 210019, China
Abstract: Dissolved organic matter (DOM) can form complex compounds with heavy metals and then affect the transport, transformation, bioavailability, and toxicity of heavy metals in aquatic environments. Here, fluorescence spectroscopy combined with various spectral analysis methods were conducted to study the binding affinity between heavy metal Hg and seasonal dissolved organic matter in Hongze Lake. DOM was dominated by protein-like substances in spring, whereas DOM in autumn was dominated by humic-like substances. These results indicated that lake impoundment during autumn and winter resulted in significant variations in DOM compositions in Hongze Lake. Two-dimensional correlation spectroscopy analysis of synchronous fluorescence spectra revealed that the binding sequence to Hg(Ⅱ) was 360-425 nm>290 nm>300-350 nm for spring DOM and 290 nm>315-355 nm>365-380 nm>380-465 nm for autumn DOM. Fluorescence quenching characteristics showed a relatively different trend for five fluorescent components. The results of the Ryan-Weber model further indicated that the binding affinity with Hg(Ⅱ) for spring humic-like components was higher than that for protein-like components. However, the opposite binding affinity between humic- and protein-like components and Hg(Ⅱ) was observed for autumn DOM. In general, impoundment could significantly alter the DOM composition and the binding affinity between DOM and heavy metal Hg and may eventually increase the bioavailability and toxicity of Hg in Hongze Lake.
Key words: dissolved organic matter (DOM)      mercury (Hg)      fluorescence spectroscopy      fluorescence quenching      Hongze Lake     

溶解态有机质(dissolved organic matter, DOM)是水环境中普遍存在且非常重要的物质之一, 其含有丰富的碳、氮和磷等生源要素, 不仅是全球碳循环的重要组成之一, 也是生态系统中能量和物质循环的重要桥梁[1, 2].此外, DOM作为重金属等污染物的载体, 能够通过微生物作用、光化学反应、矿化和结合等一系列环境行为, 影响污染物的溶解性、生物可利用性、迁移和生物毒性等生物地球化学过程[3~5].因此, DOM具有重要的生态和环境意义, 其丰富的环境行为和生态环境效应是水环境领域和生物地球化学的研究热点.

DOM具有丰富的官能团, 如羧基和酚羟基等, 能够以静电结合和有机络合等方式与水体中的金属离子形成复合化合物, 进而影响重金属的毒性和生物有效性等[6~8].国内外学者针对水环境中DOM与重金属的结合开展了一系列的研究[9~11].Xu等[9]的研究结果表明, 草型湖泊沉积物有机质对重金属有更多的结合点位和更强的结合能力, 相比于藻型湖泊沉积物, 能够减弱重金属的生物毒性.Chen等[10]的研究发现, 富里酸和亲水性有机酸能够通过络合促进藻类对铜的吸附, 进而影响其毒性和生物有效性.由于DOM与重金属离子发生作用后, 其结构和光学特征也会发生相应地变化, 因此光谱分析方法被广泛地应用, 以深入了解DOM与重金属的相互作用机制[12~14].

汞(Hg)是一种有毒重金属元素, 水环境中的Hg可以通过微生物和光化学等过程转化成甲基汞, 对人类和水生生物的健康造成严重的危害[15, 16].DOM的多种活性官能团可以与Hg离子结合, 影响水环境中Hg的赋存形态, 进而影响汞的形态转化[17, 18].此外DOM也可通过微生物群落和羟基自由基等间接影响汞的形态转化[19~21], 因此开展DOM与Hg的相互作用有助于丰富水环境中Hg的生物地球化学过程.本文以大型浅水湖泊洪泽湖DOM为研究对象, 利用同步荧光光谱法和三维荧光光谱法, 结合二维相关光谱分析, 分析不同季节洪泽湖DOM不同组分与Hg的结合特性, 以期为进一步了解DOM在湖泊重金属毒性和生物有效性方面所起的作用提供一定的科学依据和研究基础.

1 材料与方法 1.1 研究区域概况和样品采集

洪泽湖(33°06′~33°40′ N, 118°10′~118°52′ E), 不仅是我国第四大淡水湖, 也是淮河流域最大的湖泊, 兼具蓄洪、灌溉、航运、水产养殖、饮用和生态保护等多项功能, 同时也是南水北调东线工程重要的调蓄性湖泊, 具有明显的水库特征[22, 23].洪泽湖入湖河流集中在西部, 年平均入湖流量330亿m3, 其中淮河为最大入湖河流, 入湖水量占总入湖量的70%以上.出湖河流分布在东部, 其中入江水道为淮河和洪泽湖的主要泄洪道, 60%~70%的湖水经由入江水道流入长江.洪泽湖属于过水型湖泊, 年均换水率达11次之多.为了更好地调节利用水资源, 洪泽湖3条主要出湖河流上建设了人工闸门, 每年5~10月开启闸门以满足防洪排涝和农业灌溉等用水需求, 而每年11月~次年4月则关闭闸门蓄水以满足调水、饮水和航运等需求[11, 24].

本研究根据洪泽湖湖盆形态、水文条件和出入湖湖口位置, 选择淮河入湖区、西部湖区、南部湖湾区和湖心区4个采样点(表 1), 分别在2016年4月和11月使用Rutter分层水样采集器采集表层水, 采集的水样使用0.22 μm聚醚砜树脂滤膜过滤, 并置于棕色聚乙烯瓶中冷藏避光保存待测.使用美国HACH多参数水质检测仪现场测定水样的pH和溶解氧(dissolved oxygen, DO), 使用德国Elementar Liqui-TOC总有机碳分析仪测定溶解态有机碳(dissolved organic carbon, DOC)含量.

表 1 洪泽湖采样点坐标和水样理化性质 Table 1 Location of Hongze Lake sampling sites and physical-chemical properties of samples

1.2 实验方法与指标测定 1.2.1 重金属结合实验

将不同体积的浓度为0.025 mol·L-1的Hg(NO3)2储备液滴定至滤后水样中, 使得水样中Hg(Ⅱ)最终浓度分别为0、5、10、15、20、30、40、50、75、100、150、200和250 μmol·L-1.为避免浓度影响每次滴加的量均少于水样的5%[9].在室温条件下恒温避光振荡反应24 h, 实验后立即测定样品的荧光光谱.

1.2.2 荧光光谱的测定与分析

采用日本Hitachi公司的F-7000荧光光度计测定Hg(Ⅱ)添加前后水样的三维荧光光谱和同步荧光光谱, 光源为150 W连续输出氙弧灯.其中三维荧光光谱测定激发波长范围为230~450 nm, 步长5 nm.发射波长范围为325~550 nm, 步长1 nm.激发和发射波长的夹缝宽均为5 nm, 扫描速度为12 000 nm·min-1.使用Milli-Q超纯水作为空白样品用于消除水拉曼效应造成的荧光光谱拉曼峰.使用MATLAB软件利用平行因子分析法对三维荧光光谱进行解析[25].本文采用硫酸奎宁单位(QSE)校准并归一所有三维荧光光谱的荧光强度[15].

同步荧光光谱的测定激发波长为250~500 nm, 设定发射波长与激发波长的恒定间隔为60 nm.将重金属浓度作为外扰因素, 利用“2D shige”软件建立同步和异步二维荧光相关光谱[26].

1.2.3 荧光淬灭曲线拟合模型

为了综合评估DOM不同组分与重金属的结合作用情况, 使用Ryan-Weber模型对荧光淬灭曲线进行非线性拟合[27].该模型假设结合点位与重金属离子按照1∶1的形式结合成有机金属复合物, 从而引起荧光淬灭反应[28].拟合方程如下:

(1)

式中, F为不同重金属浓度CM下的荧光峰强, F0为没有加入重金属的初始荧光峰强, FML为重金属浓度增大到一定值, 荧光峰强不再发生变化的荧光峰限值, KMCL分别为条件稳定常数和最大结合容量.条件稳定常数(lgKM)用来表征体系中DOM与重金属结合潜能的稳定性.用CL除以DOC浓度得到的值(mmol·g-1)即为可表征DOM与重金属的结合容量(CCc).

2 结果与讨论 2.1 溶解态有机质同步荧光光谱随Hg(Ⅱ)增加的变化

洪泽湖DOM的同步荧光光谱荧光强度随Hg(Ⅱ)浓度增加的变化情况如图 1所示.由图 1(a)1(b)可以看出, 春季(4月)洪泽湖水体中DOM分别在280 nm和350 nm处存在显著的特征峰, 秋季(11月)水体DOM则在350 nm存在一个显著的特征峰.有研究表明, 波长在200~300 nm和300 nm以上的特征峰分别归因于类蛋白质和类腐殖质[13, 28].这表明洪泽湖春季水体DOM以类蛋白质和类腐殖质为主, 而秋季水体DOM则以类腐殖质为主, 与已有的研究结果相同[11, 29].此外, 秋季水体DOM荧光强度和DOC含量均远高于春季水体(表 1图 1), 这主要是由于夏、秋季上游淮河陆源性DOM大量输入造成的[11].

(a)同步荧光光谱-4月, (b)同步荧光光谱-11月, (c)同步二维相关光谱-4月, (d)同步二维相关光谱-11月, (e)异步二维相关光谱-4月, (f)异步二维相关光谱-11月 图 1 洪泽湖溶解态有机质同步荧光光谱随Hg(Ⅱ)浓度变化情况和其同步和异步二维相关光谱图 Fig. 1 Changes in the SF spectra of dissolved organic matter from Hongze Lake upon addition of Hg(Ⅱ) and its synchronous and asynchronous 2D-COS maps

随着c[Hg(Ⅱ)]从0 μmol·L-1增加至250 μmol·L-1, DOM不同波长的荧光强度均呈现明显的下降趋势[图 1(a)1(b)].这一结果表明Hg(Ⅱ)与DOM中不同组分都发生了结合作用.为了进一步掌握DOM与重金属Hg的结合特性, 利用二维相关光谱解析同步荧光光谱以确定Hg(Ⅱ)离子与DOM的结合点位和结合顺序, 结果如图 1(c)~1(f)所示.

图 1(c)1(d)所示, 春、秋季洪泽湖DOM同步二维相关光谱图均在350 nm/350 nm和290 nm/290 nm处存在正值的自峰, 在290 nm/350 nm存在一个交叉峰.此外, 秋季水体DOM的同步二维相关光谱的自峰峰强远高于春季水体, 表明, 洪泽湖秋季水体DOM在滴加Hg(Ⅱ)后荧光光强更容易降低, 荧光淬灭效应更加显著.如图 1(e)1(f)所示, 异步二维光谱图的峰值呈对角线分布, 在对角线下方均存在正值峰和负值峰.根据Noda法则[26], 洪泽湖春季DOM与Hg(Ⅱ)的结合强度为:360~425 nm>290 nm>300~350 nm, 秋季DOM与Hg(Ⅱ)的结合强度为:290 nm>315~355 nm>365~380 nm>380~465 nm.异步二维相关光谱的结果表明, 洪泽湖春季DOM类腐殖质对Hg(Ⅱ)的亲和力强于类蛋白质, 而秋季DOM则是类蛋白质的亲和力强于类腐殖质.

2.2 洪泽湖溶解态有机质三维荧光光谱解析

随着c[Hg(Ⅱ)]浓度由0 μmol·L-1逐渐增加至250 μmol·L-1, 春、秋季水体DOM不同波长荧光团的荧光峰值均发生了明显地下降(图 2), 说明在Hg(Ⅱ)的作用下DOM发生了淬灭效应, 这一结果与图 1同步荧光光谱结果相同.为了进一步了解DOM中不同组分与Hg(Ⅱ)的结合特性, 利用平行因子方法对三维荧光光谱进行解析, 基于残差分析和分半验证结果共解析出5个荧光组分.通过对这5个荧光组分的光谱参数和OpenFluor在线光谱数据库中公开的PARAFAC模型进行比较, 发现Tucker一致性系数均超过0.95, 认定此次解析结果是可信的[30, 31].

(a)4月, c[Hg(Ⅱ)]=0 μmol·L-1, (b)11月, c[Hg(Ⅱ)]=0 μmol·L-1, (c)4月, c[Hg(Ⅱ)]=250 μmol·L-1, (d)11月, c[Hg(Ⅱ)]=250 μmol·L-1 图 2 洪泽湖溶解态有机质与Hg(Ⅱ)结合三维荧光光谱图 Fig. 2 Changes in excitation-emission matrix spectroscopy of dissolved organic matter from Hongze Lake binding with Hg(Ⅱ)

根据光谱特征将5个荧光组分分成两大类, 其中3个成分(C1、C2和C3)可归一为类腐殖质荧光成分, 而其余2个成分(C4和C5)为类蛋白质荧光成分.其中, C1[Ex/Em=(230(340) nm/425 nm]和C3[Ex/Em=260(280) nm/460~500 nm]被普遍认为是陆源类腐殖质成分, 具有高芳香性和高分子质量的特点[32~34].C2[Ex/Em=245(305) nm/405 nm]的最大激发和发射波长类似于微生物作用产生的海源腐殖质M峰[33~35].C4[Ex/Em=(230(290) nm/350 nm]和C5[Ex/Em=275((230) nm/320 nm]都是典型的类蛋白质荧光成分, 其中C4为色氨酸, C5为酪氨酸[36~38].

2.3 洪泽湖溶解态有机质不同组分与Hg(Ⅱ)的结合特性

为了对比研究DOM各组分在不同Hg(Ⅱ)浓度下的淬灭程度, 图 3分别作出各荧光组分在不同Hg(Ⅱ)浓度作用下的荧光淬灭曲线.从中可见, 组分C1和C4在避光条件振荡24 h后呈现明显的淬灭效应, 最大荧光强度随着Hg(Ⅱ)浓度的升高而降低, 但C2、C3和C5这3种组分受Hg(Ⅱ)的淬灭影响很小, 甚至出现荧光强度整体增强的变化趋势.荧光组分强度的增强可能是由于重金属Hg(Ⅱ)与有机质结合, 改变了有机质的结构造成的, 这一现象与其他研究相类似[19, 39].显著差异的淬灭曲线表明, 有机质不同组分与重金属Hg(Ⅱ)的结合特性大不相同, 这一结果与同步荧光光谱结果相类似.

图 3 洪泽湖DOM不同组分与Hg(Ⅱ)结合荧光淬灭曲线 Fig. 3 Fluorescence quenching curve between Hg(Ⅱ) and different fluorescence components from Hongze Lake DOM

利用Ryan-Weber模型对Hg(Ⅱ)作用下有机质不同组分的荧光淬灭曲线进行非线性拟合.组分C2、C3和C5虽然整体呈现荧光强度下降的趋势, 但3个组分在不同浓度下的荧光强度均波动较大, 模型的拟合结果较差.因此, 本文对DOM组分C1和C4淬灭曲线进行非线性模型拟合, 结果如表 2所示.

表 2 通过Ryan-Weber模型确定的荧光组分与Hg(Ⅱ)的结合参数(n=13) Table 2 Values of binding parameters for fluorescence components with Hg(Ⅱ) determined by Ryan-Weber model (n=13)

表 2可以看出, 春秋季洪泽湖DOM与Hg(Ⅱ)的结合稳定常数lgKM范围为3.80~5.10, 与其他研究结果相符[40, 41].春季水体DOM荧光组分C1的lgKM值均要高于荧光组分C4, 表明春季DOM中类腐殖质与重金属Hg(Ⅱ)的亲和力要强于类蛋白质.秋季水体中DOM荧光组分C1的lgKM值则低于荧光组分C4(HZ1除外), 表明秋季DOM中类蛋白质与重金属Hg(Ⅱ)的亲和力要强于类蛋白质.不同季节DOM荧光组分与Hg(Ⅱ)结合稳定常数lgKM结果与异步二维相关光谱结合顺序结果相符(图 1).本实验结果进一步表明, 二维相关光谱结合荧光光谱能够很好地应用于DOM与重金属Hg(Ⅱ)的结合研究中.

DOM的性质变化对其与重金属的结合有着显著的影响[42~44].例如, Li等[42]的研究发现太湖藻类暴发期间富里酸与Cu(Ⅱ)的结合能力要远高于非暴发期.有研究表明, 春季洪泽湖陆源DOM腐质类组分C1在秋季蓄水期间通过微生物和光化学等作用被转化为自生DOM蛋白类C4[11].本文结果中春季DOM组分C1与Hg(Ⅱ)的结合能力(lgKM值)大部分高于秋季水体DOM, 而类蛋白质(C4)的结合能力则大部分低于秋季水体(表 2).与此同时, 春季水体中DOM组分C1和C4的结合容量要高于秋季水体.春、秋季DOM与重金属Hg(Ⅱ)显著差异的结合特性表明, 洪泽湖秋冬季蓄水期间DOM性质的变化可能会影响水体中重金属Hg的形态变化, 进而影响Hg的生物可利用性和毒性.此外, Lescord等[45]的研究表明, 生物中甲基汞的含量与内源性有机质含量呈显著正相关, Jiang等[17]的研究认为内源性有机质能够影响微生物群落活性进而刺激环境中甲基汞的形成.洪泽湖蓄水期间DOM性质的变化可能会增强水体中Hg的生物可利用性和毒性, 因此, 蓄水期间应当加强水环境中重金属Hg的监测以保障用水安全.

3 结论

(1) 春季洪泽湖DOM以类蛋白质和类腐殖质物质为主, 秋季洪泽湖DOM则以类腐殖质物质为主.

(2) 洪泽湖春季DOM与Hg(Ⅱ)的结合强度依次为:360~425 nm>290 nm>300~350 nm, 秋季DOM与Hg(Ⅱ)的结合强度依次为:290 nm>315~355 nm>365~380 nm>380~465 nm.

(3) 洪泽湖水体DOM包括3种类腐殖质和2种类蛋白质荧光组分.其中春季DOM类腐殖质组分C1与Hg(Ⅱ)结合能力强于类蛋白质C4, 秋季则是类蛋白质组分C4强于类腐殖质C1.

参考文献
[1] Creed I F, Bergström A K, Trick C G, et al. Global change-driven effects on dissolved organic matter composition: implications for food webs of northern lakes[J]. Global Change Biology, 2018, 24(8): 3692-3714. DOI:10.1111/gcb.14129
[2] Boodoo K S, Fasching C, Battin T J. Sources, transformation, and fate of dissolved organic matter in the gravel bar of a prealpine stream[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(8). DOI:10.1029/2019JG005604
[3] 施玥, 王沛芳, 胡斌, 等. 太湖和洪泽湖天然有机质与重金属结合特性研究[J]. 水资源保护, 2019, 35(5): 86-94.
Shi Y, Wang P F, Hu B, et al. Study on binding characteristics of natural organic matter and heavy metals in Taihu Lake and Hongze Lake[J]. Water Resources Protection, 2019, 35(5): 86-94.
[4] 孟永霞, 程艳, 李琳, 等. 新疆匹里青河小流域DOM荧光特征及与汞的相互作用[J]. 生态与农村环境学报, 2020, 36(6): 770-777.
Meng Y X, Cheng Y, Li L, et al. Fluorescence characteristics of DOM and its interaction with mercury in Piliqing River watershed in Xinjiang, China[J]. Journal of Ecology and Rural Environment, 2020, 36(6): 770-777.
[5] Zhang H F, Zheng Y C, Wang X C, et al. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments[J]. Journal of Environmental Management, 2021, 294. DOI:10.1016/j.jenvman.2021.113041
[6] Cui H Y, Zhang S B, Zhao M Y, et al. Parallel faction analysis combined with two-dimensional correlation spectroscopy reveal the characteristics of mercury-composting-derived dissolved organic matter interactions[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121395
[7] 梁梦琦, 邵美玲, 曹昌丽, 等. 城郊与城镇河流中溶解性有机质与重金属的相关性[J]. 环境科学, 2018, 39(5): 2095-2103.
Liang M Q, Shao M L, Cao C L, et al. Characteristics of dissolved organic matter (DOM) and relationship with dissolved heavy metals in a peri-urban and an urban river[J]. Environmental Science, 2018, 39(5): 2095-2103.
[8] Pontoni L, La Vecchia C, Boguta P, et al. Natural organic matter controls metal speciation and toxicity for marine organisms: a review[J]. Environmental Chemistry Letters, 2021. DOI:10.1007/s10311-021-01310-y
[9] Xu H C, Yu G H, Yang L Y, et al. Combination of two-dimensional correlation spectroscopy and parallel factor analysis to characterize the binding of heavy metals with DOM in lake sediments[J]. Journal of Hazardous Materials, 2013, 263: 412-421. DOI:10.1016/j.jhazmat.2013.09.042
[10] Chen X J, Zheng M M, Zhang G X, et al. The nature of dissolved organic matter determines the biosorption capacity of Cu by algae[J]. Chemosphere, 2020, 252. DOI:10.1016/j.chemosphere.2020.126465
[11] Hu B, Wang P F, Wang C, et al. The effect of anthropogenic impoundment on dissolved organic matter characteristics and copper binding affinity: insights from fluorescence spectroscopy[J]. Chemosphere, 2017, 188: 424-433. DOI:10.1016/j.chemosphere.2017.09.023
[12] Huang Y, Tian Y Y, Xie L H, et al. The application of two-dimensional correlation spectroscopy for the binding properties of heavy metals onto digestate-derived DOM from anaerobic digestion of chicken manure[J]. Ecotoxicology and Environmental Safety, 2020, 204. DOI:10.1016/j.ecoenv.2020.111129
[13] Ren H Y, Ma F Y, Yao X, et al. Multi-spectroscopic investigation on the spatial distribution and copper binding ability of sediment dissolved organic matter in Nansi Lake, China[J]. Journal of Hydrology, 2020, 591. DOI:10.1016/j.jhydrol.2020.125289
[14] Fan X J, Liu C, Yu X F, et al. Insight into binding characteristics of copper(Ⅱ) with water-soluble organic matter emitted from biomass burning at various pH values using EEM-PARAFAC and two-dimensional correlation spectroscopy analysis[J]. Chemosphere, 2021, 278. DOI:10.1016/j.chemosphere.2021.130439
[15] 孙荣国. 三峡水库水体甲基汞光化学降解特征及其作用机制与影响因素[D]. 重庆: 西南大学, 2014.
Sun R G. Mechanisms and influencing factors of methylmercury photodegradation in the water body of Three Gorges Reservoir, China[D]. Chongqing: Southwest University, 2014.
[16] 王书平, 宋玉梅, 刘爽, 等. 海水养殖底泥中外源汞甲基化及生物响应研究[J]. 中国环境科学, 2021, 41(6): 2871-2880.
Wang S P, Song Y M, Liu S, et al. Research of the methylation and biological response of exogenous mercury in mariculture sediments[J]. China Environmental Science, 2021, 41(6): 2871-2880.
[17] Jiang T, Bravo A G, Skyllberg U, et al. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China[J]. Water Research, 2018, 146: 146-158. DOI:10.1016/j.watres.2018.08.054
[18] 卞永荣, 顾宝华, 朱波, 等. 厌氧条件下可溶性有机质对汞的还原与氧化作用[J]. 环境科学, 2018, 39(11): 5036-5042.
Bian Y R, Gu B H, Zhu B, et al. Reduction and oxidation of mercury by dissolved organic matter under anaerobic conditions[J]. Environmental Science, 2018, 39(11): 5036-5042.
[19] Schartup A T, Ndu U, Balcom P H, et al. Contrasting effects of marine and terrestrially derived dissolved organic matter on mercury speciation and bioavailability in seawater[J]. Environmental Science & Technology, 2015, 49(10): 5965-5972.
[20] 李雨桐, 何鑫龙, 彭一帆, 等. 藻源溶解性有机质对汞甲基化的影响[J]. 浙江农林大学学报, 2021, 38(2): 362-368.
Li Y T, He X L, Peng Y F, et al. Influence of algal derived dissolved organic matter on mercury methylation in water[J]. Journal of Zhejiang A&F University, 2021, 38(2): 362-368.
[21] Mangal V, Stenzler B R, Poulain A J, et al. Aerobic and anaerobic bacterial mercury uptake is driven by algal organic matter composition and molecular weight[J]. Environmental Science & Technology, 2019, 53(1): 157-165.
[22] Li S H, Guo W, Mitchell B. Evaluation of water quality and management of Hongze Lake and Gaoyou Lake along the Grand Canal in Eastern China[J]. Environmental Monitoring and Assessment, 2011, 176(1-4): 373-384. DOI:10.1007/s10661-010-1590-5
[23] 陈业, 彭凯, 张庆吉, 等. 洪泽湖浮游动物时空分布特征及其驱动因素[J]. 环境科学, 2021, 42(8): 3753-3762.
Chen Y, Peng K, Zhang Q J, et al. Spatio-temporal distribution characteristics and driving factors of zooplankton in Hongze Lake[J]. Environmental Science, 2021, 42(8): 3753-3762.
[24] Tian C, Pei H Y, Hu W R, et al. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China[J]. Environmental Science and Pollution Research, 2015, 22(22): 18163-18175. DOI:10.1007/s11356-015-4830-y
[25] Murphy K R, Stedmon C A, Graeber D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC[J]. Analytical Methods, 2013, 5(23): 6557-6566. DOI:10.1039/c3ay41160e
[26] Noda I. Two-dimensional correlation analysis useful for spectroscopy, chromatography, and other analytical measurements[J]. Analytical Sciences, 2007, 23(2): 139-146. DOI:10.2116/analsci.23.139
[27] Guo X J, Li Y Z, Feng Y H, et al. Using fluorescence quenching combined with two-dimensional correlation fluorescence spectroscopy to characterise the binding-site heterogeneity of dissolved organic matter with copper and mercury in lake sediments[J]. Environmental Chemistry, 2017, 14(2): 91-98. DOI:10.1071/EN16135
[28] Zhu Y C, Jin Y, Liu X S, et al. Insight into interactions of heavy metals with livestock manure compost-derived dissolved organic matter using EEM-PARAFAC and 2D-FTIR-COS analyses[J]. Journal of Hazardous Materials, 2021, 420. DOI:10.1016/j.jhazmat.2021.126532
[29] 陈丽丽, 肖启涛, 俞晓琴, 等. 东部地区大型湖库有色可溶性有机物来源组成及潜在驱动因素[J]. 环境科学, 2022, 43(4): 1930-1940.
Chen L L, Xiao Q T, Yu X Q, et al. Optical Composition and Potential Driving factors of chromophoric dissolved organic matter in large lakes and reservoirs in the eastern region of China[J]. Environmental Science, 2022, 43(4): 1930-1940.
[30] Murphy K R, Stedmon C A, Wenig P, et al. OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3): 658-661. DOI:10.1039/C3AY41935E
[31] Holland A, Stauber J, Wood C M, et al. Dissolved organic matter signatures vary between naturally acidic, circumneutral and groundwater-fed freshwaters in Australia[J]. Water Research, 2018, 137: 184-192. DOI:10.1016/j.watres.2018.02.043
[32] Amaral V, Graeber D, Calliari D, et al. Strong linkages between DOM optical properties and main clades of aquatic bacteria[J]. Limnology and Oceanography, 2016, 61(3): 906-918. DOI:10.1002/lno.10258
[33] Zhou Y Q, Zhang Y L, Jeppesen E, et al. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake[J]. Water Research, 2016, 100: 211-221. DOI:10.1016/j.watres.2016.05.021
[34] 高凤, 邵美玲, 唐剑锋, 等. 城镇流域水体-沉积物中溶解性有机质的荧光特性及影响因素: 以宁波市小浃江为例[J]. 环境科学, 2019, 40(9): 4009-4017.
Gao F, Shao M L, Tang J F, et al. Fluorescence characteristics and influencing factors of dissolved organic matter (DOM) in water and sediment of urban watershed: a case study of Xiaojia River in Ningbo City[J]. Environmental Science, 2019, 40(9): 4009-4017.
[35] 闫晓寒, 韩璐, 文威, 等. 辽河保护区水体溶解性有机质空间分布与来源解析[J]. 环境科学学报, 2021, 41(4): 1419-1427.
Yan X H, Han L, Wen W, et al. Spectral characteristics and spatial distribution of DOM in surface water of Liaohe reservation zone[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1419-1427.
[36] Cuss C W, Guéguen C. Relationships between molecular weight and fluorescence properties for size-fractionated dissolved organic matter from fresh and aged sources[J]. Water Research, 2015, 68: 487-497. DOI:10.1016/j.watres.2014.10.013
[37] 吕伟伟, 姚昕, 张保华, 等. 太湖颗粒态有机质的荧光特征及环境指示意义[J]. 环境科学, 2018, 39(5): 2056-2066.
Lü W W, Yao X, Zhang B H, et al. Fluorescent characteristics and environmental significance of particulate organic matter in Lake Taihu, China[J]. Environmental Science, 2018, 39(5): 2056-2066.
[38] 陈慧敏, 俞晓琴, 朱俊羽, 等. 太湖有色可溶性有机物(CDOM)对COD及BOD5的指示意义[J]. 湖泊科学, 2021, 33(5): 1376-1388.
Chen H M, Yu X Q, Zhu J Y, et al. Optical indices of chromophoric dissolved organic matter (CDOM) as potential indicators tracing the variability of chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) in Lake Taihu[J]. Journal of Lake Sciences, 2021, 33(5): 1376-1388.
[39] Bao T L, Wang P F, Hu B, et al. Investigation on the effects of sediment resuspension on the binding of colloidal organic matter to copper using fluorescence techniques[J]. Chemosphere, 2019, 236. DOI:10.1016/j.chemosphere.2019.07.043
[40] Yamashita Y, Jaffé R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis[J]. Environmental Science & Technology, 2008, 42(19): 7374-7379.
[41] Zhang D Y, Pan X L, Mostofa K M G, et al. Complexation between Hg(Ⅱ) and biofilm extracellular polymeric substances: an application of fluorescence spectroscopy[J]. Journal of Hazardous Materials, 2010, 175(1-3): 359-365. DOI:10.1016/j.jhazmat.2009.10.011
[42] Li W W, Zhang F F, Ye Q, et al. Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu Lake, China[J]. Chemosphere, 2017, 172: 496-504. DOI:10.1016/j.chemosphere.2017.01.008
[43] 李雅妮, 徐华成, 江和龙. 鄱阳湖水体溶解有机质分子量分布、荧光特征及对重金属分布的影响[J]. 湖泊科学, 2020, 32(4): 1029-1040.
Li Y N, Xu H C, Jiang H L. Molecular weight distribution, fluorescence characteristics of dissolved organic matter and their effect on the distribution of heavy metals of Lake Poyang[J]. Journal of Lake Sciences, 2020, 32(4): 1029-1040.
[44] Hu B, Wang P F, Wang C, et al. Investigating spectroscopic and copper-binding characteristics of organic matter derived from sediments and suspended particles using EEM-PARAFAC combined with two-dimensional fluorescence/FTIR correlation analyses[J]. Chemosphere, 2019, 219: 45-53. DOI:10.1016/j.chemosphere.2018.11.113
[45] Lescord G L, Emilson E J S, Johnston T A, et al. Optical properties of dissolved organic matter and their relation to mercury concentrations in water and biota across a remote freshwater drainage basin[J]. Environmental Science & Technology, 2018, 52(6): 3344-3353.