2. 中国地质大学(武汉)生物地质与环境地质国家重点实验室, 武汉 430074
2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
黑碳(black carbon, BC)气溶胶来自于化石燃料和生物质燃料的不完全燃烧过程[1].BC具有正辐射强迫, 是仅次于CO2的对全球变暖产生重要影响的大气成分[2, 3]. BC能改变大气的垂直结构和稳定性, 从而影响全球大气和水文循环[4].BC也能吸附有毒有害物质, 对人体健康造成危害[5~7].准确识别BC来源, 是识别和减缓其气候、环境和健康效应的基础.
BC来源解析的主要研究方法有排放清单法[8]、光度计模型法[9]和碳同位素溯源法[10]等.Wang等[11]的研究使用排放清单法编制了全国BC排放清单, 发现BC排放的最大来源是民用燃煤, 并估算2050年全国BC排放量为920~2 183 Gg; Zhang等[12]使用光度计模型法对6个特大城市环境空气中BC的浓度和来源开展研究, 发现北方城市的BC浓度水平高于南方城市, 广州和武汉的液体燃料燃烧对BC的贡献较大; Ni等[13]利用碳同位素溯源法对北京和西安地区大气中BC的研究发现, 雾、霾期间BC主要来源于化石燃料燃烧, 其次为生物质燃烧.
BC的源排放具有明显的时间[11]和空间[14]差异.当前我国的BC研究主要集中在城市地区, 对其它类型点位的研究较少.Chen等[15]的研究发现, 农村地区的年雾、霾日数高于城市地区, 需要更多地关注农村地区大气环境污染问题.Wang等[16]的研究指出, 农村地区存在着更加显著的“穹顶效应”, 即BC通过和气溶胶-大气边界层的相互作用来抑制边界层发展, 从而加重霾污染.
华北平原地区空气污染问题严重[17~19].该地区既是我国农村人口分布密集的地区[20], 也是BC排放密集的地区[21].华北平原南部地区位于华北平原和两湖平原、长三角地区大气污染传输的关键位置[22], 对该区域大气环境的观测研究, 对于理解污染物跨区域传输转化影响具有重要意义.
基于此, 本研究选择华北平原南部的某农村地区, 对该点位BC开展连续在线观测, 探讨华北平原南部典型农村地区的BC浓度变化.采用黑碳仪光度计模型和浓度权重轨迹分析法(CWT)[23], 分析该地区BC的来源和区域传输, 以期为该区域大气污染防控和污染物跨区域传输转化影响研究提供基础数据支撑.
1 材料与方法 1.1 观测地点和时间观测地点位于河南省平顶山市某农村居民住房屋顶(33.94°N, 113.10°E, 海拔高度112 m, 图 1), 观测站点离地面约5 m.观测点西南方9 km处为宝丰县城, 东北方11 km处是郏县县城, 观测点附近修有多条高速公路(G36)、省道(S238、S231)和乡镇公路.观测点附近有大面积农田, 周围无明显工业污染源.
![]() |
图 1 采样点位示意 Fig. 1 Location and surroundings of the sampling site |
本研究的观测时间为2018年2月12日~8月8日, 其中2月为冬季, 3~5月为春季, 6~8月为夏季.
1.2 仪器和方法 1.2.1 观测仪器本研究采用AE-33型黑碳仪测量大气中的BC浓度.该仪器有7个不同波长的采集通道(370、470、520、590、660、880和950 nm).本研究以880 nm处所测数据代表大气环境中实际BC浓度.采样口连接PM2.5切割头, 流量为5 L·min-1, 每60 s采样一次, 采样精度为1 ng·m-3.
BC浓度的测定基于光学测量法.黑碳仪中的石英滤带连续采集空气中的气溶胶样品, 当光源照射滤纸时, 因BC吸收可见光而导致光的衰减, 如公式(1):
![]() |
(1) |
式中, ATN为光衰减量, I和I0分别为通过样品滤带和空白滤带的光照强度.BC的吸光系数babs如公式(2):
![]() |
(2) |
式中, babs为光衰减系数, S为格点区域, F1为实际流量, t为时间, C为多重散射参数; AE-33型黑碳仪采用双点位技术消除负载效应带来的误差, 提高测量的准确性.当负载效应出现时, BC与ATN呈线性关系, 如公式(3):
![]() |
(3) |
式中, BCmeasured为无负载效应下的理想BC值, k为负载补偿参数; 两个不同负载程度的衰减点可计算出k值以及补偿到零载时的BC值, 如公式(4)和(5):
![]() |
(4) |
![]() |
(5) |
黑碳仪模型被广泛用于识别化石燃料(fossil fuel, ff)和生物质燃料燃烧(biomass burning, bb)对BC的贡献率.模型中假定大气环境中的BC来源于化石燃料燃烧排放的BC(BCff)和生物质燃烧排放的BC(BCbb), 某一波段下的BC吸收如公式(6):
![]() |
(6) |
式中, babs (BCff)为化石燃料燃烧排放BC的吸收系数, babs (BCbb)为生物质燃烧排放BC的吸收系数.BC可以吸收紫外到红外波段的光, BC对光吸收依赖性的大小通常用波长吸收指数AAE来描述[22, 24].生物质燃烧产生的BC吸收系数对短波(370 nm或470 nm)的吸收作用远强于对长波(880 nm或950 nm)的吸收作用[25, 26]. babs、波长、化石燃料燃烧和生物质燃烧对应的AAE关系, 以及生物质燃烧排放BC的贡献率, 可由公式(7)~(11)得到.通常选择AAEff为1.0[22], AAEbb为2.0[27].
![]() |
(7) |
![]() |
(8) |
![]() |
(9) |
![]() |
(10) |
![]() |
(11) |
本文通过浓度权重轨迹分析法(CWT)[23]计算对观测点位BC浓度有贡献的地区.本研究使用Meteoinfo软件中的TrajStat插件对采样点250 m高度处的气团轨迹进行后向24 h的轨迹模拟, 之后将气流轨迹覆盖区间划分为0.5°×0.5°的网格, 通过下式计算浓度权重:
![]() |
(12) |
式中, cij为浓度权重, 该值越大, 则该气团来自BC潜在源区的可能性就越大. m为第ij格内的轨迹条数; cl为经过第ij格的BC浓度; τijl为该条轨迹在第ij格停留的时间; Wij为权重函数, 用来对CWT算法进行矫正.
2 结果与讨论生物质燃烧排放气溶胶的AAE通常介于1.57~2.27之间[24], 化石燃料燃烧排放气溶胶的AAE在0.97~1.12之间[25].为计算不同AAE组合下黑碳仪光度计模型的不确定度, 本文采用蒙托卡洛模拟计算.依据公式(6)~(10)构建方程, 其中babs1和babs6满足偏态分布; AAEbb和AAEff满足均匀分布, 其分布范围如上所述.为充分评估不同计算参数组合下的结果, 本研究模拟次数选择100万次.需要说明的是蒙托卡洛模拟会产生无意义的结果(BCff和BCbb的计算结果均为负值等情况), 本研究剔除这些模拟结果, 最终得到BCff平均贡献率为58.0%(95%置信区间为57.8%~58.1%), BCbb平均贡献率为42.0%(95%置信区间为41.9%~42.1%)
2.1 BC浓度与AAE的基本特征本研究期间ρ(BC)的平均值为(3.51±2.29)μg·m-3, 与城市地区相比(表 1), 观测点位的BC浓度低于邯郸、北京和济南, 高于上海、南京和天津.人口、车辆和工业集中的大城市具有较高浓度的BC排放[27].华北平原北部地区的BC浓度高于南部地区.与城市郊区相比, 观测点位的BC浓度低于石家庄郊区, 高于南京郊区、上海郊区和北京郊区, 呈现出BC浓度由北向南降低的规律.与农村地区相比, 观测点位的BC浓度低于河北香河, 高于安徽寿县, 在从北到南的农村地区里BC浓度呈现出逐渐降低的趋势.观测点位的BC浓度在典型城市地区和城市郊区处于中等水平, 表明该点位处于南北方传输的关键节点区域, 可以反映出南北方大气污染物浓度的空间分布差异.
![]() |
表 1 城市城区、郊区与农村地区BC浓度的对比 Table 1 Comparison of BC mass concentrations in urban, suburban and rural regions |
本研究期间AAE介于1.08~1.66之间(图 2), 平均值为1.27±0.17.观测期间AAE的平均值更加接近化石燃料燃烧排放气溶胶的AAE, 表明化石燃料燃烧是该地区大气中BC的最主要来源.BC源解析结果同样表明, 观测期间BCff的贡献率为(72±10)%, 是大气中BC最主要的来源.生物质燃烧是BC的另一个重要来源.研究区域未采取集中供暖, 居民取暖以燃烧玉米秸秆、木柴、树枝和电暖片等为主, 当地冬季AAE平均值最高(1.41±0.08), 春季次之(1.28±0.10), 夏季最低(1.20±0.06).黑碳仪光度计模型的定量结果也表明, 冬季生物质燃烧排放BC的贡献率最高[(41±12)%], 夏季的贡献率最低[(20±4)%].该点位BC浓度和AAE的季节变化特征表明, 华北平原南部农村地区冬季生物质燃烧排放的污染物需要引起重视.
![]() |
黑线为变化情况, 阴影为误差范围; 右侧为各数据的箱线图, 箱内黑线指示中位数 图 2 观测期间BC、BCbb、BCff浓度和AAE的时间序列 Fig. 2 Time series of the mass concentrations for BC, BCbb, and BCff and the variation in AAE |
该点位的ρ(BC)表现为冬季最高[(8.21±3.26)μg·m-3], 春季次之[(3.49±1.69)μg·m-3], 夏季最低[(2.37±0.71)μg·m-3].冬季ρ(BCff)最高, 为(5.40±8.29)μg·m-3, 春季为(2.69±2.31)μg·m-3, 夏季最低, 为(1.95±1.12)μg·m-3.冬季ρ(BCbb)最高, 为(3.43±6.58)μg·m-3, 春季为(0.92±2.28)μg·m-3, 夏季最低, 为(0.46±0.63)μg·m-3.
2.2.1 气象因素影响BC浓度的季节变化与气象条件密切相关.较大的风速有利于BC的水平扩散[39], 较高的边界层高度有利于BC的垂直扩散[40], 较高温度下BC浓度相对较低[41], 相对湿度较大时BC易于被清除[42].相关性分析表明, BC浓度与温度(r=-0.54, P < 0.01)、边界层高度(r=-0.48, P < 0.01)和大气能见度(r=-0.33, P < 0.01)呈显著性负相关; BC浓度与风速呈负相关(r=-0.10), 但并不显著(P=0.17); BC浓度与相对湿度也呈并不显著(P=0.21)的负相关关系(r=-0.10).
本研究期间, 温度、相对湿度、大气能见度和边界层高度的季节特征表现为夏季最高、冬季最低.冬季气温低[(6.6±4.6)℃], 燃料消耗增多, 致使BC排放增多[43]; 边界层高度较低且稳定[(415±419)m], 有利于BC在地表附近积累[44]; 相对湿度较低[(59.6±22.0)%], 不利于BC的清除[45].同时大气能见度为(8 430 ±3 166)m, 可见冬季较高的BC浓度与不利的气象因素有关.夏季边界层高度[(667±656)m]较高, BC更易于扩散[46]; 降水频繁(188 mm), 相对湿度较高[(71.4±21.2)%], 有利于BC的湿清除[42]; 平均温度为(28.1±4.2)℃, 大气能见度为(8 941 ±1 933)m, 使得夏季BC浓度较低.
由图 3可知, 6月18日出现了降水高峰值(62 mm), 当天的ρ(BC)为一周内最低(1.80 μg·m-3), 降水前3 d的ρ(BC)为(1.99±0.28)μg·m-3, 降水后3 d的ρ(BC)为(2.87±0.38)μg·m-3; 8月5日也出现了降水高峰值(81 mm), 当天的ρ(BC)为一周内最低(1.99 μg·m-3), 降水前3 d的ρ(BC)为(2.96±0.14)μg·m-3, 降水后3 d的ρ(BC)为(2.71±0.45)μg·m-3, 可见降水(相对湿度增大)有利于当日BC的清除[39, 47]. 4月3~9日, 风速处于较大值[(3.59±1.00) m·s-1], 此时风向以北风为主, ρ(BC) 为(2.32±1.04)μg·m-3, 远低于前后一个月内的ρ(BC)[(3.70±1.69)μg·m-3]; 5月26日出现了风速最大值(5.33 m·s-1), 全天刮北风, 当日ρ(BC)为3.14 μg·m-3, 5月25日风向仍以北风为主, ρ(BC) 为5.39 μg·m-3, 5月27日风向以西北风为主, ρ(BC)为1.54 μg·m-3, 可见当地北风强劲, 较高的风速有利于BC的扩散和稀释[45].
![]() |
图 3 各气象要素的时间序列 Fig. 3 Time series of meteorological parameters during the observation period |
BC浓度不仅受到温度、相对湿度、大气能见度和边界层高度等气象因素的影响, 还受到排放源的影响[48].为识别排放对BC浓度的影响, 本文采用通风系数VC(边界层高度×水平风速)来表征大气污染物的扩散潜力[49], 并利用BC/VC定性反映污染源的排放变化.由表 2可知, 冬季BC/VC远高于春季和夏季, BCff/VC和BCbb/VC在冬季的高值, 也表明冬季BC的排放量高于春季和夏季.
![]() |
表 2 不同季节BC/VC、BCff/VC、BCbb/VC、BC/CO、BC/SO2和BC/NO2的比较 Table 2 Comparison of BC/VC, BCff/VC, BCbb/VC, BC/CO, BC/SO2, and BC/NO2 in different seasons |
相关性分析表明(图 4), BC和PM2.5呈显著正相关(r=0.77, P < 0.01), BC与CO(r=0.40, P < 0.01)、NO2(r=0.36, P < 0.01)和SO2(r=0.35, P < 0.01)都为正相关.与BC类似, 大气中的CO主要来源于燃烧过程.BC和CO比值的季节性变化可以反映BC来源的季节性变化.该点位冬季BC/CO为0.007 0 ±0.009 4, 远高于夏季(0.001 2 ±0.000 7), 表明冬季由生物质燃烧排放BC的比例远高于夏季[50].SO2和NO2主要来源于工业固定点源、机动车尾气等移动源, BC与SO2以及BC与NO2比值的季节性特征同样表现为冬季高(BC/SO2=0.36±0.41; BC/NO2=0.28±0.30), 夏季低(BC/SO2=0.09±0.05; BC/NO2=0.05±0.02).可以推断, 冬季BC的排放量高于夏季.
![]() |
黑线为拟合曲线, 阴影为误差范围 图 4 大气污染物与BC的相关性 Fig. 4 Correlations between atmospheric pollutants and BC |
综上, 冬季不利的气象条件和较高的排放量导致了BC浓度的季节性变化, 表现为冬季高[(8.21±3.26)μg·m-3], 夏季低[(2.37±0.71)μg·m-3].
2.3 清洁日/污染日BC浓度的昼夜变化为区分清洁日和污染日BC的变化特征, 本文将ρ(PM2.5)<75 μg·m-3定义为清洁天, ρ(PM2.5)处于75~115 μg·m-3定义为轻度污染天, ρ(PM2.5)>115 μg·m-3定义为重度污染天. 3种不同污染条件下的BC、BCff、BCbb、AAE、边界层高度和风速的日变化如图 5.
![]() |
线条为变化情况, 阴影为误差范围 图 5 不同空气污染条件下BC、BCff、BCbb、AAE、边界层高度和风速的日变化特征 Fig. 5 Diurnal variation in BC, BCff, BCbb, AAE, height of boundary layer, and wind speed under different air pollution conditions |
有研究表明, 随着空气质量的恶化, 大气环境中的BC浓度也逐渐增加[43].观测期间, 清洁天、轻度污染天和重度污染天的ρ(BC)分别为(2.79±4.06)、(5.97±7.64)和(9.49±9.56) μg·m-3.从清洁天到重度污染天, BC、BCff和BCbb的浓度分别增加了240%、190%和314%.化石燃料燃烧对BC浓度的贡献率在污染日下降了6%.在不同的空气质量条件下, AAE值也出现了不同程度的变化[22].清洁天、轻度污染天和重度污染天的AAE分别为1.27±0.17、1.32±0.20和1.36±0.17, AAE值从清洁天到重度污染天增长了7%, 佐证了污染日生物质燃烧贡献率的增加.
重度污染天时, 11:00[(13.11±32.66)μg·m-3]和20:00[(12.28±19.20)μg·m-3]出现了ρ(BC)高峰值; 轻度污染天时, 08:00[(7.66±4.89)μg·m-3]和20:00[(10.29±23.73)μg·m-3]出现了ρ(BC)高峰值.污染日的午间和晚间BC污染强度最大[51].BCff浓度的日变化情况与BC浓度的日变化情况一致, 重度污染天, 11:00[(9.55±24.99)μg·m-3]和20:00[(7.08±6.84)μg·m-3]出现ρ(BCff)高峰值; 轻度污染天, 20:00[(5.37±9.65)μg·m-3]出现ρ(BCff)高峰值.BCbb浓度的日变化情况与BC浓度日变化情况较为相近, 14:00[(4.23±7.86)μg·m-3]和20:00[(5.20±13.14)μg·m-3]重度污染天出现了ρ(BCbb)高峰值, 20:00[(4.92±15.36)μg·m-3]轻度污染天出现了ρ(BCbb) 高峰值.可见在污染日晚间, 化石燃料燃烧和生物质燃烧都对BC浓度有较高贡献.
清洁天的边界层高度[(630±611)m]高于轻度污染天[(479±451)m]和重度污染天[(393±399)m].全天边界层高度在08:00~17:00逐渐升高, 在17:00~20:00迅速下降, 夜间边界层高度趋于稳定.风速在清洁天[(2.29±1.45)m·s-1]与轻度污染天[(2.42±1.61)m·s-1]相近, 大于重度污染天[(1.82±1.24)m·s-1].全天风速在00:00~07:00逐渐上升, 08:00~16:00逐渐下降, 之后处于稳定状态.清晨边界层高度低[(218±194)m], 风速相对较大[(3.35±1.47)m·s-1], 容易携带周边地区的大气污染物, 夜间形成的稳定边界层一定程度上限制了BC的扩散.大气中的BC浓度自05:00开始升高, 在09:00达到峰值[(4.52±3.48)μg·m-3]; 08:00开始, 大气边界层逐渐抬升[(383±241)m], 随着大气污染物的垂向扩散, ρ(BC)开始下降, 并在14:00达到谷值[(2.44±3.33)μg·m-3]; 傍晚(20:00)边界层高度迅速降低至(200±232) m、风速减弱至(1.57±1.22)m·s-1, 大气污染物扩散速度减慢, ρ(BC)逐渐上升并在20:00达到峰值[(4.25±6.73)μg·m-3]; 夜间大气边界层高度[(164±204)m]和风速[(1.79±1.23)m·s-1]稳定, 人为活动减少, ρ(BC) 趋于稳定[(3.63±2.52)μg·m-3].
在不同的污染条件下, BC、BCff和BCbb出现峰值的时间并不固定.可见该地区农村点位的BC排放源存在随机性和复杂性[22].由图 6可知, 化石燃料燃烧贡献是该地区BC的主要来源, 重度污染天生物质燃烧的贡献率高于其它季节, 其生物质燃烧贡献率达32.3%; 清洁天生物质燃烧贡献率最小, 为25.0%.
![]() |
图 6 不同空气污染条件下BCff与BCbb的贡献情况 Fig. 6 Contribution of BCff and BCbb under different air pollution conditions |
在整个观测期间, 来自山东西南部的气团所占比例最高, 达到35.9%.其次是来自湖北中部和河南南部的气团, 贡献比例分别为24.4%和23.8%.不同季节气团的来源并不相同, 冬季和春季观测点位存在明显的北方大气传输, 西北方气团对当地BC浓度的贡献率分别为15.7%和26.8%, 东北方气团对当地BC浓度的贡献率分别为24.3%和27.6%.夏季则仅有来自华北平原东部地区和南方地区(33.7%)的气团.由此可见, 不同地区的气团贡献差异导致了BC潜在地理来源的差异.
冬季、春季、夏季和整个观测期间的BC浓度权重轨迹分析(CWT)结果如图 7所示.冬季较大的CWT值(>9.00 μg·m-3)分布在河南东南部和南部、河北南部和山东北部地区.有研究表明, 河南省年均BC排放量为117.6 kt, 平顶山市的排放量位居全省第二(9.5%)[52]; 河北省的BC年均排放量为136.7 kt, 山东省的BC年均排放量为139.0 kt, 且山东省冬季的BC排放量约为夏季的两倍[53].可见该地区在冬季受华北平原东部地区BC排放的影响大于西部地区.春季, 较大的CWT值(>4.00 μg·m-3)出现在河南南阳和襄阳地区, 南阳市是河南省碳质气溶胶排放量较大的地区[54], 已经成为了一个BC排放的重点关注区域.河南和湖北地区[0.6~1.0 g·(m2·a)-1]的BC排放量高于其他地区[22], 两省交界处也属于大气污染区域.夏季, 较大的CWT值(>2.70 μg·m-3)出现在河南中部地区.有研究表明, 平顶山市因煤炭资源丰富(占全省煤炭产量35.1%), 是河南省BC排放的主要城市[48].
![]() |
图 7 冬季、春季、夏季和观测期间浓度权重轨迹模拟结果 Fig. 7 Results of concentration-weighted trajectory (CWT) of BC in winter, spring, summer, and whole observation period |
(1) 本研究期间, ρ(BC)平均值为(3.51±2.29)μg·m-3, 冬季、春季和夏季的ρ(BC)平均值为(8.21±3.26)、(3.49±1.69)和(2.37±0.71)μg·m-3, 气象因素和排放源的季节性变化共同导致了BC的季节性变化.
(2) AAE的值介于1.08~1.66之间, 表明该区域BC来源以化石燃料燃烧贡献为主.研究期间生物质燃烧对BC的贡献为(28±10)%; 冬季生物质燃烧贡献最高[(41±12)%], 夏季贡献最低[(20±4)%].
(3) 污染日午间[(13.11±32.66)μg·m-3]和晚间[(12.28±19.20)μg·m-3]的ρ(BC)最高, 污染日午后的化石燃料燃烧对BC的贡献率更多[(73±67)%], 午间生物质燃烧贡献率上升[(18±75)%], 晚间生物质燃烧贡献率[(38±66)%]高于白天; 该地区农村点位的BC排放源存在随机性和复杂性.
(4) 柴火堆取暖、民用煤炉使用等局地人为活动, 以及河北南部、河南东南部、山东北部、湖北北部等地污染输送导致该点位冬季BC浓度增高.
[1] | Kuhlbusch T A J. Black carbon and the carbon cycle[J]. Science, 1998, 280(5371): 1903-1904. DOI:10.1126/science.280.5371.1903 |
[2] | Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2001, 409(6821): 695-697. DOI:10.1038/35055518 |
[3] | Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 1(4): 221-227. DOI:10.1038/ngeo156 |
[4] | Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297(5590): 2250-2253. DOI:10.1126/science.1075159 |
[5] | Geng F H, Hua J, Mu Z, et al. Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city[J]. Environmental Research, 2013, 120: 27-32. DOI:10.1016/j.envres.2012.08.007 |
[6] | Wang X, Chen R J, Meng X, et al. Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city[J]. Science of the Total Environment, 2013, 458-460: 1-6. DOI:10.1016/j.scitotenv.2013.04.008 |
[7] | Jeong C H, Herod D, Dabek-Zlotorzynska E, et al. Identification of the sources and geographic origins of black carbon using factor analysis at paired rural and urban sites[J]. Environmental Science & Technology, 2013, 47(15): 8462-8470. |
[8] | McDuffie E E, Smith S J, O'Rourke P, et al. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel- specific sources (1970-2017): an application of the Community Emissions Data System (CEDS)[J]. Earth System Science Data, 2020, 12(4): 3413-3442. DOI:10.5194/essd-12-3413-2020 |
[9] | Vaishya A, Singh P, Rastogi S, et al. Aerosol black carbon quantification in the central Indo-Gangetic Plain: seasonal heterogeneity and source apportionment[J]. Atmospheric Research, 2017, 185: 13-21. DOI:10.1016/j.atmosres.2016.10.001 |
[10] | Liu D, Li J, Zhang Y L, et al. The use of levoglucosan and radiocarbon for source apportionment of PM2.5 carbonaceous aerosols at a background site in East China[J]. Environmental Science & Technology, 2013, 47(18): 10454-10461. |
[11] | Wang R, Tao S, Wang W T, et al. Black carbon emissions in China from 1949 to 2050[J]. Environmental Science & Technology, 2012, 46(14): 7595-7603. |
[12] | Zhang Q, Shen Z X, Zhang T, et al. Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities[J]. Science of the Total Environment, 2021, 762. DOI:10.1016/j.scitotenv.2020.143075 |
[13] | Ni H Y, Huang R J, Cosijn M M, et al. Measurement report: dual-carbon isotopic characterization of carbonaceous aerosol reveals different primary and secondary sources in Beijing and Xi'an during severe haze events[J]. Atmospheric Chemistry and Physics, 2020, 20(24): 16041-16053. DOI:10.5194/acp-20-16041-2020 |
[14] | Li Y, Meng J, Liu J F, et al. Interprovincial reliance for improving air quality in China: a case study on black carbon aerosol[J]. Environmental Science & Technology, 2016, 50(7): 4118-4126. |
[15] | Chen H P, Wang H J. Haze days in north China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012[J]. Journal of Geophysical Research, 2015, 120(12): 5895-5909. DOI:10.1002/2015JD023225 |
[16] | Wang Z L, Huang X, Ding A J. Dome effect of black carbon and its key influencing factors: a one-dimensional modelling study[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2821-2834. DOI:10.5194/acp-18-2821-2018 |
[17] | Calkins C, Ge C, Wang J, et al. Effects of meteorological conditions on sulfur dioxide air pollution in the North China plain during winters of 2006-2015[J]. Atmospheric Environment, 2016, 147: 296-309. DOI:10.1016/j.atmosenv.2016.10.005 |
[18] | An Z S, Huang R J, Zhang R Y, et al. Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8657-8666. DOI:10.1073/pnas.1900125116 |
[19] | Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. DOI:10.1038/nature13774 |
[20] | Zhang K, Ge L L, Li X J, et al. Monitoring ground surface deformation over the North China Plain using coherent ALOS PALSAR differential interferograms[J]. Journal of Geodesy, 2013, 87(3): 253-265. DOI:10.1007/s00190-012-0595-y |
[21] | Li H Y, Zhang Q, Zhang Q, et al. Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion[J]. Atmospheric Chemistry and Physics, 2017, 17(7): 4751-4768. DOI:10.5194/acp-17-4751-2017 |
[22] | Zheng H, Kong S F, Wu F Q, et al. Intra-regional transport of black carbon between the south edge of the North China Plain and central China during winter haze episodes[J]. Atmospheric Chemistry and Physics, 2019, 19(7): 4499-4516. DOI:10.5194/acp-19-4499-2019 |
[23] | Kompalli S K, Babu S S, Moorthy K K, et al. Aerosol black carbon characteristics over Central India: temporal variation and its dependence on mixed layer height[J]. Atmospheric Research, 2014, 147-148: 27-37. DOI:10.1016/j.atmosres.2014.04.015 |
[24] | Zhang L, Luo Z H, Du W, et al. Light absorption properties and absorption emission factors for indoor biomass burning[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115652 |
[25] | Becerril-Valle M, Coz E, Prévôt A S H, et al. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain[J]. Atmospheric Environment, 2017, 169: 36-53. DOI:10.1016/j.atmosenv.2017.09.014 |
[26] | Zotter P, Herich H, Gysel M, et al. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol[J]. Atmospheric Chemistry and Physics, 2017, 17(6): 4229-4249. DOI:10.5194/acp-17-4229-2017 |
[27] | Sandradewi J, Prévôt A S H, Szidat S, et al. Using aerosol light absorption measurements for the quantitative determination of wood Burning and traffic emission contributions to particulate matter[J]. Environmental Science & Technology, 2008, 42(9): 3316-3323. |
[28] | Liu Y, Yan C Q, Zheng M. Source apportionment of black carbon during winter in Beijing[J]. Science of the Total Environment, 2018, 618: 531-541. DOI:10.1016/j.scitotenv.2017.11.053 |
[29] | Zhao J W, Liu Y X, Shan M, et al. Characteristics, potential regional sources and health risk of black carbon based on ground observation and MERRA-2 reanalysis data in a coastal city, China[J]. Atmospheric Research, 2021, 256. DOI:10.1016/j.atmosres.2021.105563 |
[30] |
齐孟姚, 王丽涛, 张城瑜, 等. 邯郸市黑碳气溶胶浓度变化及影响因素分析[J]. 环境科学学报, 2018, 38(5): 1751-1758. Qi M Y, Wang L T, Zhang C Y, et al. Variation of black carbon aerosol concentration and its influencing factors in Handan City, Hebei Province[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1751-1758. |
[31] | Zhou H C, Lin J J, Shen Y, et al. Personal black carbon exposure and its determinants among elderly adults in urban China[J]. Environment International, 2020, 138. DOI:10.1016/j.envint.2020.105607 |
[32] | Peng X, Liu M, Zhang Y, et al. The characteristics and local-regional contributions of atmospheric black carbon over urban and suburban locations in Shanghai, China[J]. Environmental Pollution, 2019, 255. DOI:10.1016/j.envpol.2019.113188 |
[33] |
杨晓旻, 施双双, 张晨, 等. 南京市黑碳气溶胶时间演变特征及其主要影响因素[J]. 环境科学, 2020, 41(2): 620-629. Yang X M, Shi S S, Zhang C, et al. Temporal evolution and main influencing factors of black carbon aerosol in Nanjing[J]. Environmental Science, 2020, 41(2): 620-629. |
[34] | Jing A K, Zhu B, Wang H L, et al. Source apportionment of black carbon in different seasons in the northern suburb of Nanjing, China[J]. Atmospheric Environment, 2019, 201: 190-200. DOI:10.1016/j.atmosenv.2018.12.060 |
[35] |
关亚楠, 卢晶晶, 张毅森, 等. 石家庄南郊黑碳气溶胶污染特征与来源分析[J]. 环境科学学报, 2020, 40(9): 3146-3154. Guan Y N, Lu J J, Zhang Y S, et al. Pollution characteristics and source apportionment of black carbon aerosol in the south suburb of Shijiazhuang City[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3146-3154. |
[36] | Chen T Z, Liu J, Liu Y C, et al. Chemical characterization of submicron aerosol in summertime Beijing: a case study in southern suburbs in 2018[J]. Chemosphere, 2020, 247. DOI:10.1016/j.chemosphere.2020.125918 |
[37] | Ran L, Deng Z Z, Wang P C, et al. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements[J]. Atmospheric Environment, 2016, 142: 132-144. DOI:10.1016/j.atmosenv.2016.07.014 |
[38] |
魏夏潞, 王成刚, 凌新锋, 等. 安徽寿县黑碳气溶胶浓度观测分析研究[J]. 环境科学学报, 2019, 39(11): 3630-3638. Wei X L, Wang C G, Ling X F, et al. Observational study of black carbon at Shouxian in Anhui Province[J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3630-3638. |
[39] | Tiwari S, Srivastava A K, Bisht D S, et al. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: influence of meteorology[J]. Atmospheric Research, 2013, 125-126: 50-62. DOI:10.1016/j.atmosres.2013.01.011 |
[40] | Li J, Fu Q Y, Huo J T, et al. Tethered balloon-based black carbon profiles within the lower troposphere of Shanghai in the 2013 East China smog[J]. Atmospheric Environment, 2015, 123: 327-338. DOI:10.1016/j.atmosenv.2015.08.096 |
[41] | Barman N, Gokhale S. Urban black carbon-source apportionment, emissions and long-range transport over the Brahmaputra River Valley[J]. Science of the Total Environment, 2019, 693. DOI:10.1016/j.scitotenv.2019.07.383 |
[42] | Tyagi S, Tiwari S, Mishra A, et al. Characteristics of absorbing aerosols during winter foggy period over the National Capital Region of Delhi: impact of planetary boundary layer dynamics and solar radiation flux[J]. Atmospheric Research, 2017, 188: 1-10. DOI:10.1016/j.atmosres.2017.01.001 |
[43] | Xiao H W, Mao D Y, Huang L L, et al. Evaluation of black carbon source apportionment based on one year's daily observations in Beijing[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2021.145668 |
[44] | de Arruda Moreira G, Guerrero-Rascado J L, Bravo-Aranda J A, et al. Study of the planetary boundary layer height in an urban environment using a combination of microwave radiometer and ceilometer[J]. Atmospheric Research, 2020, 240. DOI:10.1016/j.atmosres.2020.104932 |
[45] | Meena G S, Mukherjee S, Buchunde P, et al. Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India[J]. Atmospheric Pollution Research, 2021, 12(2): 32-45. DOI:10.1016/j.apr.2020.10.006 |
[46] | Chen X T, Kang S C, Yang J H. Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climate-chemistry model[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113127 |
[47] | Choi Y, Kanaya Y, Takigawa M, et al. Investigation of the wet removal rate of black carbon in East Asia: validation of a below- and in-cloud wet removal scheme in FLEXible PARTicle (FLEXPART) model v10.4[J]. Atmospheric Chemistry and Physics, 2020, 20(21): 13655-13670. DOI:10.5194/acp-20-13655-2020 |
[48] | Liu S H, Hua S B, Wang K, et al. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis[J]. Science of the Total Environment, 2018, 624: 396-406. DOI:10.1016/j.scitotenv.2017.12.102 |
[49] | Saha D, Soni K, Mohanan M N, et al. Long-term trend of ventilation coefficient over Delhi and its potential impacts on air quality[J]. Remote Sensing Applications: Society and Environment, 2019, 15. DOI:10.1016/j.rsase.2019.05.003 |
[50] | Girach I A, Nair V S, Babu S S, et al. Black carbon and carbon monoxide over Bay of Bengal during W_ICARB: source characteristics[J]. Atmospheric Environment, 2014, 94: 508-517. DOI:10.1016/j.atmosenv.2014.05.054 |
[51] | Ramachandran S, Rajesh T A, Cherian R. Black carbon aerosols over source vs. background region: atmospheric boundary layer influence, potential source regions, and model comparison[J]. Atmospheric Research, 2021, 256. DOI:10.1016/j.atmosres.2021.105573 |
[52] | Zhang H, Yin S S, Bai L, et al. Establishment and evaluation of anthropogenic black and organic carbon emissions over Central Plain, China[J]. Atmospheric Environment, 2020, 226. DOI:10.1016/j.atmosenv.2020.117406 |
[53] | Liu X Y, He K B, Zhang Q, et al. Analysis of the origins of black carbon and carbon monoxide transported to Beijing, Tianjin, and Hebei in China[J]. Science of the Total Environment, 2018, 653: 1364-1376. |
[54] | Li C L, Hu Y J, Zhang F, et al. Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects[J]. Atmospheric Chemistry and Physics, 2017, 17(8): 4957-4988. DOI:10.5194/acp-17-4957-2017 |