环境科学  2022, Vol. 43 Issue (4): 2219-2225   PDF    
有机肥替代化肥对旱地黄壤有机碳矿化及活性有机碳的影响
林仕芳1, 王小利1, 段建军2, 皮义均1, 郭琴波1, 龙大勇1, 徐彬1, 杨宏伟1     
1. 贵州大学农学院, 贵阳 550025;
2. 贵州大学烟草学院, 贵阳 550025
摘要: 目前有机肥替代化肥对旱地黄壤有机碳矿化及活性有机碳的影响特征及机制还不够明确.为探究有机肥替代化肥对旱地黄壤有机碳矿化及活性有机碳的的影响, 采集施肥处理为: 不施肥(CK)、单施化肥(NP)、50%有机肥替代化肥[1/2(NPM)]和100%有机肥替代化肥(M)的土壤进行有机碳室内矿化培养研究, 探究有机肥替代化肥条件下土壤有机碳变化特征及活性有机碳变化.结果表明, 有机肥替代化肥显著提高土壤pH、有机碳(SOC)、全氮(TN)和C/N.培养期间, 各处理土壤有机碳矿化速率均表现为初期(第2~4 d)大幅下降, 中期(第4~20 d)小幅度下降, 末期(第20~60 d)趋近于平稳.施肥后土壤有机碳累积矿化量显著增加了7.9% ~27.7%, 与NP处理相比, 1/2(NPM)处理土壤有机碳累积矿化量降低了5.2%, M处理则增加了12.2%.矿化培养前, 有机肥替代化肥对土壤易氧化有机碳(ROC)无显著影响, 显著增加了微生物量碳(MBC)含量, 1/2(NPM)处理显著增加可溶性有机碳(DOC)含量, M处理则显著降低.培养60 d后, 各处理土壤活性有机碳含量较初始含量均有所减少, 其中MBC减少量最多, 为30.6% ~41.2%.有机碳累积矿化量与土壤pH和SOC呈显著正相关, 与MBC初始值及培养前后的变化值呈极显著正相关.综上, 100%有机肥替代化肥显著促进土壤有机碳矿化, 降低土壤有机碳的稳定性; 50%有机肥替代化肥抑制土壤有机碳矿化, 有利于土壤固碳培肥; 50%有机肥替代化肥显著增加土壤活性有机碳含量, MBC在土壤有机碳矿化过程中被作为主要碳源所利用.
关键词: 有机肥替代化肥      旱地黄壤      土壤基本性质      有机碳矿化      活性有机碳     
Effects of Organic Fertilizer Replacing Chemical Fertilizer on Organic Carbon Mineralization and Active Organic Carbon in Dryland Yellow Soil
LIN Shi-fang1 , WANG Xiao-li1 , DUAN Jian-jun2 , PI Yi-jun1 , GUO Qin-bo1 , LONG Da-yong1 , XU Bin1 , YANG Hong-wei1     
1. College of Agriculture, Guizhou University, Guiyang 550025, China;
2. College of Tobacco Science, Guizhou University, Guiyang 550025, China
Abstract: At present, the effect characteristics and mechanism of organic fertilizer replacing chemical fertilizer on organic carbon mineralization and active organic carbon in dryland yellow soil remain unclear. In order to explore the effect of organic fertilizer replacing chemical fertilizer on organic carbon mineralization and active organic carbon in dryland yellow soil, we used soil with no fertilization (CK), only chemical fertilizer (NP), 50% organic fertilizer replacing chemical fertilizer (1/2(NPM)), and 100% organic fertilizer replacing chemical fertilizer (M). We examined the indoor mineralization culture of organic carbon and explored the characteristics of soil organic carbon and the change in active organic carbon under the condition of organic fertilizer replacing chemical fertilizer. The results showed that organic fertilizer replacing chemical fertilizer increased soil pH, organic carbon (SOC), total nitrogen (TN), and C/N. During the culture period, the soil organic carbon mineralization rate of all treatments decreased sharply in the initial stage (2-4 days), decreased slightly in the middle stage (4-20 days), and tended to be stable in the last stage (20-60 days). After fertilization, the cumulative mineralization of soil organic carbon significantly increased by 7.9%-27.7%. Compared with that in the NP treatment, the cumulative mineralization of soil organic carbon decreased by 5.2% in the 1/2(NPM) treatment and increased by 12.2% in the 1/2(NPM) treatment. Before mineralization culture, the substitution of organic fertilizer for chemical fertilizer had no significant effect on soil recalcitrant organic carbon (ROC) but significantly increased the content of microbial biomass carbon (MBC). The content of dissolved organic carbon (DOC) was significantly increased in the 1/2(NPM) treatment and decreased in the M treatment. After 60 days of culture, the content of soil active organic carbon in all treatments decreased compared with the initial content, of which MBC decreased the most (30.6%-41.2%). The accumulated mineralization of organic carbon was significantly positively correlated with soil pH and SOC and significantly positively correlated with the initial value of MBC and the change value before and after culture. To summarize, 100% organic fertilizer replacing chemical fertilizer significantly promoted soil organic carbon mineralization and reduced soil organic carbon stability; 50% organic fertilizer replacing chemical fertilizer inhibited soil organic carbon mineralization, which was beneficial to soil sequestration and fertilization; and 50% organic fertilizer replacing chemical fertilizer significantly increased soil active organic carbon content, and MBC was used as the main carbon source in the process of soil organic carbon mineralization.
Key words: organic fertilizer replacing chemical fertilizer      dryland yellow soil      basic properties of soil      organic carbon mineralization      active organic carbon     

长期以来, 我国施用化肥获得作物高产和推进农业发展的同时, 化肥施用过多而造成的土壤板结和农业面源污染等土壤质量下降问题也日益突出, 因此减少化肥施用具有重要的现实意义[1].有机肥中不仅含有作物生长所需的必要养分, 还有大量有机养分及活性物质, 是很好的化肥替代物.随着“两减”行动的推行, 传统的依赖化肥性农作方法将被改变[2].在保证不减产和减少对土壤生态破坏的前提下, 有机肥替代化肥的可行性研究成为热点[3].土壤有机碳矿化是陆地生态系统中有机碳库循环的重要过程, 直接关系到土壤中养分元素的释放与供应、温室气体的形成和土壤质量的保持等.揭示土壤中有机碳矿化规律对于养分的科学管理和全球气候变暖的有效控制意义重大[4~7].土壤活性有机碳是指土壤中活性较强、周转速率较快且容易分解的那部分有机碳, 包括可溶性有机碳(DOC)、易氧化有机碳(ROC)和微生物生物量碳(MBC)[8, 9].土壤中的活性有机碳是矿化过程中重要的碳源物质[10], 其含量及组分影响着有机碳的矿化特征[11], 因此, 从活性有机碳的角度研究土壤有机碳的矿化也逐步受到了关注.

目前, 关于施肥对土壤有机碳的影响已有不少报道.如Veloso等[12]在巴西南部进行了30 a的试验研究发现, 施肥通过改变土壤环境、土壤微生物的多样性和组成以及有机碳与土壤矿物质的关系进而影响土壤有机碳矿化.Ribeiro等[13]的研究发现, 有机肥化肥配施促进养分快速释放, 显著增加碳库的矿化.Chatterjee等[14]的研究发现长期施入有机肥显著提高了稻田土壤MBC和ROC含量.Xu等[15]通过对人为集约土的研究发现, 不同肥料施入土壤中后, 土壤SOC、DOC和MBC的排序为:不施肥 < 单施化肥 < 有机肥化肥配施 < 单施有机肥.谭立敏等[16]通过对水稻土的矿化研究发现, 可溶性有机碳和微生物生物量碳随矿化培养的进行逐渐减小, 与矿化速率变化趋势一致.然而, 目前有机肥替代化肥对旱地黄壤有机碳矿化及活性有机碳的影响特征及机制还不够明确.

因此, 本研究以等氮条件下有机肥替代化肥的旱地黄壤为对象, 结合室内矿化培养, 明确不同比例有机肥替代化肥处理后有机碳矿化特征, 探讨有机肥替代化肥对旱地黄壤有机碳矿化及活性有机碳的影响, 以期为贵州旱地黄壤的固碳培肥提供理论依据.

1 材料与方法 1.1 研究区概况

试验地位于贵州省安顺市西秀区鸡场乡(E 106°05′59″, N 26°06′29″), 海拔1 271 m.该区域属亚热带季风性湿润气候, 年均气温13.2~15.0℃.年均降雨量968~1 309 mm.土壤为黄壤, 基本性质为:pH 4.54, ω [有机碳(SOC)]17.06 g·kg-1, ω(碱解氮)126.73 mg·kg-1, ω(有效磷)20.92 mg·kg-1, ω(速效钾)159.50 mg·kg-1.

1.2 试验设计及供试材料

试验采用随机区组设计, 共设置4个处理, 分别为不施肥(CK)、单施化肥(NP)、50%有机肥替代化肥[1/2(NPM)]和100%有机肥替代化肥(M); 施肥量见表 1.各小区间隔1 m, 小区面积为13.2 m2(3.3 m×4 m), 每个处理3次重复, 随机排列, 共12个小区.

表 1 田间试验不同处理施肥量 Table 1 Application of fertilizer in different treatments

种植制度为玉米/大豆间作.于2020年4月20日播种, 大豆与玉米之间行距为60 cm, 玉米株距30 cm, 大豆株距20 cm, 5月10日间苗, 5月20日至6月20日每周除草一次, 6月21日打药除病虫害, 8月15日收获大豆, 8月31日收获玉米并采集土样.供试玉米品种为“黔单16号”, 大豆品种为安顺本地春大豆.供试有机肥为贵州万盛肥料厂所生产生物有机肥(含有机质≥45%, 含N 2.29%, 含P2O5 2.7%)、氮肥为尿素(含N 46.2%)、磷肥为过磷酸钙(含P2O5≥16%), 所有肥料均作为基肥一次性施入.

1.3 样品采集

玉米和大豆收获后, 采集各小区(0~20 cm)耕层土壤样品:每个小区分别均匀采集5点组成一个混合样, 将采集的土壤样品除去动、植物残体并且混匀, 部分直接过孔径2 mm筛, 置于4℃冰箱内用于土壤矿化培养试验; 剩余土壤样品风干后研磨过2、0.25和0.149 mm筛, 用于土壤总有机碳、易氧化有机碳和土壤基本性质的测定.

1.4 测定和分析方法

有机碳矿化培养试验:采用碱液吸收法, 分别称取30.0 g过2 mm筛的鲜土置于50 mL烧杯中, 将含水量调节至田间持水量的45%左右, 放入1 000 mL培养瓶底部, 在培养箱中以25℃预培养7 d.然后将盛有10 mL 0.1 mol·L-1 NaOH溶液的50 mL吸收杯也放置于培养瓶底部, 加盖密封, 在25℃恒温箱中暗培养.每个土样设3次重复, 同时设6个空白对照, 共42组矿化培养系统.在培养的第2、4、6、9、12、16、20、25、30、35、40、45、50、55和60 d时, 更换新的碱液吸收杯并加水至含水量恒重, 吸收杯中加入1 mol·L-1 BaCl2溶液2 mL, 再滴加2滴酚酞指示剂, 用0.1 mol·L-1 HCl(每次使用前进行标定)滴定至红色消失.根据CO2的释放量计算培养期内土壤有机碳的矿化量.

采用pH计测定土壤pH(水土比为2.5∶1), 采用常规方法测定土壤有机碳(SOC)和土壤全氮[17]; 采用0.333 mol·L-1 KMnO4氧化法测定易氧化有机碳(ROC)[18], 0.5 mol·L-1 K2SO4浸提法测定可溶性有机碳(DOC)[19], 氯仿熏蒸-0.5 mol·L-1 K2SO4浸提法测定土壤微生物生物量碳(MBC)[20].

1.5 计算公式

式中, c(HCl)为盐酸浓度, mol·L-1; V0为空白滴定的体积, mL; V1为消耗盐酸的体积, mL.土壤有机碳累积矿化量指从培养开始至某一时间点土壤CO2总释放量.

土壤有机碳矿化速率[mg·(kg·d)-1, 以CO2计]=培养时间内有机碳矿化量(mg·kg-1, 以CO2计)/培养天数(d).

土壤微生物熵(qMB, %)=微生物量有机碳(mg·kg-1)/总有机碳(mg·kg-1)

1.6 数据分析

利用Excel 2010进行处理, 采用SPSS 17.0软件对不同处理之间的差异进行ANOVA分析, LSD法进行差异显著性检验(P<0.05).

2 结果与分析 2.1 不同施肥处理的土壤基本性质

表 2可知, M处理提高土壤pH、SOC、TN和C/N.与CK处理相比, 各施肥处理均显著提高土壤TN含量, 其增幅为4.6% ~8.0%; 1/2(NPM)和M两个处理显著提高土壤SOC含量, 其增值依次为8.5%和9.5%; 仅M处理显著提高土壤pH值, 其增值为3.2%; M处理显著提高了土壤C/N, 其增值为4.9%, NP显著降低土壤C/N, 其减值为0.4%, 而1/2(NPM)处理则无显著差异.与NP处理相比, 1/2(NPM)和M两个处理均显著提高土壤SOC含量和C/N, 其增值分别为6.2% ~7.2%和4.7% ~9.3%, 仅M处理显著提高pH值, 各有机肥替代化肥处理TN无显著差异.

表 2 不同处理的土壤基本性质1) Table 2 Basic properties of the soil in different treatments

2.2 不同施肥处理土壤有机碳的矿化特征

图 1可知, 在培养期内所有处理土壤有机碳矿化速率总体上均呈下降趋势, 根据其降幅可分为3个阶段:初期(第2~4 d), 矿化速率从第2 d的最大值开始大幅下降, 第4 d的矿化速率为第2 d的47.2% ~62.9%, 中期(第4~20 d)矿化速率小幅度下降, 第20 d的矿化速率为第2 d的17.0% ~24.3%, 末期(第20~60 d), 矿化速率趋近于平稳, 第60 d的矿化速率为第2 d天的11.4% ~13.9%.与CK处理相比, NP、1/2(NPM)和M这3个处理土壤有机碳累积矿化量依次增加13.7%、7.9%和27.7%.土壤有机碳累积矿化量以M最高, 为1 049.3mg·kg-1, 其次是NP处理和1/2(NPM)处理, 为934.8 mg·kg-1和886.5mg·kg-1, CK处理最低, 为821.9mg·kg-1, 各处理之间土壤有机碳累积矿化量均达到了显著差异水平(P<0.05).

不同小写字母表示处理间差异显著, P<0.05, 下同 图 1 不同处理下土壤有机碳矿化速率和累积矿化量 Fig. 1 Mineralization rate and cumulative mineralization of soil organic carbon in different treatments

土壤有机碳累积矿化量分配比是指在一定时间内土壤有机碳累积矿化量占土壤有机碳含量的比例, 能在一定程度上反映土壤有机碳的固碳能力[21].由图 2可知, 60 d培养后, M处理和NP处理土壤有机碳累积矿化量分配比均显著高于CK, 而1/2(NPM)处理与CK无显著差异; 与NP处理相比, 1/2(NPM)处理土壤有机碳累积矿化量分配比达显著差异, 这说明NP处理或M处理会降低土壤固碳能力, 1/2(NPM)处理会提高土壤固碳能力.

图 2 不同处理下土壤有机碳累积矿化量分配比 Fig. 2 Distribution ratios of cumulative mineralization amount to SOC contents in different treatments

2.3 不同施肥处理土壤活性有机碳含量及其矿化前后的变化

表 3可知, 与CK处理相比, 各施肥处理ROC/SOC和DOC/SOC显著增高, 其增幅依次为13.6% ~16.8%和21.3% ~48.4%, 各施肥处理qMB增加13.6% ~28.5%, 1/2(NPM)处理和M处理达显著水平, 而NP处理无显著差异.与NP处理相比, 1/2(NPM)和M两个处理ROC/SOC和qMB均无显著差异, 1/2(NPM)处理DOC/SOC无显著差异, M处理显著降低了DOC/SOC, 其降低值为18.2%.

表 3 不同处理下ROC/SOC、DOC/SOC和qMB值 Table 3 ROC/SOC, DOC/SOC, and qMB in different treatments

表 4可知, 与CK处理相比, 各施肥处理ROC、DOC和MBC初始含量均显著增加, 其增幅依次为19.5% ~29.3%、34.9% ~59.0%和16.3~43.6%.与NP处理相比, 1/2(NPM)处理ROC含量无显著差异, DOC和MBC含量依次显著增加了5.1%和13.5%, M处理的土壤ROC含量无显著差异, DOC含量降低10.8%, MBC增加了23.5%.培养60 d后, 各处理ROC、DOC和MBC含量较初始含量分别减少了9.1% ~23.7%、5.7% ~26.2%和30.6% ~41.2%.这说明50%有机肥替代化肥显著增加活性有机碳含量, 活性有机碳在土壤有机碳矿化过程中被作为碳源所利用.

表 4 不同处理土壤活性有机碳初始含量及其培养前后变化值 Table 4 Initial contents of labile soil organic carbon and changes before and after incubation in different treatments

2.4 土壤有机碳矿化与土壤基本性质和活性有机碳含量的关系

对土壤有机碳累积矿化量与土壤基本性质和活性有机碳含量进行相关性分析, 结果表明(表 5), 土壤有机碳累积矿化量与pH和SOC呈显著正相关(P<0.05), 与qMB和MBC初始含量及其变化值之间呈极显著正相关(P<0.01), 与TN、C/N、ROC/SOC、DOC/SOC和ROC初始含量及其变化值、DOC初始含量及其变化值的相关性未达到显著水平.这说明土壤有机碳累积矿化量与pH、SOC、qMB和MBC初始含量及变化值之间密切相关, 但与TN、C/N、ROC/SOC、DOC/SOC、ROC初始含量及其变化值和DOC初始含量及其变化值关系较弱.

表 5 土壤有机碳累积矿化量与土壤基本性质和活性有机碳含量的相关性1) Table 5 Correlations of cumulative mineralization amount with soil physical and chemical properties and labile organic carbon

3 讨论 3.1 不同施肥处理对土壤基本性质的影响

不同施肥处理土壤基本性质存在差异.本研究表明, 单施化肥对土壤pH和SOC无显著影响, 显著提高土壤TN, 显著降低土壤C/N, 这与康国栋[22]和吴建富等[23]的研究结果不一致, 其原因可能是本研究供试土壤呈强酸性, 本身SOC含量较高, 短期内化肥对土壤基本性质的影响还未体现.本研究中, 与单施化肥相比, 有机肥替代化肥对土壤TN无显著影响, 但显著影响了土壤pH、SOC含量和C/N, 且随有机肥替代化肥比例增加而增加, 这与前人研究结果一致[24~27].有机肥属于高碳聚合物具有较高的C/N且偏碱性, 其作为碳源施入土壤后, 使土壤pH、SOC含量和C/N均显著提高[28].

3.2 不同施肥处理对土壤有机碳矿化的影响

土壤有机碳在微生物作用下矿化释放CO2是碳循环的重要组成部分.在本研究中, SOC矿化速率随培养时间呈现逐渐减缓, 最终趋于平稳的趋势, 这与王莲阁等[29]和史登林等[30]的研究结果一致, 其原因是在培养前期土壤中存在大量易分解的活性有机碳, 微生物活性强, 矿化速率快, 后期可供微生物矿化的碳源减少, 有机碳矿化被限制, 矿化速率逐渐降低并趋于稳定[26, 31~33].土壤有机碳矿化一般受土壤固有性质和环境因素的调控.本研究中M处理土壤有机碳累积矿化量显著高于NP处理, 1/2(NPM)处理土壤有机碳累积矿化量显著低于NP处理, 这可能是因为本研究供试土壤呈强酸性(pH值为4.54), 有机肥的施入改善了土壤酸度, 使土壤环境更适宜微生物生长, 从而促进微生物对有机质的分解, 提高CO2的释放量.M处理显著增加了CO2的释放量, 提高了土壤有机碳累积矿化量分配比, 这将不利于土壤有机碳的积累和气候变暖的控制, 可通过合理适当地降低有机肥替代化肥比例来增加土壤中有机碳的累积量, 提高土壤有机碳的稳定性.

3.3 不同施肥处理对土壤活性有机碳的影响

有研究结果表明, 施肥能显著增加土壤中活性有机碳含量[34~36].尽管土壤活性有机碳只占SOC含量的一小部分, 但它们是土壤质量和养分循环的敏感指标[37~39].本研究结果表明, 施肥可增加土壤中ROC、DOC和MBC含量, 其中50%有机肥替代化肥结果最显著, 这与王鹏等[40]和张玉军等[41]的研究结果一致, 其原因可能是施肥促进了作物根系的生长, 从而使残留在土壤中的根系更多, 根系的分解增加了土壤中的活性有机碳含量; 而有机肥分解后给土壤提供了大量直接有机碳源, 提高了土壤中微生物的数量和活度, 且在微生物分解作用下释放出更多的活性有机碳.

3.4 土壤有机碳矿化与土壤基本性质和活性有机碳含量的关系

土壤基本性质通过影响土壤微生物的生存环境从而影响微生物活性和种类[10, 42], 施肥通过影响土壤微生物的数量、活性以及群落组成从而影响有机碳矿化[43, 44].本研究中, 土壤有机碳累积矿化量与土壤pH值和SOC含量呈显著正相关, 这与吕真真等[45]的研究结果一致, 但土壤有机碳累积矿化量与土壤TN和C/N无显著相关性, 这可能是因为土壤结构不同, 从而进一步导致土壤微生物生存的微环境不同.

有研究表明, 土壤中活性有机碳含量与有机碳矿化密切相关.如张文娟等[21]的研究发现土壤有机碳矿化速率与土壤SOC和MBC表现为正相关, 本研究与其研究结果相似.本研究中, 土壤活性有机碳ROC和DOC与有机碳累积矿化量的相关性较弱, 但有机碳累积矿化量与MBC有极显著正相关.其原因是ROC和DOC虽然作为微生物有效碳源但对有机碳矿化的贡献较小, MBC作为微生物的直接碳源对有机碳矿化做出很大贡献.在实际生产中, 合理调控影响MBC含量的因子可以作为提高土壤质量的有效措施之一.此外, 影响土壤有机碳矿化的因素纷繁复杂, 土壤微生物和土壤团聚体也可能是影响旱地黄壤有机碳矿化的重要因素.

4 结论

(1) 100%有机肥替代化肥显著促进土壤有机碳矿化, 降低土壤有机碳的稳定性; 50%有机肥替代化肥抑制土壤有机碳矿化, 有利于土壤固碳培肥.

(2) 50%有机肥替代化肥显著增加土壤活性有机碳含量, MBC在土壤有机碳矿化过程中被作为主要碳源所利用.

(3) 贵州旱地黄壤有机碳累积矿化量与pH和SOC显著正相关, 与MBC初始值及培养前后的变化值极显著正相关.

参考文献
[1] He R, Shao C F, Shi R G, et al. Development trend and driving factors of agricultural chemical fertilizer efficiency in China[J]. Sustainability, 2020, 12(11). DOI:10.3390/su12114607
[2] 李鹏, 张敬智, 魏亚, 等. 配方施肥及磷肥后移对单季稻磷素利用效率、产量和经济效益的影响[J]. 中国水稻科学, 2016, 30(1): 85-92.
Li P, Zhang J Z, Wei Y, et al. Effect of formulated fertilization and postponed application of phosphorus fertilizer on phosphorus utilization efficiency, grain yield and economic Ben-efit of Single-cropping Rice[J]. Chinese Journal of Rice Science, 2016, 30(1): 85-92.
[3] 孔德宁, 康国栋, 李鹏, 等. 化肥减施条件下配施有机肥对旱地紫色土有机碳活性组分的影响[J]. 生态学杂志, 2021, 40(4): 1073-1080.
Kong D N, Kang G D, Li P, et al. Effects of combined application of organic fertilizer on the active components of organic carbon in upland purple soil under reducing chemical fertilizer application[J]. Chinese Journal of Ecology, 2021, 40(4): 1073-1080.
[4] Li Z C, Rui Z P, Zhang D X, et al. Macroaggregates as biochemically functional hotspots in soil matrix: Evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, eastern China[J]. Applied Soil Ecology, 2019, 138: 262-273. DOI:10.1016/j.apsoil.2019.01.013
[5] Stockmann U, Padarian J, McBratney A, et al. Global soil organic carbon assessment[J]. Global Food Security, 2015, 6: 9-16. DOI:10.1016/j.gfs.2015.07.001
[6] 邬建红, 潘剑君, 葛序娟, 等. 不同土地利用方式下土壤有机碳矿化及其温度敏感性[J]. 水土保持学报, 2015, 29(3): 130-135.
Wu J H, Pan J J, Ge X J, et al. Variations of soil organic carbon mineralization and temperature sensitivity under different land use types[J]. Journal of soil and Water Conservation, 2015, 29(3): 130-135.
[7] 潘根兴, 陆海飞, 李恋卿, 等. 土壤碳固定与生物活性: 面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951.
Pan G X, Lu H F, Li L Q, et al. Soil carbon sequestration with bioactivity: a new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940-951.
[8] Chen S, Xu C M, Yan J X, et al. The influence of the type of crop residue on soil organic carbon fractions: an 11-year field study of rice-based cropping systems in Southeast China[J]. Agriculture, Ecosystems & Environment, 2016, 223: 261-269.
[9] Xu M G, Lou Y L, Sun X L, et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 2011, 47(7). DOI:10.1007/s00374-011-0579-8
[10] 李顺姬, 邱莉萍, 张兴昌. 黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J]. 生态学报, 2010, 30(5): 1217-1226.
Li S J, Qiu L P, Zhang X C. Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau[J]. Acta Ecologica Sinica, 2010, 30(5): 1217-1226.
[11] 罗友进, 赵光, 高明, 等. 不同植被覆盖对土壤有机碳矿化及团聚体碳分布的影响[J]. 水土保持学报, 2010, 24(6): 117-122.
Luo Y J, Zhao G, Gao M, et al. Organic carbon distribution in aggregates and soil organic carbon mineralization in different vegetation covering[J]. Journal of soil and Water Conservation, 2010, 24(6): 117-122.
[12] Veloso M G, Cecagno D, Bayer C. Legume cover crops under no-tillage favor organomineral association in microaggregates and soil C accumulation[J]. Soil and Tillage Research, 2019, 190: 139-149. DOI:10.1016/j.still.2019.03.003
[13] Ribeiro H M, Fangueiro D, Alves F, et al. Carbon-mineralization kinetics in an organically managed Cambic Arenosol amended with organic fertilizers[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(1): 39-45. DOI:10.1002/jpln.200900015
[14] Chatterjee D, Nayak A K, Mishra A, et al. Effect of long-term organic fertilization in flooded rice soil on phosphorus transformation and phosphate solubilizing microorganisms[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1368-1381. DOI:10.1007/s42729-021-00446-8
[15] Xu P D, Liu Y R, Zhu J, et al. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol[J]. Soil and Tillage Research, 2020, 201. DOI:10.1016/j.still.2020.104594
[16] 谭立敏, 彭佩钦, 李科林, 等. 水稻光合同化碳在土壤中的矿化和转化动态[J]. 环境科学, 2014, 35(1): 233-239.
Tan L M, Peng P Q, Li K L, et al. Dynamics of the mineralization and transformation of rice photosynthesized carbon in paddy soils-a batch incubation experiment[J]. Environmental Science, 2014, 35(1): 233-239.
[17] 鲍士旦. 土壤农化分析[M]. (第三版). 北京: 中国农业出版社, 2000.
[18] 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38.
Shen H, Cao Z H, Hu Z Y. Characteristics and ecological effects of the active organic carbon in soil[J]. Chinese Journal of Ecology, 1999, 18(3): 32-38. DOI:10.3321/j.issn:1000-4890.1999.03.008
[19] Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J]. Soil Biology and Biochemistry, 2000, 32(2): 211-219. DOI:10.1016/S0038-0717(99)00148-0
[20] 吴金水. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006.
[21] 张文娟, 廖洪凯, 龙健, 等. 种植花椒对喀斯特石漠化地区土壤有机碳矿化及活性有机碳的影响[J]. 环境科学, 2015, 36(3): 1053-1059.
Zhang W J, Liao H K, Long J, et al. Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou Province[J]. Environmental Science, 2015, 36(3): 1053-1059.
[22] 康国栋. 有机物部分替代化肥对旱地红壤和紫色土有机质活性组分的影响[D]. 南京: 南京农业大学, 2017.
Kang G D. Effects of organic materrials alternatives fertilizer on the active components of organic matter in red soil the active components of organic matter in red soil[D]. Nanjing: Nanjing Agricultural University, 2017.
[23] 吴建富, 高绘文, 颜晓, 等. 紫云英和稻草还田替代部分化肥对水稻产量和土壤理化性质的影响[J]. 江西农业大学学报, 2020, 42(4): 647-654.
Wu J F, Gao H W, Yan X, et al. Effect of milk vetch and straw incorporation partially replacing chemical fertilizer on rice yield and soil physical and chemical properties[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(4): 647-654.
[24] Ghosh A, Bhattacharyya R, Meena M C, et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol[J]. Soil and Tillage Research, 2018, 177: 134-144. DOI:10.1016/j.still.2017.12.006
[25] 郭振. 长期施肥对黄壤稻田土壤及不同组分有机碳矿化的影响及其微生物机制[D]. 贵阳: 贵州大学, 2018.
Guo Z. Effects of long-term fertilization on soil organic carbon mineralization and its microbial mechanism in different fractions in yellow paddy soil[D]. Guiyang: Guizhou University, 2018.
[26] Guo L Y, Wu G L, Li Y, et al. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in eastern China[J]. Soil and Tillage Research, 2016, 156: 140-147. DOI:10.1016/j.still.2015.10.010
[27] 张迎春, 颉建明, 李静, 等. 生物有机肥部分替代化肥对莴笋及土壤理化性质和微生物的影响[J]. 水土保持学报, 2019, 33(4): 196-205.
Zhang Y C, Xie J M, Li J, et al. Effects of partial substitution of chemical fertilizer by bio-organic fertilizer on asparagus lettuce and soil physical-chemical properties and microorganisms[J]. Journal of Soil and Water Conservation, 2019, 33(4): 196-205.
[28] 杜春燕. 有机肥替代化肥对果实产量、品质及土壤肥力的影响[D]. 杨凌: 西北农林科技大学, 2019.
Du C Y. Effect of organic fertilizer substituting fertilizer on fruit yield, quality and soil fertility[D]. Yangling: Northwest A&F University, 2019.
[29] 王莲阁, 高岩红, 丁长欢, 等. 变温环境对典型石灰土有机碳矿化的影响[J]. 环境科学, 2014, 35(11): 4291-4297.
Wang L G, Gao Y H, Ding C H, et al. Effects of variable temperature on organic carbon mineralization in typical limestone soils[J]. Environmental Science, 2014, 35(11): 4291-4297.
[30] 史登林, 王小利, 段建军, 等. 氮肥减量配施生物炭对黄壤稻田土壤有机碳活性组分和矿化的影响[J]. 应用生态学报, 2020, 31(12): 4117-4124.
Shi D L, Wang X L, Duan J J, et al. Effects of chemical N fertilizer reduction combined with biochar application on soil organic carbon active components and mineralization in paddy fields of yellow soil[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4117-4124.
[31] 林杉, 陈涛, 赵劲松, 等. 不同培养温度下长期施肥水稻土的有机碳矿化特征[J]. 应用生态学报, 2014, 25(5): 1340-1348.
Lin S, Chen T, Zhao J S, et al. Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization[J]. Chinese Journal of Applied Ecology, 2014, 25(5): 1340-1348.
[32] El-Naggar A H, Usman A, Al-Omran A, et al. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar[J]. Chemosphere, 2015, 138: 67-73. DOI:10.1016/j.chemosphere.2015.05.052
[33] 马欣, 魏亮, 唐美玲, 等. 长期不同施肥对稻田土壤有机碳矿化及激发效应的影响[J]. 环境科学, 2018, 39(12): 5680-5686.
Ma X, Wei L, Tang M L, et al. Effects of varying long-term fertilization on organic carbon mineralization and priming effect of paddy soil[J]. Environmental Science, 2018, 39(12): 5680-5686.
[34] Luan H A, Gao W, Huang S W, et al. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system[J]. Soil and Tillage Research, 2019, 191: 185-196. DOI:10.1016/j.still.2019.04.009
[35] Lou Y L, Wang J K, Liang W J. Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, Northeast China[J]. CATENA, 2011, 87(3): 386-390. DOI:10.1016/j.catena.2011.07.006
[36] 张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1): 277-282.
Zhang R, Zhang G L, Ji Y Y, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science, 2013, 34(1): 277-282.
[37] Mandal M, Kamp P, Singh M. Effect of long term manuring on carbon sequestration potential and dynamics of soil organic carbon labile pool under tropical rice-rice agro-ecosystem[J]. Communications in Soil Science and Plant Analysis, 2020, 51(4): 468-480. DOI:10.1080/00103624.2020.1718690
[38] 郭志明, 张心昱, 李丹丹, 等. 温带森林不同海拔土壤有机碳及相关胞外酶活性特征[J]. 应用生态学报, 2017, 28(9): 2888-2896.
Guo Z M, Zhang X Y, Li D D, et al. Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2888-2896.
[39] 罗梅, 田冬, 高明, 等. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学, 2018, 39(9): 4327-4337.
Luo M, Tian D, Gao M, et al. Soil organic carbon of purple soil as affected by different application of biochar[J]. Environmental Science, 2018, 39(9): 4327-4337.
[40] 王鹏, 郑学博, 梁洪波, 等. 不同施肥模式对植烟棕壤活性有机碳组分和酶活性的影响[J]. 华北农学报, 2021, 36(1): 187-196.
Wang P, Zheng X B, Liang H B, et al. Effects of different fertilization models on active organic carbon components and enzyme activities of tobacco-growing brown soil[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 187-196.
[41] 张玉军, 黄绍敏, 李斌, 等. 长期施肥对潮土不同层次活性有机质及碳库管理指数的影响[J]. 水土保持学报, 2019, 33(3): 160-165.
Zhang Y J, Huang S M, Li B, et al. Effects of long-term fertilization on the labile organic carbon and carbon pool management index at different layers in Fluvo-aquic Soil[J]. Journal of Soil and Water Conservation, 2019, 33(3): 160-165.
[42] Hu Y J, Xia Y H, Sun Q, et al. Effects of long-term fertilization on phoD -harboring bacterial community in Karst soils[J]. Science of the Total Environment, 2018, 628-629: 53-63. DOI:10.1016/j.scitotenv.2018.01.314
[43] Wang W, Lai D Y F, Wang C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil and Tillage Research, 2015, 152: 8-16. DOI:10.1016/j.still.2015.03.011
[44] Wei X R, Ma T E, Wang Y H, et al. Long-term fertilization increases the temperature sensitivity of OC mineralization in soil aggregates of a highland agroecosystem[J]. Geoderma, 2016, 272: 1-9. DOI:10.1016/j.geoderma.2016.02.027
[45] 吕真真, 刘秀梅, 仲金凤, 等. 长期施肥对红壤性水稻土有机碳矿化的影响[J]. 中国农业科学, 2019, 52(15): 2636-2645.
Lü Z Z, Liu X M, Zhong J F, et al. Effects of long-term fertilization on mineralization of soil organic carbon in red paddy soil[J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645. DOI:10.3864/j.issn.0578-1752.2019.15.008
有机肥替代化肥对旱地黄壤有机碳矿化及活性有机碳的影响
林仕芳, 王小利, 段建军, 皮义均, 郭琴波, 龙大勇, 徐彬, 杨宏伟