以细颗粒物(PM2.5)和臭氧(O3)为代表的复合污染是我国当前面临的主要环境空气污染问题[1, 2].作为O3与PM2.5重要前体物的挥发性有机物(volatile organic compounds, VOCs)对区域空气质量[3]和人体健康影响显著[4~6], 其来源解析是改善空气质量的基础.VOCs源解析方法主要有扩散模型和受体模型, 但扩散模型常因缺乏本地化高精度排放清单在应用中受到限制.正定矩阵因子分解法(positive matrix factorization, PMF)是在VOCs源解析中广泛应用的受体模型[7~9], 相比于其它受体模型能更好地识别源类[10].PMF模型的基本假设之一为污染源排放的污染物种类和比例在传输过程中不变[11, 12], 但VOCs在传输过程中必然伴随着光化学反应[13], 导致其物种和比例发生变化, 使源解析结果不能真实反映实际污染源贡献, 学者们尝试多种方法解决这一问题.Wadden等[14]的研将究受体模型应用于烃类解析时, 发现数据不完全符合成分相对稳定的假设, 会对机动车和溶剂使用等污染源的判别产生一定影响, 提出应在相对稳定的源-受体关系下, 即尽量保证污染源成分相对稳定的条件下使用该模型.Vestenius等[15]的研究引入VOCs氧化产物试图减少因VOCs反应性对PMF解析结果的影响, 并应用于荷兰针叶林环境VOCs的来源解析, 其中氧化产物的不确定同样也会导致结果可能存在一定的问题.Liu等[16]的研究则排除部分高反应活性的非甲烷碳氢化合物(NMHCs), 利用PMF对剩余17种进行解析, 确定了北京冬季大气NMHCs的5类主要贡献源, 但在排除高反应活性物种的同时也可能丢失了这些物种数据所包含的有用信息使解析结果出现偏差.Zheng等[17]的研究考虑了VOCs与·OH的反应对所测物种进入环境空气后受到光化学反应的影响, 利用一级化学反应动力学方程定量描述每种污染源排放VOCs的反应活性, 由于源排放的VOCs在大气中的传输和被氧化程度非常复杂, 导致该方法很难确定VOCs初始排放参数, 作者确定初始X/E百分比为95%, 解析结果同样存在不确定性.除此之外, 还有一些学者则考虑各物种与·OH的反应速率常数[18, 19]和物种间相关性[20]等进行解析, 但鲜有研究综合考虑污染物传输速度及大气氧化性等因素共同影响下的VOCs光化学反应状态, 在保留尽可能多VOCs物种的前提下, 对不同反应状态的VOCs进行解析.
本研究以表征反应活性的VOCs气团老化特性为依据, 对乌海市2019年9月至2020年3月超级观测站VOCs小时监测数据进行分类.对于分类后的VOCs子数据集而言, 不同污染源排放特征的差异成为影响VOCs样品中物种浓度变化的最重要因素, 从而更准确地判别VOCs的来源, 以期为VOCs精准减排提供科学依据.
1 材料与方法 1.1 研究区域与采样点位乌海市及周边煤炭资源丰富, 工业以焦化和化工行业为主, 辖区内及周边分布着多个焦化和化工工业园区, VOCs排放情况复杂.采样地点(39.66°N, 106.83°E)如图 1所示, 属于交通居住混合区, 采样器架设距离地面约15 m, 在研究时段内主要受南风和西北风控制, 周围无明显固定污染源.
![]() |
图 1 监测点位示意 Fig. 1 Location of the monitoring station |
采用乌海市超级观测站2019年9月至2020年3月自动监测小时数据, 其中VOCs采用北京博赛德科技有限公司的BCT-7800A PLUS挥发性有机物在线监测系统, 即对捕集到的VOCs利用预浓缩系统(ENTCH7200CTS-C2)浓缩后使用安捷伦科技有限公司的GC-FID/MS进行在线分析.C2组分通过FID检测器检测, C3及以上组分由MS检测, 方法检出限(φ)为(0.03~0.09)×10-9, 精密度在10%以内.共测定烷烃29种、烯烃9种、卤代烃34种、芳香烃17种、醛类9种、酮类4种、醚类3种、酯类3种以及异丙醇、二硫化碳和乙炔.O3和NO2光解速率常数(JO1D和JNO2)由美国Metcon公司UF-CCD光解光谱仪测得.仪器每日定时自动校准, 每周人工校准一次.
1.3 分析方法 1.3.1 气团老化程度分析气团老化程度可反映气团中VOCs的大气光化学反应状态, 与VOCs排入大气后的传输时间和传输路径上大气氧化性的强弱有关[21].通常以来源相近但光化学活性相差较大的两种VOCs物种浓度比, 如乙苯∶间/对-二甲苯、甲苯∶苯、正丁烷∶丙烷和丁烷∶丙烷等来衡量气团的老化程度[22].本文选取乙苯∶间/对-二甲苯对样品进行分类.
1.3.2 PMF模型正定矩阵因子分解法(PMF)是基于最小二乘法的定量受体源解析模型, 将实测样品数据分解为源成分谱矩阵、源贡献矩阵和残差矩阵.基本原理如下[23]:
![]() |
(1) |
式中, Eik为第k次观测的VOCs物种i的浓度; Aij为污染源j排放的VOCs源成分谱中物种i的质量分数; Bjk为源j对受体点处样品k中VOCs总浓度的贡献值; εik为模型对样品k中物种i浓度拟合的残差.
Q表示模型对样品物种浓度拟合残差与其不确定度比值的平方和.PMF通过梯度下降法, 求得Q取最小值时的各类源的贡献浓度和成分谱:
![]() |
(2) |
式中, σik为样品k中物种i浓度测量的不确定度与模型不确定度的总和[24].
2 结果与讨论 2.1 VOCs日均值变化特征利用2019年9月至2020年3月乌海超级站VOCs日均体积分数数据及Ehhalt等[25]的研究提出的公式, 计算所得每日·OH浓度的最大值和最小值, 如图 2所示.烷烃体积分数占比(41%)最大, C7~C12的长链烷烃可反映重型柴油车排放的影响[26~28]. 2020年3月2~14日出现一次以丙酮体积分数上升为主的污染过程, 丙酮为重要的溶剂[29], 故可能受到工艺过程源影响.VOCs体积分数与·OH浓度变化剧烈, 大气氧化性差异较大, 因此, 在解析过程中考虑样品在大气中发生光化学反应后的老化程度十分必要.
![]() |
图 2 采样期间各类VOCs体积分数和·OH浓度日变化 Fig. 2 Diurnal variation in VOCs volume fraction and ·OH concentration during sampling |
本研究选择以乙苯∶间/对-二甲苯(相关系数为0.79)为气团老化程度的判断指标, 其比值越大, 老化程度越高.根据乙苯∶间/对-二甲苯将样品分为高、中和低这3种老化状态, 各类样品数占样品总数的比例及对应性质见表 1.分类后乙苯与间/对-二甲苯相关系数的提升, 表明同类样品中VOCs来源具有较高一致性.为进一步确定气团分类的合理性, 基于实测NO2、JNO2和JO1D数据, 利用Ehhalt等[25]提出的·OH浓度计算公式得出各类样品对应·OH浓度.高老化样品经历的光化学过程最长, 消耗了更多的·OH; 低老化样品则消耗最少的·OH, 这与比值法的判断一致.
![]() |
表 1 不同老化程度类别样品性质和·OH浓度1) Table 1 Properties and ·OH concentration of samples with different aging degrees |
2.3 结果对比验证
考虑其老化特性分类后, 利用PMF 5.0对VOCs小时监测数据进行解析, 因子筛选在3~9个, 模型运行100次以上, 使解析结果的残差值尽量处于-3~3, 且符合正态分布, 模型结果趋于稳定的同时Q值接近自由度后, 从4个方面进行比较: ① 模拟值与实测值线性回归方程的斜率与截距, 斜率越接近1越好, 截距则越接近于0越好. ② 标准误差是模拟值与实测值偏差的平方和观测次数比值的平方根, 用来衡量观测值与真值之间的偏差.标准误差越小表示拟合程度越好. ③ 模拟值与实测值线性回归的决定系数越接近1, 表示实测值的变异能被模拟值解释的程度越高. ④ 残差表示了实测值与模拟值之间的差.本研究将残差在-3~3定为合格, 将合格样品数占样品总数的比例称为残差合格率.与未分类结果相比残差合格率增加的物种数占总物种数的比例称为残差合格提升率.残差合格提升率越高, 代表残差合格的物种越多, 模拟结果越好.
结果表明(表 2), 相比于未分类的结果, 分类后解析结果的各项模型参数均有改善.
![]() |
表 2 模型诊断参数对比 Table 2 Comparison of model diagnostic parameters |
2.4 解析结果
如图 3所示, 以中老化态为例对本研究提出的基于气团老化分类解析的因子识别进行介绍.中老化态共解得6个因子, 因子1含有丰富的乙烷、丙烷、苯、甲苯和乙炔, 其中乙炔是燃烧源的重要示踪物, 故该因子识别为燃烧源[30]; 因子2含有丰富的正辛烷、正癸烷、十一烷、十二烷、丙烯和大量的苯系物, 其中长链烷烃由重型柴油车排放, 故该因子可能为柴油车源[31, 32]; 因子3含有丰富的丙烯、反式-2-丁烯、丙烯醛和丙酮, 其中丙烯、丙烯醛和丙酮为餐饮类主要排放[33, 34], 故该因子识别为餐饮源; 因子4含有丰富的丙烷、正丁烷、异丁烷、乙炔和乙烯, 其中C2~C6直链烷烃是汽油车尾气排放的标志物, 乙烯和乙炔是汽油燃烧的产物, 故因子4识别为汽油车源[35, 36]; 因子5含有丰富的苯、甲苯、异戊烷、1, 3, 5-三甲基苯、1, 2, 4-三甲基苯、甲基环戊烷、对乙基甲苯和异丙醇, 故该因子判别为焦化源[37, 38]; 因子6中含有丰富的丙酮、2-丁酮、反-2-戊烯、苯、甲苯、乙苯、乙醛、丙醛和间/对-二甲苯, 其中较高的丙酮、苯、甲苯和乙醛源于工艺过程[39~41], 故该因子可能为除焦化外其它工业及溶剂的混合源.
![]() |
1.乙酸乙烯酯, 2.乙酸乙酯, 3.甲基丙烯酸酯, 4.乙烯, 5.丙烯, 6.正丁烯, 7.丁二烯, 8.反式-2-丁烯, 9.顺式-2-丁烯, 10. 1-戊烯, 11.反式-2-戊烯, 12.顺式-2-戊烯, 13.乙烷, 14.丙烷, 15.异丁烷, 16.正丁烷, 17.异戊烷, 18.正戊烷, 19. 2, 2-二甲基丁烷, 20.环戊烷, 21. 2, 3-二甲基丁烷, 22. 2-甲基戊烷, 23. 3-甲基戊烷, 24.正己烷, 25.甲基环戊烷, 26. 2, 4-二甲基戊烷, 27.环己烷, 28. 2-甲基己烷, 29. 2, 3-二甲基戊烷, 30. 3-甲基己烷, 31. 2, 2, 4-三甲基戊烷, 32.正庚烷, 33.甲基环己烷, 34. 2, 3, 4-三甲基戊烷, 35. 2-甲基庚烷, 36. 3-甲基庚烷, 37.正辛烷, 38.正壬烷, 39.正癸烷, 40.十一烷, 41.十二烷, 42.丙酮, 43. 2-丁酮, 44. 4-甲基-2-戊酮, 45. 2-己酮, 46.乙炔, 47.乙醛, 48.丙烯醛, 49.丙醛, 50.正丁醛, 51.丁烯醛, 52.戊醛, 53.己醛, 54.苯甲醛, 55.间-甲基苯甲醛, 56.二氟二氯甲烷, 57.氯甲烷, 58. 1, 1, 2, 2-四氟-1, 2-二氯乙烷, 59.氯乙烯, 60.溴甲烷, 61.对-乙基甲苯, 62.一氟三氯甲烷, 63. 1, 1, -二氯乙烯, 64.二氯甲烷, 65. 1, 2, 2-三氟-1, 1, 2-三氯乙烷, 66.反式1, 2-二氯乙烯, 67. 1, 1-二氯乙烷, 68.三氯甲烷, 69. 1, 2-二氯乙烷, 70. 1, 1, 1-三氯乙烷, 71. 1, 2-二氯丙烷, 72.一溴二氯甲烷, 73.三氯乙烯, 74.反式1, 3-二氯-1-丙烯, 75.顺式1, 3-二氯-1-丙烯, 76. 1, 1, 2-三氯乙烷, 77.二溴一氯甲烷, 78. 1, 2-二溴乙烷, 79.四氯乙烯, 80.氯苯, 81.三溴甲烷, 82. 1, 1, 2, 2-四氯乙烷, 83.氯代甲苯, 84. 1, 4-二氯苯, 85. 1, 3-二氯苯, 86. 1, 2-二氯苯, 87. 1, 2, 4-三氯苯, 88. 1, 1, 2, 3, 4, 4-六氯-1, 3-丁二烯, 89.四氯化碳, 90.苯, 91.甲苯, 92.乙苯, 93.间/对-二甲苯, 94.苯乙烯, 95.邻二甲苯, 96.异丙苯, 97.正丙苯, 98.对-乙基甲苯, 99间-乙基甲苯, 100. 1, 3, 5-三甲基苯, 101.邻-乙基甲苯, 102. 1, 2, 4-三甲基苯, 103. 1, 2, 3-三甲基苯, 104.间-二乙基苯, 105.对-二乙基苯, 106.萘, 107.异丙醇, 108.二硫化碳, 109.四氢呋喃, 110. 1, 4-二氧六环, 111.甲基叔丁基醚 图 3 中老化VOCs样品中各因子的物种贡献体积分数及其对物种的贡献率 Fig. 3 Species volume fraction of each factor and its contribution rate to the species in VOCs samples of a medium-aging state |
不同老化态和总解析结果如表 3所示.研究期间对乌海市VOCs贡献较大的四大污染源分别为焦化源(27.65%)、燃烧源(21.49%)、除焦化外其它工业及溶剂的混合源(17.85%)和餐饮源(18.26%); 高老化气团中焦化源贡献率最大, 达47.20%, 柴油车源贡献率最小, 为1.40%; 低老化态中燃烧源与焦化源贡献率相差不大, 分别为28.67%和24.39%.对比不同老化程度气团的解析结果, 来源具有一定差距, 这反映了不同污染源排放VOCs的物种活性和传输时间的差异在大气环境氧化性变化的情况下, 使受体点处VOCs的贡献比例发生不规则变化, 这也说明了解析时考虑VOCs在大气环境中反应状态的合理性.
![]() |
表 3 各类VOCs样品的污染源贡献率及加权总贡献率/% Table 3 Contribution rate of pollution sources in all kinds of VOC samples and weighted total contribution rate/% |
3 结论
(1) 考虑VOCs传输过程中的大气光化学反应状态, 按气团老化程度分类后进行源解析, 其结果相较于未分类的模拟值与实测值的标准误差和决定系数等模型诊断参数改善明显.
(2) 基于不同气团老化特性的分类方法, 将反应状态相近的VOCs样品进行归类, 极大地减少了样品间因VOCs物种反应变化引起的差异, 使输入数据更符合受体模型物种相对稳定的假设.
(3) 乌海市VOCs主要来源于焦化源和燃烧源, 占比分别为27.65%和21.49%; 在老化VOCs样品中焦化源贡献率最高, 达47.20%; 在未反应的VOCs样品中燃烧源和焦化源占比均较高, 分别为28.67%和24.39%, 分类后的解析结果更符合源排放的实际情况.
[1] | Li B W, Ho S S H, Li X H, et al. A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: comparison and outlook[J]. Environment International, 2021, 156. DOI:10.1016/j.envint.2021.106710 |
[2] |
姚青, 韩素芹, 张裕芬, 等. 天津夏季郊区VOCs对臭氧生成的影响[J]. 环境科学, 2020, 41(4): 1573-1581. Yao Q, Han S Q, Zhang Y F, et al. Effects of VOCs on ozone formation in the Tianjin suburbs in summer[J]. Environmental Science, 2020, 41(4): 1573-1581. |
[3] | Mozaffar A, Zhang Y L, Fan M Y, et al. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China[J]. Atmospheric Research, 2020, 240. DOI:10.1016/j.atmosres.2020.104923 |
[4] | Liu J W, Zheng G D. Emission of volatile organic compounds from a small-scale municipal solid waste transfer station: ozone-formation potential and health risk assessment[J]. Waste Management, 2020, 106: 193-202. DOI:10.1016/j.wasman.2020.03.031 |
[5] | Rajabi H, Mosleh M H, Mandal P, et al. Emissions of volatile organic compounds from crude oil processing - global emission inventory and environmental release[J]. Science of the Total Environment, 2020, 727. DOI:10.1016/j.scitotenv.2020.138654 |
[6] | Wu K Y, Duan M, Zhou J B, et al. Sources profiles of anthropogenic volatile organic compounds from typical solvent used in Chengdu, China[J]. Journal of Environmental Engineering, 2020, 146(7). DOI:10.1061/(ASCE)EE.1943-7870.0001739 |
[7] |
云龙, 李成柳, 张明棣, 等. 珠江三角洲海岸背景区大气VOCs污染特征与来源[J]. 环境科学, 2021, 42(9): 4191-4201. Yun L, Li C L, Zhang M D, et al. Pollution characteristics and source analysis of atmospheric VOCs in the coastal background of the Pearl River Delta[J]. Environmental Science, 2021, 42(9): 4191-4201. |
[8] | Huang Y S, Hsieh C C. Ambient volatile organic compound presence in the highly urbanized city: source apportionment and emission position[J]. Atmospheric Environment, 2019, 206: 45-59. DOI:10.1016/j.atmosenv.2019.02.046 |
[9] | Song S K, Shon Z H, Kang Y H, et al. Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul[J]. Environmental Pollution, 2019, 247: 763-774. DOI:10.1016/j.envpol.2019.01.102 |
[10] | Debevec C, Sauvage S, Gros V, et al. Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)[J]. Atmospheric Chemistry and Physics, 2017, 17(18): 11355-11388. DOI:10.5194/acp-17-11355-2017 |
[11] | Demir S, Saral A. A new modification to the chemical mass balance receptor model for volatile organic compound source Apportionment[J]. Clean Soil Air Water, 2011, 39(10): 891-899. DOI:10.1002/clen.201000338 |
[12] | Ling Z H, Guo H. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong[J]. Environmental Science & Policy, 2014, 38: 180-191. |
[13] | Wang G, Cheng S Y, Wei W, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China[J]. Atmospheric Pollution Research, 2016, 7(4): 711-724. DOI:10.1016/j.apr.2016.03.006 |
[14] | Wadden R A, Uno I, Wakamatsu S. Source discrimination of short-term hydrocarbon samples measured aloft[J]. Environmental Science & Technology, 1986, 20(5): 473-483. |
[15] | Vestenius M, Hopke P K, Lehtipalo K, et al. Assessing volatile organic compound sources in a boreal forest using positive matrix factorization (PMF)[J]. Atmospheric Environment, 2021, 259. DOI:10.1016/j.atmosenv.2021.118503 |
[16] | Liu C T, Ma Z B, Mu Y J, et al. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China[J]. Atmospheric Chemistry and Physics, 2017, 17(17): 10633-10649. DOI:10.5194/acp-17-10633-2017 |
[17] | Zheng H, Kong S F, Chen N, et al. Source apportionment of volatile organic compounds: implications to reactivity, ozone formation, and secondary organic aerosol potential[J]. Atmospheric Research, 2021, 249. DOI:10.1016/j.atmosres.2020.105344 |
[18] |
肖龙, 王帅, 周颖, 等. 中国典型背景站夏季VOCs污染特征及来源解析[J]. 中国环境科学, 2021, 41(5): 2014-2027. Xiao L, Wang S, Zhou Y, et al. The characteristics and source apportionments of VOCs at typical background sites during summer in China[J]. China Environmental Science, 2021, 41(5): 2014-2027. |
[19] |
王成辉, 陈军辉, 韩丽, 等. 成都市城区大气VOCs季节污染特征及来源解析[J]. 环境科学, 2020, 41(9): 3951-3960. Wang C H, Chen J H, Han L, et al. Seasonal pollution characteristics and analysis of the sources of atmospheric VOCs in Chengdu urban area[J]. Environmental Science, 2020, 41(9): 3951-3960. |
[20] |
张敬巧, 王宏亮, 方小云, 等. 廊坊开发区8—9月O3污染过程VOCs污染特征及来源分析[J]. 环境科学, 2021, 42(10): 4632-4640. Zhang J Q, Wang H L, Fang X Y, et al. Characteristics and source of VOCs during O3 pollution between august-september, Langfang development zones[J]. Environmental Science, 2021, 42(10): 4632-4640. |
[21] |
葛宝珠, 徐晓斌, 林伟立, 等. 上甸子本底站臭氧生成效率的观测研究[J]. 环境科学, 2010, 31(7): 1444-1450. Ge B Z, Xu X B, Lin W L, et al. Observational study of ozone production efficiency at the Shangdianzi regional background station[J]. Environmental Science, 2010, 31(7): 1444-1450. |
[22] | Hui L R, Liu X G, Tan Q W, et al. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China[J]. Atmospheric Environment, 2020, 224. DOI:10.1016/j.atmosenv.2020.117340 |
[23] | Paatero P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. DOI:10.1016/S0169-7439(96)00044-5 |
[24] | Polissar A V, Hopke P K, Paatero P, et al. Atmospheric aerosol over Alaska: 2. Elemental composition and sources[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D15): 19045-19057. DOI:10.1029/98JD01212 |
[25] | Ehhalt D H, Rohrer F. Dependence of the OH concentration on solar UV[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D3): 3565-3571. DOI:10.1029/1999JD901070 |
[26] |
李如梅, 武媛媛, 彭林, 等. 朔州市夏季环境空气中VOCs的污染特征及来源解析[J]. 环境化学, 2017, 36(5): 984-993. Li R M, Wu Y Y, Peng L, et al. Characteristics and sources apportionment of ambient volatile organic compounds (VOCs) in summer in Shuozhou[J]. Environmental Chemistry, 2017, 36(5): 984-993. |
[27] | Cai C J, Geng F H, Tie X X, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China[J]. Atmospheric Environment, 2010, 44(38): 5005-5014. DOI:10.1016/j.atmosenv.2010.07.059 |
[28] | Li Y D, Yin S S, Yu S J, et al. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China[J]. Chemosphere, 2020, 250. DOI:10.1016/j.chemosphere.2020.126283 |
[29] | Lyu X P, Chen N, Guo H, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China[J]. Science of the Total Environment, 2016, 541: 200-209. DOI:10.1016/j.scitotenv.2015.09.093 |
[30] |
王文美, 高璟赟, 肖致美, 等. 天津市夏季不同臭氧浓度级别VOCs特征及来源[J]. 环境科学, 2021, 42(8): 3585-3594. Wang W M, Gao J Y, Xiao Z M, et al. Characteristics and sources of VOCs at different ozone concentration levels in Tianjin[J]. Environmental Science, 2021, 42(8): 3585-3594. |
[31] |
刘希瑞, 郭冬冬, 李家琛, 等. 国六重型柴油车挥发性有机物排放特性[J]. 中国环境科学, 2021, 41(7): 3131-3137. Liu X R, Guo D D, Li J C, et al. Emission characteristics of volatile organic compounds from heavy duty diesel vehicles[J]. China Environmental Science, 2021, 41(7): 3131-3137. DOI:10.3969/j.issn.1000-6923.2021.07.015 |
[32] |
王帅, 崔建升, 冯亚平, 等. 石家庄市挥发性有机物和臭氧的污染特征及源解析[J]. 环境科学, 2020, 41(12): 5325-5335. Wang S, Cui J S, Feng Y P, et al. Characteristics and source apportionment of VOCs and O3 in Shijiazhuang[J]. Environmental Science, 2020, 41(12): 5325-5335. DOI:10.3969/j.issn.1000-6923.2020.12.026 |
[33] |
黄永海. 餐饮油烟中VOCs代表物的排放特征及催化氧化研究[D]. 北京: 北京科技大学, 2020. Huang Y H. Investigation of the emission characteristics and catalytic oxidation of the representatives of VOCs in the cooking oil fumes[D]. Beijing: University of Science & Technology Beijing, 2020. |
[34] |
蒋宝, 孙成一, 白画画, 等. 油烟净化器对餐饮VOCs排放和光化学特征的影响[J]. 中国环境科学, 2021, 41(5): 2040-2047. Jiang B, Sun C Y, Bai H H, et al. Influence of fume purifier on VOCs emission characteristics and photochemical reaction of catering[J]. China Environmental Science, 2021, 41(5): 2040-2047. DOI:10.3969/j.issn.1000-6923.2021.05.006 |
[35] | Zheng J Y, Yu Y F, Mo Z W, et al. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 456-457: 127-136. DOI:10.1016/j.scitotenv.2013.03.055 |
[36] |
罗瑞雪, 刘保双, 梁丹妮, 等. 天津市郊夏季的臭氧变化特征及其前体物VOCs的来源解析[J]. 环境科学, 2021, 42(1): 75-87. Luo R X, Liu B S, Liang D N, et al. Characteristics of ozone and source apportionment of the precursor VOCs in Tianjin suburbs in summer[J]. Environmental Science, 2021, 42(1): 75-87. |
[37] |
刘政, 徐晨曦, 陈军辉, 等. 典型钢铁企业挥发性有机物排放量测算及组分特征[J]. 中国环境科学, 2020, 40(10): 4292-4303. Liu Z, Xu C X, Chen J H, et al. Emission estimation and component characteristics of volatile organic compounds in typical iron and steel enterprise[J]. China Environmental Science, 2020, 40(10): 4292-4303. DOI:10.3969/j.issn.1000-6923.2020.10.012 |
[38] | Zheng H, Kong S F, Xing X L, et al. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year[J]. Atmospheric Chemistry and Physics, 2018, 18(7): 4567-4595. DOI:10.5194/acp-18-4567-2018 |
[39] | Gong Y, Wei Y J, Cheng J H, et al. Health risk assessment and personal exposure to volatile organic compounds (VOCs) in metro carriages — a case study in Shanghai, China[J]. Science of the Total Environment, 2017, 574: 1432-1438. DOI:10.1016/j.scitotenv.2016.08.072 |
[40] | Li G H, Wei W, Shao X, et al. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts[J]. Journal of Environmental Sciences, 2018, 67: 78-88. DOI:10.1016/j.jes.2017.08.003 |
[41] |
崔金梦. 连云港市挥发性有机化合物和臭氧的特征及来源研究[D]. 南京: 南京大学, 2020. Cui J M. Study on the characteristics and sources of volatile organic compounds and ozone in Lianyungang city[D]. Nanjing: Nanjing University, 2020. |