环境科学  2022, Vol. 43 Issue (1): 295-305   PDF    
三峡水库调度对支流水体叶绿素a和环境因子垂向分布的影响
田盼1,2, 李亚莉2, 李莹杰1, 李虹1, 王丽婧1, 宋林旭2, 纪道斌2, 赵星星2     
1. 中国环境科学研究院国家长江生态环境保护修复联合研究中心运行管理部, 北京 100012;
2. 三峡大学水利与环境学院, 宜昌 443002
摘要: 采用2018年三峡水库7~8月(低水位期)和10月(蓄水变动期)对库区支流香溪河和神农溪水文水动力和环境因子的监测数据,分析香溪河和神农溪的叶绿素a等指标在不同调度时期垂向分布特征,讨论不同时期影响其垂向分布的原因.结果表明,低水位期香溪河和神农溪的溶解氧、水温、pH值和叶绿素a垂向分布规律较为一致,各指标在0~10 m(叶绿素a在0~5 m)分层明显且整体上随水深增加而减小,热分层稳定指数(RWCS/H)为13.71~29.07 m-1,分层稳定,水深10 m(叶绿素a为5 m)后各指标沿水深趋于稳定;蓄水变动期,各指标无明显分层,热分层稳定指数为0~0.50 m-1,水体稳定性较弱,各指标垂向上变化相对稳定;香溪河和神农溪表层水体综合营养状态指数(TLI)在低水位期分别为55和53,处于轻度富营养状态,在蓄水变动期分别为39和46,处于中营养状态.线性回归分析显示,低水位期两支流水体中的叶绿素a、溶解氧、水温和pH值在垂向上相关性显著,溶解氧、水温分层和pH值是影响叶绿素a垂向分布的重要因素.高水位期干流水体的大量倒灌、支流较大的水位波动和RWCS/H的降低等是水体未分层且各指标垂向变化较小的重要影响因素;水体垂向掺混的增强和Zeu/Zmix的减小是影响水体营养状态的关键因素.
关键词: 香溪河      神农溪      叶绿素a      溶解氧      低水位期      蓄水变动期      水体分层     
Effects of the Three Gorges Reservoir Operation on Vertical Distribution of Chlorophyll a and Environmental Factors in Tributaries
TIAN Pan1,2 , LI Ya-li2 , LI Ying-jie1 , LI Hong1 , WANG Li-jing1 , SONG Lin-xu2 , JI Dao-bin2 , ZHAO Xing-xing2     
1. Operation and Management Department of the National Joint Research Center for Yangtze River Conservation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
Abstract: The hydrodynamics and environmental factors in the Xiangxi River (XXR) and Shennong River (SNR), which are tributaries of the Three Gorges Reservoir (TGR), were monitored from July to August (the low water level period) and in October (the impoundment period) in 2018. The vertical distribution characteristics of chlorophyll a and other indicators of the two tributaries were analyzed during the different operation periods, and the factors that affected the vertical distribution in each period were discussed. The results showed that the vertical distribution of dissolved oxygen, water temperature, pH value, and chlorophyll a of the XXR and SNR during the low water level period was relatively consistent. The indexes 0-10 m (0-5 m for chlorophyll a) from the surface of the XXR and SNR, respectively, showed significant stratification and decreased with increasing water depth; the stability index of thermal stratification (RWCS/H) was 13.71-29.07 m-1, which was stable. After the water depth reached 10 m (5 m for chlorophyll a), the indexes tended to be stable along the water depth. During the impoundment period, there was no obvious stratification for each index; the stability index of thermal stratification was 0-0.5 m-1, the stability of the water body was weak, and the vertical variation of each index was relatively stable. The comprehensive trophic state index (TLI) of the XXR and SNR were 55 and 53 during the low water level period, respectively, indicating that they were in a slightly eutrophic state, and 39 and 46 during the impoundment period, respectively, indicating a mesotrophic state. Linear regression analysis showed that chlorophyll a, dissolved oxygen, water temperature, and pH in the two tributaries were significantly correlated in the vertical direction in the low water level period, indicating that dissolved oxygen, water temperature stratification, and pH were important factors affecting the vertical distribution of chlorophyll a. During the impoundment period, a large amount of backflow from the Yangtze River, a large fluctuation in tributary water level, and the decrease in RWCS/H were the important factors that affected the small vertical change in the water body. The enhancement of vertical mixing and the decrease in Zeu/Zmix were the key factors affecting the nutritional status of the water.
Key words: Xiangxi River      Shennong River      chlorophyll a      dissolved oxygen      low water level period      impoundment period      water stratification     

水体富营养化是淡水生态系统面临的威胁之一, 也是造成水质恶化最常见的原因之一[1, 2].浮游藻类是水生态系统的初级生产者, 叶绿素a是衡量水体初级生产力的重要指标, 反映着水体富营养化程度, 是水环境科学十分关键的参数[3, 4].水体形成季节性的物理分层是水库的重要特征之一[5, 6], 众多研究者对分层型湖库藻类分布研究发现, 藻类数量及群落结构主要受溶解氧、水温[7, 8]、水位波动、透明度[9, 10]、营养因子和光照强度[11]等因素影响, 藻类多样性和水质因子均表现出时空差异性.藻类能够通过光合作用增加水体溶解氧的含量, 呼吸作用又会降低水体溶解氧含量, 而溶解氧是维系水生态安全的重要要素之一, 参与着水化学反应及水生物等相互作用的过程[12, 13], 当水体遭受污染后则会使溶解氧含量大幅度降低, 水质便会恶化[14].水体分层影响着水库理化因子的垂向分布和物质的迁移转换[15, 16], 而水体分层往往又具有季节性的变化.故对不同时期水体中叶绿素a和溶解氧等理化因子在垂向上的分布特征及其影响因素进行研究有重要意义.

三峡库区自2003年蓄水以来, 产生着巨大的经济社会效益, 但也改变了库区的水文水动力, 使原来的河流生态系统转变成水库型生态系统, 给库区的生态环境等带来了不利影响, 干流倒灌和水体分层等水文水动力因素和人为因素的影响, 加重了支流富营养化问题, 导致部分支流水华暴发频繁, 库区水质安全受到严重威胁[17, 18].霍静等[19]的研究将神农溪水温季节分层分为了阶梯型、双混斜型和半U型, 田盼等[20]和杨凡等[21]的研究发现, 香溪河和神农溪水体中叶绿素a和溶解氧等理化因子垂向上在2月、7月和蓄水初期(9月)存在明显分层.但在蓄水中期(10月), 库区水位变化大, 长江干流水体大量倒灌, 来自长江倒灌的水体对支流库湾水体的掺混强度有着显著影响[22, 23].故对于库区不同的调度时期, 尤其是蓄水位快速上升时期, 支流库湾大纵深断面的各指标垂向分布变化特征及其驱动因素为何, 其认识还需要进一步拓展.鉴于此, 本研究以三峡库区一级支流香溪河和神农溪为例, 于2018年低水位期(香溪河7月、神农溪8月)和蓄水变动期(10月)对其进行垂向水环境监测, 分析不同调度时期垂向水环境变化特征及其形成机制, 明晰两支流在三峡调度大背景下的垂向水环境的共性特征, 以期为库区水环境管理和生态调度提供参考依据, 也为我国水库生态学研究积累重要的资料.

1 材料与方法 1.1 研究区域概况

香溪河流域位于湖北宜昌兴山县, 河口距离三峡大坝约34.5 km, 流域总面积约3 099.0 km2, 河流全长约94.0 km.神农溪流域位于湖北恩施巴东县, 河口到三峡大坝距离约69.9km, 河流全长约60.6 km, 流域总面积约1 047.0 km2.两支流均为库区典型一级支流, 受到三峡水库调度的影响明显.

1.2 样点布设

7~8月水位相对稳定, 水库水体环境变化相对较小; 10月为蓄水变动期, 库湾水位急剧变化, 水体环境变化大[24].故于2018年分别于低水位期(香溪河7月, 神农溪8月)和蓄水期变动期(10月)对神农溪和香溪河进行水环境监测.在香溪河布设6个监测点分别为XX01、XX02、XX03、XX04、XX05和XX06, 神农溪布设4个监测点分别为SN01、SN02、SN03和SN04, 具体位置如图 1所示.

图 1 采样点示意 Fig. 1 Locations of sampling sites

1.3 数据采集

监测指标包括溶解氧(DO)、水温(WT)、pH值(pH)、叶绿素a(Chl-a)、总氮(TN)、总磷(TP)和光合有效辐射(PAR)等, 其中TN和TP作为营养指标, DO反映氧化条件, WT反映水温变化, pH反映水体酸碱状态, Chl-a反映浮游植物生物量[25].DO、WT、pH和Chl-a用YSI-EXO多参数水质分析仪(美国)对各监测点进行现场监测, 用2.5 L采水器采集水面0~0.5 m处水样, 放入350 mL水样瓶冷冻保存, 带回实验室测定, 水样测定均设置3组平行样, 取均值作为最后的结果, TN采用过硫酸钾氧化紫外分光光度计法, TP采用钼锑抗分光光度计法, PAR用International Light4100光照计(美国)测定.

1.4 数据处理 1.4.1 数据分析

Chl-a垂向上整理有效值后, 仅对水深0~20 m范围进行分析.真光层深度(Zeu)取1%表面光强对应的水深[26, 27], 混合层深度(Zmix)则选取与表面水温相差0.5℃对应的水深[28, 29].用Arcgis10.2绘制采样点图, 用Origin2019绘制垂向分布等, 用SPSS进行线性拟合分析和单因素方差分析(ANOVA).

1.4.2 热分层稳定指数计算

热分层稳定指数(RWCS/H)用于评价热分层稳定水平[30], 其计算公式为:

(1)

式中, DsDb分别为底层和表层水体密度, kg·m-3; D5D4分别为5.0℃和4.0℃时纯水密度, kg·m-3; H为水深, m.当RWCS/H>2.00 m-1时, 为稳定分层状态, RWCS/H越大, 水体越易分层, RWCS/H越小, 则水体越易发生混合.为便于描述, 将水面下0~0.5 m处定为表层水深, 8~10 m处定为中层水深, 底层水深H取水温垂向上有效值的最后数值所对应的水深.

忽略水体泥沙影响, 水温对应的水体密度计算公式为[31, 32]:

(2)

式中, T为水体温度, ℃; ρT为水温对应的水体密度, kg·m-3.

1.4.3 综合营养状态指数计算

采用综合营养状态指数法(TLI)作为富营养化的评价方法[33], 该方法通过0~100系列数字将水体营养状态分级, 即贫营养(TLI < 30), 中营养(30≤TLI≤50), 轻度富营养(50 < TLI≤60), 中度富营养(60 < TLI≤70), 重度富营养(TLI>70)[34].本研究结合已有监测资料, 选取Chl-a、TN和TP作为评价因子[35], 其具体计算方法参见文献[36].

2 结果与分析 2.1 不同时期叶绿素a垂向分布特征

叶绿素a在不同时期的垂向分布特征如图 2所示, 低水位期, 整体上香溪河Chl-a在0~5 m水深分层明显, 在1 m左右达到最大值, 5~20 m水深范围内, Chl-a沿水深趋于稳定, 无分层现象; 神农溪Chl-a在0~5 m水深分层明显, 在3 m左右达到最大值, 5~20 m水深范围内, Chl-a沿水深趋于稳定, 无分层现象.香溪河和神农溪表层水体ρ(Chl-a)的平均值分别为8.93μg·L-1和13.18μg·L-1, 且测得香溪河和神农溪表层水体ρ(TN)的平均值分别为3.15mg·L-1和1.29 mg·L-1, ρ(TP)的平均值分别为0.05 mg·L-1和0.06 mg·L-1, 计算得TLI分别为55和53(表 1), 呈轻度富营养状态.

图 2 三峡水库各支流不同调度时期Chl-a垂向分布特征 Fig. 2 Vertical distribution characteristics of Chl-a in tributaries of TGR in different operation periods

表 1 不同时期香溪河和神农溪综合营养状态指数 Table 1 Comprehensive nutritional status index of Xiangxi River and Shennong River in different periods

蓄水变动期, 整体上香溪河和神农溪的Chl-a均无明显的分层现象, 0~20 m沿水深趋于稳定, 垂向上变化范围分别为0~0.70μg·L-1和1.40~4.40μg·L-1.香溪河和神农溪表层水体ρ(Chl-a)的平均值分别为0.43μg·L-1和2.64μg·L-1, 显著低于低水位期(P < 0.01), 又测得香溪河和神农溪表层水体ρ(TN)的平均值分别为1.62mg·L-1和1.61 mg·L-1, ρ(TP)的平均值分别为0.06 mg·L-1和0.05 mg·L-1, 计算得TLI分别为39和46(表 1), 呈中营养状态.

2.2 低水位期理化因子垂向分布特征

各理化因子低水位期的垂向分布特征如图 3所示, 香溪河的溶解氧在1 m左右达到最大值, ρ(DO)为10.0~16.0mg·L-1, 水深0~10 m分层明显, 在此范围内ρ(DO)随水深沿程降低至4.0~6.5 mg·L-1, 水深10 m后, DO整体上沿水深趋于稳定, 仅XX05和XX06点存在一定的波动.水温在1 m左右达到最大值, 其范围为28~32℃, 水深0~10 m, 其RWCS/H处于13.71~29.07 m-1, 大于2 m-1(表 2), 分层明显且稳定, 水深10 m后, 其RWCS/H降至0.05~0.36 m-1, 无明显分层, 水温沿水深趋于稳定. pH值在0.5~1.0 m水深范围达到最大值, 其范围为8.3~9.0, 水深0~10 m分层明显, 在此范围内随水深沿程降低至7.6~7.8, 水体呈偏碱性状态, 水深10 m后, pH值沿水深趋于稳定.

图 3 三峡水库低水位期各支流环境因子的垂向分布特征 Fig. 3 Vertical distribution characteristics of environmental factors in tributaries of TGR in the low water level period

表 2 不同时期典型支流的热分层稳定指数/m-1 Table 2 Thermal stratification stability index of typical tributaries in different periods/m-1

神农溪的溶解氧在1 m左右达到最大值, ρ(DO)为14.0~18.0mg·L-1, 水深0~8 m分层明显, 在此范围内ρ(DO)随水深沿程降低至4.0~7.0 mg·L-1, 水深8 m后, DO整体上沿水深趋于稳定, SN06点存在一定的波动.水温在1m左右达到最大值, 其范围为29~32℃, 水深0~8 m, 其RWCS/H处于13.71~29.07 m-1(表 2), 分层明显且稳定, 水深8 m后, RWCS/H处于0.05~0.36 m-1, 水温沿水深趋于稳定.pH值在0.5~1.0 m范围达到最大值, 其值为9.0左右, 水深0~8 m分层明显, 在此范围内随水深沿程降低至8.0左右, 水体呈偏碱性状态; 水深8 m后, pH值沿水深趋于稳定.

2.3 蓄水变动期理化因子垂向分布特征

各理化因子蓄水变动期的垂向分布特征如图 4所示, 蓄水变动期, 香溪河在垂向上, 各指标均无明显的分层现象, ρ(DO)在各点垂向变化量为0~2.5mg·L-1, 水温变化量为0~0.5℃, pH值变化量为0~0.3.神农溪垂向上, 整体来看各指标均无明显的分层现象, ρ(DO)在各点垂向变化量为0~2.0mg·L-1, 水温变化量为0~1℃, pH值变化量为0~0.5, 但以水深20 m为界, 上半层分层现象不明显, 下半层存在微弱的分层现象.此时期香溪河和神农溪RWCS/H整体处于0~0.50 m-1(表 2), 表明水体稳定性弱, 上下水体间易发生混合.

图 4 三峡水库蓄水变动期各支流环境因子的垂向分布特征 Fig. 4 Vertical distribution of environmental factors in tributaries of TGR in the impoundment period

2.4 线性回归分析

在低水位期水体分层的条件下, 香溪河和神农溪的叶绿素a与DO、WT和pH值之间的线性分析结果如图 5所示, 香溪河(神农溪)叶绿素a与DO、WT和pH值均呈明显的线性关系, 相关系数(r)分别为0.87(0.90)、0.83(0.87)和0.86(0.93), 表明分层水体中叶绿素a的垂向分布与DO、WT和pH值等理化因子联系紧密;

图 5 三峡水库低水位期各支流Chl-a与DO、WT和pH值的相关性 Fig. 5 Correlation of Chl-a with DO, WT, and pH in tributaries of TGR in the low water level period

在低水位期水体分层的条件下, 香溪河(神农溪)的DO、WT和pH值之间的线性分析结果如图 6所示, 香溪河(神农溪)DO与WT和pH值之间呈明显的线性关系, 相关系数分别为0.95(0.93)和0.98(0.93), 表明分层水体中DO与WT和pH值等联系紧密.

图 6 三峡水库低水位期各支流DO与WT和pH值的相关性 Fig. 6 Correlation of DO with WT and pH in tributaries of TGR in the low water level period

3 讨论 3.1 低水位期各指标垂向分布特征成因分析

图 2图 3所示, 香溪河和神农溪水体在低水位期存在明显的DO分层、温跃层、pH值分层和叶绿素a分层, 前三者分层深度较为一致在0~10 m范围内, 叶绿素a分层深度在0~5 m范围.如图 5图 6所示, DO、WT、pH值和Chl-a在垂向上呈明显的线性关系, 表明各指标间垂向上联系紧密.低水位期支流在水深0~10 m范围, 其RWCS/H处于13.71~29.07 m-1, 而中底层的RWCS/H处于0.05~0.36 m-1(表 2), 加上此时期库湾水位波动较小, 干支流水量交换也较小(图 7), 水体产生明显的分层现象且分层稳定.水体被强烈分层后, 水体的垂向混合和物质的迁移转换便被抑制[37].因为中底层的RWCS/H较小, 水体稳定性较弱, 故底层温度分布较均匀, 在表中层之间便形成了一个过渡层, 过渡层的水温梯度较大时, 便产生了温跃层[38, 39].深层水体中的DO主要通过表层水体中的DO垂向对流交换来获得补充[40, 41], 表层水体DO则主要来源于空气中氧气的溶解和浮游植物的光合作用[42], 而由于温跃层的存在, 其较大的温度梯度限制了垂向掺混, 且热分层强稳定期温跃层垂向扩散系数小, 阻碍了表层水体DO对中底层的补充[43, 44], 使香溪河和神农溪中上层ρ(DO)明显高于中低层.由于表层光合作用较强, 浮游植物大量生长, 故ρ(Chl-a)也较高, 但观察到ρ(Chl-a)在1 m或3 m处达到最大值, 其原因在于表层水体受到强光作用, 部分藻种会向下迁移至次表层, 发生藻类下沉聚集的现象[45].浮游植物增加, 光合作用就会消耗更多的CO2, 根据二氧化碳-碳酸盐体系(CO2+H2O⇌HCO3-+H+⇌CO32-+2H+)[46], 水体H+浓度因此下降, 加上藻类主要利用体内羧化酶将HCO3-转化为CO2进行光合作用, 从而置换出OH-, 故水体pH值偏碱性.

正值表示交换水量以干流倒灌为主, 负值表示. 支流流出为主, 修改自文献[52] 图 7 三峡水库干支流月交换水量变化 Fig. 7 Monthly water exchange quantity of the Yangtze River and tributaries in TGR

但是, 随着水深的增加, 水温的降低会弱化浮游植物体内酶的活性, 减弱浮游植物的光合作用, 从而降低浮游植物的生物量[47, 48], ρ(Chl-a)便降低, 从而减少CO2的消耗量.光合作用减弱, 则呼吸作用增强, 加上浮游植物在死亡后会被微生物分解而消耗氧气, 故ρ(DO)降低[49].CO2的增加使pH值下降, H+沿水深逐渐增加直至稳定, 过程中促进水体本身的氧化还原反应(4H++O2+4e⇌2H2O)[50]向正向发生, 也能降低水体中的ρ(DO).

3.2 蓄水变动期各指标垂向分布特征成因分析

图 2图 4所示, 蓄水变动期, 香溪河和神农溪垂向上Chl-a、DO、WT和pH值趋于一致, 没有出现明显的分层现象.研究证明香溪河和神农溪库湾混合层的深度随水位波动幅度的增加而增加[51], 水位的快速抬升会增强干支流的水体交换, 如田盼等[52]和韩超南等[53]的研究通过水量平衡方程计算出蓄水变动期干支流水量交换以干流倒灌为主(图 7).水体的紊动条件是决定水体分层状况的主要变量之一, 华逢耀等[54]、Wang等[55]和Holbach等[56]的研究发现, 高入库流量会加剧水体的扰动, 使水体更易混合, 能显著降低水体分层的稳定性.香溪河和神农溪在蓄水变动期水位波动约20 m, 水位波动改变了异重流潜入模式, 大量干流水体以表中层异重流形式倒灌入支流, 加上此时期表层水温降低, 与中低层水体水温趋于一致且水体密度增加, 库湾水体下沉, RWCS/H值低至0~0.50 m-1(表 2), 支流的热分层稳定指数减小, 水体稳定性变弱, 垂向混合增强, 便破坏了支流水体蓄水前的稳定分层状态, 促进了水体掺混能力[57, 58], 各层水体产生对流现象, 与干流倒灌水均匀掺混, 使库湾水温达到了均匀分布, 故没有形成稳定的温跃层, 从而中底层水体的DO在垂向掺混的作用下得到充分补充[59], 溶解氧由此也未产生明显地分层.但观察到香溪河和神农溪垂向上, 整体的ρ(DO)是向上游降低的, 可能是倒灌强度和垂向掺混作用沿上游减弱, 而水体间的掺混作用越大时, 水体更容易溶解氧气造成的.另外, 因浮游植物本身的减少和光合作用强度的降低, CO2消耗较低, 呼吸作用占优, 故0~10 m的水体ρ(DO)和pH值较低水位期明显要小.综上, 蓄水变动时期支流库湾水体垂向分层不明显.

3.3 水库调度对叶绿素a的影响分析

表 1所示, 低水位期水体呈轻度富营养状态, 蓄水变动期呈中营养状态.有研究表明除营养盐外, 水位波动和气象条件是水库中藻类和ρ(Chl-a)变化的重要驱动因子[60, 61].而三峡水库蓄水期由于蓄水造成的水位波动能有效控制支流库湾水华现象的发生[62, 63], 藻类的生长位置会随着水体紊动程度频繁改变(藻类具有随流输移和悬浮生长的特性), 故其生境要素也频繁发生变化, 进而其生长速率受到抑制[64, 65]. ρ(Chl-a)在干流大量倒灌, 从而打破库湾支流温度分层的情况下急剧下降[66].蓄水位的上升, 增加了混合层深度, 根据临界层理论, 当Zeu/Zmix低于“临界值”时, 通常不会发生水华现象, 陈洋等[67]的研究通过香溪河围格实验发现, 藻类净初级生产力与Zmix存在负相关性, 论证了临界层理论在香溪河的适用性, Liu等[66]和刘心愿等[68]的研究也发现香溪河临界值范围晚秋至早春为0.35, 晚春至早秋为0.20较为适宜, 如图 8所示, 香溪河和神农溪的Zeu/Zmixρ(Chl-a)整体上变化趋势一致, 均在低水位期较大, 在蓄水变动期均明显降低, 此时期Zeu/Zmix均小于0.35, 结果表明将该范围作为香溪河和神农溪的临界值均具有效性.

图 8 三峡水库各支流不同调度时期Zeu/Zmix与Chl-a的变化特征 Fig. 8 Response relationship between Zeu/Zmix and Chl-a in tributaries of TGR in different operation periods

4 结论

(1) 低水位期香溪河和神农溪水体的ρ(DO)、水温、pH值和ρ(Chl-a)均在水深1m左右达到最大值, 在0~10 m(叶绿素a在0~5 m)范围内分层明显, 且表-中层热分层稳定指数为13.71~29.07 m-1, 水体分层处于稳定状态, 中-底层各指标垂向上无明显波动, 热分层稳定指数为0.05~0.36 m-1, 水体稳定性较弱.各指标垂向上呈显著的线性关系, 溶解氧、水温分层和pH值影响着浮游植物的分布.

(2) 蓄水变动期, 由于库区蓄水, 支流库湾水位大幅上升和干流水体大量倒灌, 加上表层水温的降低, 破坏了水体稳定分层状态, 热分层稳定指数降至0~0.50 m-1, 水体稳定性变弱, 使得上下水体间充分掺混, 使香溪河和神农溪水体垂向上各指标的值趋于一致, 各指标间无相关性.

(3) 香溪河和神农溪低水位期, 其表层水体ρ(Chl-a)显著高于蓄水变动期(P < 0.01), 综合营养状态指数分别为55和53, 水体呈轻度富营养状态; 蓄水变动期, 两支流表层水体综合营养状态指数分别为39和46, 水体呈中营养状态, 水体掺混强度的增强、水体分层的消失和水位的上升使混合层深度增加导致Zeu/Zmix的减小等, 使浮游植物的生长受到限制, 故ρ(Chl-a)较低.

参考文献
[1] Reid A J, Carlson A K, Creed I F, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity[J]. Biological Reviews, 2019, 94(3): 849-873. DOI:10.1111/brv.12480
[2] Le Moal M, Gascuel-Odoux C, Ménesguen A, et al. Eutrophication: a new wine in an old bottle?[J]. Science of the Total Environment, 2019, 651: 1-11. DOI:10.1016/j.scitotenv.2018.09.139
[3] 李娜, 李勇, 冯家成, 等. 太湖水体Chl-a预测模型ARIMA的构建及应用优化[J]. 环境科学, 2021, 42(5): 2223-2231.
Li N, Li Y, Feng J C, et al. Construction and application optimization of the Chl-a forecast model ARIMA for Lake Taihu[J]. Environmental Science, 2021, 42(5): 2223-2231.
[4] Oliver S K, Collins S M, Soranno P A, et al. Unexpected stasis in a changing world: lake nutrient and chlorophyll trends since 1990[J]. Global Change Biology, 2017, 23(12): 5455-5467. DOI:10.1111/gcb.13810
[5] 赵林林, 朱广伟, 陈元芳, 等. 太湖水体水温垂向分层特征及其影响因素[J]. 水科学进展, 2011, 22(6): 844-850.
Zhao L L, Zhu G W, Chen Y F, et al. Thermal stratification and its influence factors in a large-sized and shallow Lake Taihu[J]. Advances in Water Science, 2011, 22(6): 844-850.
[6] 郑莹莹, 刘树元, 刘虹, 等. 亚深型水库水体季节性分层特征研究[J]. 云南农业大学学报(自然科学), 2021, 36(2): 359-370.
Zheng Y Y, Liu S Y, Liu H, et al. Seasonal stratified characteristics of water bodies in a sub-deep reservoir[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(2): 359-370.
[7] 罗宜富, 李磊, 李秋华, 等. 阿哈水库叶绿素a时空分布特征及其与藻类、环境因子的关系[J]. 环境科学, 2017, 38(10): 4151-4159.
Luo Y F, Li L, Li Q H, et al. Spatial and temporal distribution of chlorophyll a and its relationship to algae and environmental factors in Aha Reservoir[J]. Environmental Science, 2017, 38(10): 4151-4159.
[8] 闫苗苗, 张海涵, 黄廷林, 等. 分层型水库藻类季相演替的细菌种群驱动机制[J]. 环境科学, 2021, 42(1): 221-233.
Yan M M, Zhang H H, Huang T L, et al. Mechanism of algal community dynamics driven by the seasonal water bacterial community in a stratified drinking water reservoir[J]. Environmental Science, 2021, 42(1): 221-233.
[9] Yang Z J, Xu P, Liu D F, et al. Hydrodynamic mechanisms underlying periodic algal blooms in the tributary bay of a subtropical reservoir[J]. Ecological Engineering, 2018, 120: 6-13. DOI:10.1016/j.ecoleng.2018.05.003
[10] Beaver J R, Kirsch J E, Tausz, et al. Long-term trends in seasonal plankton dynamics in Lake Mead (Nevada-Arizona, USA) and implications for climate change[J]. Hydrobiologia, 2018, 822(1): 85-109. DOI:10.1007/s10750-018-3638-4
[11] 刘黎, 贺新宇, 付君珂, 等. 三峡水库干流底栖硅藻群落组成及其与环境因子的关系[J]. 环境科学, 2019, 40(8): 3577-3587.
Li L, He X Y, Fu J K, et al. Benthic diatom communities in the main stream of Three Gorges Reservoir Area and its relationship with environmental factors[J]. Environmental Science, 2019, 40(8): 3577-3587.
[12] 刘畅, 刘晓波, 周怀东, 等. 水库缺氧区时空演化特征及驱动因素分析[J]. 水利学报, 2019, 50(12): 1479-1490.
Liu C, Liu X B, Zhou H D, et al. Temporal and spatial evolution characteristics and driving factors of reservoir anoxic zone[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1479-1490.
[13] 杜彦良, 彭文启, 刘畅. 分层湖库溶解氧时空特性研究进展[J]. 水利学报, 2019, 50(8): 990-998.
Du Y L, Peng W Q, Liu C. A review of dissolved oxygen variation and distribution in the stratified lakes or reservoirs[J]. Journal of Hydraulic Engineering, 2019, 50(8): 990-998.
[14] 赵其彪, 孙军, 李丹, 等. 东海低氧区及邻近水域浮游植物的季节变化[J]. 生态学报, 2015, 35(7): 2366-2379.
Zhao Q B, Sun J, Li D, et al. Seasonal changes of the phytoplankton along hypoxia area and adjacent waters in the East China Sea[J]. Acta Ecologica Sinica, 2015, 35(7): 2366-2379.
[15] 董春颖, 虞左明, 吴志旭, 等. 千岛湖湖泊区水体季节性分层特征研究[J]. 环境科学, 2013, 34(7): 2574-2581.
Dong C Y, Yu Z M, Wu Z X, et al. Study on seasonal characteristics of thermal stratification in lacustrine zone of Lake Qiandao[J]. Environmental Science, 2013, 34(7): 2574-2581.
[16] 余晓, 诸葛亦斯, 刘晓波, 等. 大型深水水库溶解氧层化结构演化机制[J]. 湖泊科学, 2020, 32(5): 1496-1507.
Yu X, Zhuge Y S, Liu X B, et al. Evolution mechanism of dissolved oxygen stratification in a large deep reservoir[J]. Journal of Lake Sciences, 2020, 32(5): 1496-1507.
[17] Deng K, Yang S Y, Lian E G, et al. Three gorges dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: evidence from H-O isotopes[J]. Science of the Total Environment, 2016, 562: 89-97. DOI:10.1016/j.scitotenv.2016.03.213
[18] Chen Q, Huang M T, Tang X D. Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: a six-year (2013-2018) observation[J]. Science of the Total Environment, 2020, 745. DOI:10.1016/j.scitotenv.2019.135392
[19] 霍静, 崔玉洁, 宋林旭, 等. 三峡水库神农溪库湾水体季节性分层特性[J]. 生态学杂志, 2019, 38(4): 1166-1174.
Huo J, Cui Y J, Song L X, et al. Seasonal stratification of waters in the Shennong Stream of the Three Gorges Reservoir[J]. Chinese Journal of Ecology, 2019, 38(4): 1166-1174.
[20] 田盼, 宋林旭, 纪道斌, 等. 三峡库区神农溪不同季节溶解氧与叶绿素a垂向分布特征[J/OL]. 水生态学杂志: 1-15. http://kns.cnki.net/kcms/detail/42.1785.X.20200731.1147.002.html, 2021-05-09.
Tian P, Song L X, Ji D B, et al. Vertical distribution characteristics of dissolved oxygen and chlorophyll a in different seasons of Shennong river in Three Gorges Reservoir Area[J/OL]. Journal of Hydroecology: 1-15. http://kns.cnki.net/kcms/detail/42.1785.X.20200731.1147.002.html, 2021-05-09.
[21] 杨凡, 纪道斌, 王丽婧, 等. 三峡水库汛后蓄水期典型支流溶解氧与叶绿素a垂向分布特征[J]. 环境科学, 2020, 41(5): 2107-2115.
Yang F, Ji D B, Wang L J, et al. Vertical distribution characteristics of dissolved oxygen and chlorophyll a in typical tributaries during the impoundment period of the Three Gorges Reservoir[J]. Environmental Science, 2020, 41(5): 2107-2115.
[22] 纪道斌, 刘德富, 杨正健, 等. 三峡水库香溪河库湾水动力特性分析[J]. 中国科学: 物理学力学天文学, 2010, 40(1): 101-112.
Ji D B, Liu D F, Yang Z J, et al. Hydrodynamic characteristics of Xiangxi Bay in Three Gorges Reservoir[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2010, 40(1): 101-112.
[23] 纪道斌, 刘德富, 杨正健, 等. 汛末蓄水期香溪河库湾倒灌异重流现象及其对水华的影响[J]. 水利学报, 2010, 41(6): 691-696, 702.
Ji D B, Liu D F, Yang Z J, et al. Adverse slope density flow and its ecological effect on the algae bloom in Xiangxi Bay of TGR during the reservoir impounding at the end of flood season[J]. Journal of Hydraulic Engineering, 2010, 41(6): 691-696, 702.
[24] 杨凡, 王丽婧, 纪道斌, 等. 三峡水库典型支流磷素赋存形态特征及其成因[J]. 环境科学, 2021, 42(2): 688-698.
Yang F, Wang L J, Ji D B, et al. Characteristics of phosphorus speciation and genesis in typical tributaries of the Three Gorges Reservoir[J]. Environmental Science, 2021, 42(2): 688-698.
[25] del Mar Sánchez-Montoya M, Arce M I, Vidal-Abarca M R, et al. Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive[J]. Water Research, 2012, 46(7): 2257-2269. DOI:10.1016/j.watres.2012.01.042
[26] Mignot A, Ferrari R, Claustre H. Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom[J]. Nature communications, 2018, 9(1). DOI:10.1038/s41467-017-02143-6
[27] 徐德瑞, 周杰, 吴时强, 等. 夏季东太湖光合有效辐射衰减特征及其对沉水植物恢复的指示[J]. 湖泊科学, 2021, 33(1): 111-122.
Xu D R, Zhou J, Wu S Q, et al. Attenuation characteristics of photosynthetically active radiation in summer eastern Lake-Taihu and implications for submerged plants restoration[J]. Journal of Lake Sciences, 2021, 33(1): 111-122.
[28] Gray E, Mackay E B, Mackay J A, et al. Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes[J]. Water Research, 2020, 168. DOI:10.1016/j.watres.2019.115136
[29] 余柔柔, 钱佳欢, 朱宜平, 等. 两种生态净化措施对水源水库光学环境的影响[J]. 中国环境科学, 2019, 39(2): 785-791.
Yu R R, Qian J H, Zhu Y P, et al. Influence of two ecological purification measures on water optical environment in a source water reservoir[J]. China Environmental Science, 2019, 39(2): 785-791. DOI:10.3969/j.issn.1000-6923.2019.02.042
[30] 刘雪晴, 黄廷林, 李楠, 等. 水库热分层期藻类水华与温跃层厌氧成因分析[J]. 环境科学, 2019, 40(5): 2258-2264.
Liu X Q, Huang T L, Li N, et al. Algal bloom and mechanism of hypoxia in the metalimnion of the Lijiahe Reservoir during thermal stratification[J]. Environmental Science, 2019, 40(5): 2258-2264.
[31] Lawson R, Anderson M A. Stratification and mixing in Lake Elsinore, California: an assessment of axial flow pumps for improving water quality in a shallow eutrophic lake[J]. Water Research, 2007, 41(19): 4457-4467. DOI:10.1016/j.watres.2007.06.004
[32] 安瑞志, 潘成梅, 塔巴拉珍, 等. 西藏巴松错浮游植物功能群垂直分布特征及其与环境因子的关系[J]. 湖泊科学, 2021, 33(1): 86-101.
An R Z, Pan C M, Taba L Z, et al. Vertical distribution characteristics of phytoplankton functional groups and their relation-ships with environmental factors in Lake Basomtso, Tibet, China[J]. Journal of Lake Sciences, 2021, 33(1): 86-101.
[33] 丁洋, 赵进勇, 张晶, 等. 松花湖水质空间差异及富营养化空间自相关分析[J]. 环境科学, 2021, 42(5): 2232-2239.
Ding Y, Zhao J Y, Zhang J, et al. Spatial differences in water quality and spatial autocorrelation analysis of eutrophication in Songhua Lake[J]. Environmental Science, 2021, 42(5): 2232-2239. DOI:10.3969/j.issn.1000-6923.2021.05.029
[34] Chen N C, Wang S Q, Zhang X, et al. A risk assessment method for remote sensing of cyanobacterial blooms in inland waters[J]. Science of the Total Environment, 2020, 740. DOI:10.1016/j.scitotenv.2020.140012
[35] 代亮亮, 吕敬才, 周维成, 等. 3种不同营养水平的河流浮游植物群落结构及其与环境因子的相关性[J]. 生态学报, 2021, 41(3): 1242-1250.
Dai L L, Lv J C, Zhou W C, et al. Phytoplankton's community structure and its relationships with environmental factors in three rivers with different nutrition levels[J]. Acta Ecologica Sinica, 2021, 41(3): 1242-1250.
[36] Liu D, Du Y X, Yu S J, et al. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River[J]. Water Research, 2020, 168. DOI:10.1016/j.watres.2019.115132
[37] 徐进, 黄廷林, 李凯, 等. 李家河水库污染物来源及水体分层对水质的影响[J]. 环境科学, 2019, 40(7): 3049-3057.
Xu J, Huang T L, Li K, et al. Pollution sources and the stratification effects on water quality in Lijiahe Reservoir[J]. Environmental Science, 2019, 40(7): 3049-3057.
[38] Liu M, Zhang Y L, Shi K, et al. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data[J]. Science of the Total Environment, 2019, 651: 614-624. DOI:10.1016/j.scitotenv.2018.09.215
[39] Xie L P, Wang B D, Pu X M, et al. Hydrochemical properties and chemocline of the Sansha Yongle Blue Hole in the South China Sea[J]. Science of the Total Environment, 2019, 649: 1281-1292. DOI:10.1016/j.scitotenv.2018.08.333
[40] 王禹冰, 王晓燕, 庞树江, 等. 水库水体热分层的水质及细菌群落分布特征[J]. 环境科学, 2019, 40(6): 2745-2752.
Wang Y B, Wang X Y, Pang S J, et al. Water quality characteristics and distribution of bacterial communities during thermal stratification in the Miyun Reservoir[J]. Environmental Science, 2019, 40(6): 2745-2752.
[41] 王琳杰, 余辉, 牛勇, 等. 抚仙湖夏季热分层时期水温及水质分布特征[J]. 环境科学, 2017, 38(4): 1384-1392.
Wang L J, Yu H, Niu Y, et al. Distribution characteristics of water temperature and water quality of Fuxian Lake during thermal stratification period in summer[J]. Environmental Science, 2017, 38(4): 1384-1392.
[42] 杨正健. 分层异重流背景下三峡水库典型支流水华生消机理及其调控[D]. 武汉: 武汉大学, 2014.
Yang Z J. The mechanisms of algal blooms arid its operation method through water level fluctuation under the situation of the bidirectional density currents in tributaries of the Three Gorges Reservior[D]. Wuhan: Wuhan University, 2014.
[43] Zhang Y L, Wu Z X, Liu M L, et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China)[J]. Water Research, 2015, 75: 249-258. DOI:10.1016/j.watres.2015.02.052
[44] 俞焰, 刘德富, 杨正健, 等. 千岛湖溶解氧与浮游植物垂向分层特征及其影响因素[J]. 环境科学, 2017, 38(4): 1393-1402.
Yu Y, Liu D F, Yang Z J, et al. Vertical stratification characteristics of dissolved oxygen and phytoplankton in Thousand-Island Lake and their influencing factors[J]. Environmental Science, 2017, 38(4): 1393-1402.
[45] 殷燕, 张运林, 王明珠, 等. 光照强度对铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliqnus)生长及吸收特性的影响[J]. 湖泊科学, 2012, 24(5): 755-764.
Yin Y, Zhang Y L, Wang M Z, et al. Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus[J]. Journal of Lake Sciences, 2012, 24(5): 755-764. DOI:10.3969/j.issn.1003-5427.2012.05.017
[46] 岳荣, 史红岩, 冉立山, 等. 融冰期与非融冰期水库CO2逸出昼夜变化及CO2分压影响因素研究[J]. 环境科学学报, 2020, 40(2): 678-686.
Yue R, Shi H Y, Ran L S, et al. Study on diurnal variation of CO2 flux from reservoir and the influencing factors of partial pressure of CO2 in melting and non-melting seasons[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 678-686.
[47] 张倩, 焦树林, 梁虹, 等. 喀斯特地区水库回水区夏季水体二氧化碳分压变化特征及交换通量研究[J]. 水文, 2018, 38(1): 28-34.
Zhang Q, Jiao S L, Liang H, et al. Partial pressure variation and diffusion flux of CO2 in reservoir backwater area in karast zone in summer[J]. Journal of China Hydrology, 2018, 38(1): 28-34. DOI:10.3969/j.issn.1000-0852.2018.01.005
[48] Boehrer B, Schultze M. Stratification of lakes[J]. Reviews of Geophysices, 2008, 46(2). DOI:10.1029/2006RG000210
[49] 刘贤梅, 周忠发, 张昊天, 等. 平寨水库夏季热分层期间水化学及溶解无机碳变化[J]. 长江流域资源与环境, 2021, 30(4): 936-945.
Liu X M, Zhou Z F, Zhang H T, et al. Changes of hydrochemistry and dissolved inorganic carbon during thermal stratification in Pingzhai Reservoir[J]. Resources and Environment in the Yangtze Basin, 2021, 30(4): 936-945.
[50] 孙学诗, 胡治洲, 刘明, 等. 秋季东海水体Eh、pH分布特征及其影响因素[J]. 海洋环境科学, 2019, 38(2): 211-220.
Sun X S, Hu Z Z, Liu M, et al. Distributions and influence factors of Eh and pH in the East China Sea in autumn[J]. Marine Environmental Science, 2019, 38(2): 211-220.
[51] 崔玉洁. 三峡水库香溪河藻类生长敏感生态动力学过程及其模拟[D]. 武汉: 武汉大学, 2017.
Cui Y J. The sensitive ecological dynamic processes and their simulations of algal growth of Xiangxi Bay in the Three Gorges Reservoir[D]. Wuhan: Wuhan University, 2017.
[52] 田盼, 王丽婧, 宋林旭, 等. 三峡水库典型支流不同时期的水质污染特征及其影响因素[J]. 环境科学学报, 2021, 41(6): 2182-2191.
Tian P, Wang L J, Song L X, et al. Water pollution characteristics and influencing factors of typical tributaries of Three Gorges Reservoir in different periods[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2182-2191.
[53] 韩超南, 秦延文, 马迎群, 等. 三峡支流大宁河库湾水质分布变化原因及其生态效应[J]. 环境科学研究, 2020, 33(4): 893-900.
Han C N, Qin Y W, Ma Y Q, et al. Cause of variation in water quality distribution and its ecological effects in the Daning Bay of the Three Gorges Reservoir[J]. Research of Environmental Sciences, 2020, 33(4): 893-900.
[54] 华逢耀, 黄廷林, 李楠, 等. 不同强度降雨径流对水源水库热分层和水质的影响[J]. 中国环境科学, 2021, 41(3): 1234-1242.
Hua F Y, Huang T L, Li N, et al. Influence of rainfall runoff with different intensities on thermal stratification and water quality of water source reservoir[J]. China Environmental Science, 2021, 41(3): 1234-1242. DOI:10.3969/j.issn.1000-6923.2021.03.027
[55] Wang S, Qian X, Han B P, et al. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China[J]. Water Research, 2012, 46(8): 2591-2604. DOI:10.1016/j.watres.2012.02.014
[56] Holbach A, Wang L J, Chen H, et al. Water mass interaction in the confluence zone of the Daning River and the Yangtze River—a driving force for algal growth in the Three Gorges Reservoir[J]. Environmental Science and Pollution Research, 2013, 20(10): 7027-7037. DOI:10.1007/s11356-012-1373-3
[57] 徐雅倩. 三峡水库调度对干支流水体层化结构的影响研究[D]. 武汉: 湖北工业大学, 2018.
Xu Y Q. Impacts of the Three Gorges Reservoir operation on stratification structures of mainstream and tributaries[D]. Wuhan: Hubei University of Technology, 2018.
[58] 张磊, 蔚建军, 付莉, 等. 三峡库区回水区营养盐和叶绿素a的时空变化及其相互关系[J]. 环境科学, 2015, 36(6): 2061-2069.
Zhang L, Wei J J, Fu L, et al. Temporal and spatial variation of nutrients and chlorophyll a, and their relationship in Pengxi River backwater area, Three Gorges Reservoir[J]. Environmental Science, 2015, 36(6): 2061-2069.
[59] 赵星星, 纪道斌, 龙良红, 等. 汛期水位波动对香溪河库湾热分层特性及水质的影响[J]. 水力发电学报, 2021, 40(2): 31-41.
Zhao X X, Ji D B, Long L H, et al. Effect of water level fluctuation in flood season on thermal stratification and water quality in Xiangxi Bay[J]. Journal of Hydroelectric Engineering, 2021, 40(2): 31-41.
[60] Yang J, Lv H, Yang J, et al. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs[J]. Science of the Total Environment, 2016, 557-558: 445-452. DOI:10.1016/j.scitotenv.2016.03.094
[61] 郭诗君, 王小军, 韩品磊, 等. 丹江口水库叶绿素a浓度的时空特征及影响因子分析[J]. 湖泊科学, 2021, 33(2): 366-376.
Guo S J, Wang X J, Han P L, et al. Spatiotemporal characteristics of layered chlorophyll-a concentration and influencing factors in Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2021, 33(2): 366-376.
[62] Wang L, Cai Q H, Xu Y Y, et al. Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay[J]. Aquatic Ecology, 2011, 45(2): 197-212. DOI:10.1007/s10452-010-9346-4
[63] Yang Z J, Liu D F, Ji D B, et al. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay[J]. Science China Technological Sciences, 2010, 53(4): 1114-1125. DOI:10.1007/s11431-009-0387-7
[64] 高圻烽, 何国建, 方红卫, 等. 三峡库区支流中水体的垂向掺混对于藻类生长的影响[J]. 水利学报, 2017, 48(1): 96-103.
Gao Q F, He G J, Fang H W, et al. Effects of vertical mixing on algal growth in the tributary of Three Gorges Reservoir[J]. Journal of Hydraulic Engineering, 2017, 48(1): 96-103.
[65] 陈瑞弘, 李飞鹏, 张海平, 等. 面向流量管理的水动力对淡水藻类影响的概念机制[J]. 湖泊科学, 2015, 27(1): 24-30.
Chen R H, Li F P, Zhang H P, et al. Conceptual mechanism of hydrodynamic impacts on freshwater algae for flow management[J]. Journal of Lake Sciences, 2015, 27(1): 24-30.
[66] Liu L, Liu D F, Johnson D M, et al. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management[J]. Water Research, 2012, 46(7): 2121-3130. DOI:10.1016/j.watres.2012.01.029
[67] 陈洋, 杨正健, 黄钰铃, 等. 混合层深度对藻类生长的影响研究[J]. 环境科学, 2013, 34(8): 3049-3056.
Chen Y, Yang Z J, Huang Y L, et al. Research on the influence of mixing layer depth on algal growth[J]. Environmental Science, 2013, 34(8): 3049-3056.
[68] 刘心愿, 宋林旭, 纪道斌, 等. 降雨对蓝藻水华消退影响及其机制分析[J]. 环境科学, 2018, 39(2): 774-782.
Liu X Y, Song L X, Ji D B, et al. Effect of the rainfall on extinction of cyanobacteria bloom and its mechanism analysis[J]. Environmental Science, 2018, 39(2): 774-782.