环境科学  2022, Vol. 43 Issue (1): 1-10   PDF    
中国主要城市土壤重金属累积特征与风险评价
彭驰, 何亚磊, 郭朝晖, 肖细元, 张严     
中南大学冶金与环境学院环境工程研究所, 长沙 410083
摘要: 我国快速城市化过程可能会导致重金属在城市土壤中累积,威胁居民健康.通过收集和整理最近15年间发表的文献数据,从整体上分析了我国52个主要城市土壤重金属含量特征及其健康风险.结果表明,我国城市土壤平均ω(Pb)、ω(Cd)、ω(Cu)和ω(Zn)分别为:58.5、0.49、42.1和156.3 mg·kg-1,其Igeo值排序为:Cd(1.10)> Zn(0.36)> Pb(0.28)> Cu(0.13).沿海经济发达省份(如江苏、浙江等)和资源型省份(如湖南、河南、内蒙古等)城市中土壤重金属含量相对较高.土壤重金属Igeo值较高的城市主要包括开封、扬州、呼和浩特、太原和湘潭等.城市工业区和交通区中土壤重金属含量显著高于居民区与公园,说明城市中繁忙交通和发达的重工业是造成土壤重金属显著累积的主要原因.城市土壤重金属平均含量与城市经济和环境指标[如常住人口、GDP、ρ(PM10)、ρ(PM2.5)和SO2排放量]之间相关性不显著,可能是因为城市土壤重金属含量空间异质性大,平均含量难以反映出整体累积水平.我国城市土壤重金属对儿童的非致癌风险总体较低,主要风险元素为Pb,但个别冶炼工业发达城市的土壤重金属暴露风险值得警惕.
关键词: 城市化      健康风险评价                经济指标      数据整合分析     
Characteristics and Risk Assessment of Heavy Metals in Urban Soils of Major Cities in China
PENG Chi , HE Ya-lei , GUO Zhao-hui , XIAO Xi-yuan , ZHANG Yan     
Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
Abstract: The rapid urbanization in China may lead to heavy metal pollution in urban soil, threatening the health of residents. By collecting literature data published in the last 15 years, the characteristics and risks of heavy metals in the urban soils of 52 cities in China were analyzed. The results showed that the average ω(Pb), ω(Cd), ω(Cu) and ω(Zn) in the urban soils of China were 58.5, 0.49, 42.1, and 156.3 mg·kg-1, respectively, and the average Igeo values were ordered as follows Cd(1.10) > Zn(0.36) > Pb(0.28) > Cu(0.13). The high concentrations of heavy metals in the urban soils were mainly found in cities located in coastal economically developed provinces (such as Jiangsu, Zhejiang, etc.) and resource-based provinces (such as Hunan, Henan, Inner Mongolia, etc.). The cities of Kaifeng, Yangzhou, Hohhot, Taiyuan, and Xiangtan had relatively high Igeo values for heavy metals in the soils. The concentrations of heavy metals in soils from industrial areas and roadsides were significantly higher than those from residential areas and parks, suggesting that heavy traffic and developed heavy industry were the main causes of heavy metal accumulation in the urban soils. No significant correlations between the average concentrations of heavy metals in urban soil and urban economic and environmental indicators[such as permanent population, GDP, ρ (PM10), ρ(PM2.5), and SO2 emissions] were found. The concentrations of heavy metals in urban soils showed large spatial heterogeneity, and hence the average concentrations may not reflect the overall accumulation level in a city. The non-carcinogenic risks for children posed by heavy metals in urban soils were generally low, and the main risk contributor was Pb. However, the exposure to heavy metals in soils in cities with developed smelting industries is worthy of attention.
Key words: urbanization      health risk assessment      cadmium      lead      economic indicators      data integration and analysis     

城市环境中重金属的主要来源包括工业活动、交通排放、建筑油漆涂料侵蚀和土壤母质等[1].随着我国城市化进程的不断加快, 城市工业发展较为粗放, 机动车保有量呈高速增长, 导致大量重金属被释放至城市环境中[2, 3].土壤有机质对重金属具有强吸附性, 释放至城市环境中的重金属会在土壤中累积[4, 5].随着城市化过程, 城市土壤重金属含量会随时间缓慢增加[6].土壤重金属可以通过经口摄入、皮肤接触和呼吸摄入等途径威胁城市居民健康[7].人体过量摄入重金属会导致一系列疾病, 如神经和血液系统损害、关节疼痛、肾脏损害和高血压等[7].城市土壤重金属的分布特征和健康风险日益受到关注.

城市土壤重金属含量主要受到排放源强度和距离的影响, 土壤重金属含量通常沿城乡梯度下降[8].城市不同功能区中重金属来源存在很大差异, 因此功能区类型是影响城市土壤重金属含量的主要因子, 如工业区土壤重金属含量通常高于公园和居民区土壤[9].有学者对我国城市土壤重金属累积特征进行了研究[10~13], 结果表明我国东部城市土壤重金属含量往往高于西部城市, 工业城市中土壤重金属含量通常高于第三产业为主的城市.地质高背景、金属采选和冶炼活动是造成我国部分城市土壤重金属含量显著升高的主要原因[11].目前, 在全国范围上对城市不同功能区土壤重金属累积特征的研究较少, 且缺少土壤重金属含量与城市经济发展水平和环境统计数据之间关联性的研究.因此, 本研究通过收集和整理最近15年发表的城市土壤重金属数据来研究: ①中国主要城市及其不同功能区中土壤重金属的累积特征; ②城市土壤重金属含量与城市经济和环境统计数据的相关性; ③评估城市土壤重金属的健康风险, 确定主要的风险元素.以期为城市土壤污染管理和风险防控提供科学支撑.

1 材料与方法 1.1 数据收集

本研究收集和整理了最近15年发表的52篇经过同行评议的文献, 涉及我国52个城市, 共计6 964个土壤样品的重金属含量数据.文献筛选于中国知网(www.cnki.net)、Web of Science(www.webofknowledge.com)和ScienceDirect(www.sciencedirect.com)等文献数据库, 使用“城市土壤”、“土壤重金属”、“重金属”和中国主要城市名称作为关键字.文献中城市重金属数据以Pb、Cd、Zn和Cu的数据最为全面, 因此本文以这4种重金属为研究对象.部分文献中没有报道城市土壤样品的具体采样时间, 但文献发表时间多为2016年前后.同时考虑到城市环境监测数据的可获取性, 收集了这52个城市2016年的常住人口和GDP数据[14], 以及ρ(PM10)、ρ(PM2.5)和SO2排放量等大气环境监测数据(真气网: www.zq12369.com), 用于研究城市经济和环境统计数据与土壤重金属含量的关联性.

1.2 土壤重金属累积性评估 1.2.1 地累积指数(Igeo)

地累积指数(Igeo)常用来评估城市土壤中的重金属累积水平[15, 16], 计算公式如下:

(1)

式中, Cn为各城市土壤重金属含量(mg·kg-1), Bn为各个城市土壤重金属的背景含量(mg·kg-1), 通过文献[10, 17]获得.根据Igeo值的不同分为各种等级, 其中Igeo≤0为未累积, 0<Igeo≤1为未累积到中度累积, 1<Igeo≤2为中度累积, 2<Igeo≤3为中度至重度累积, 3<Igeo≤4为重度累积, 4<Igeo≤5为重度至严重累积, Igeo>5为严重累积.

1.2.2 内梅罗污染指数(NIPI)

内梅罗指数法(NIPI)可以对多种土壤污染物进行综合评价, 是兼顾单因子污染指数(PI)的平均值和最大值的一类综合污染评价指数.其公式如下:

(2)
(3)

式中, PI是污染物单因子指数, PImax和PIave分别为最大单因子污染指数和平均单因子污染指数.若PI>1, 则表示土壤已受污染, 其值越大, 表明污染程度越大; PI≤1, 则表示土壤未受污染.

1.3 健康风险评价

使用美国环境保护局(USEPA)的健康风险模型可以评价城市土壤重金属的长期暴露风险.该模型通过计算经口摄入、皮肤接触和呼吸摄入这3种途径的重金属摄入剂量来评价其风险[18, 19].人体过量摄入Pb、Cd、Zn和Cu会导致一系列疾病, 如神经及血液系统损害、骨质流失、肝脏损害和高血压等[20, 21], 但这些重金属的致癌毒性尚不明朗[21].同时, 研究表明城市儿童通常面临比成年人更高的土壤重金属暴露风险[19].综上, 基于已有研究数据评价了城市土壤重金属对于儿童的非致癌健康影响, 其风险评价模型如下:

(4)
(5)
(6)
(7)
(8)

式中, HQ经口i、HQ经皮肤i和HQ经呼吸i分别为经口摄入、皮肤接触和呼吸摄入这3种暴露途径下重金属i产生的非致癌风险(无单位). HQ(i)为3种暴露途径下重金属i产生的总风险.Ci表示土壤重金属i的含量(mg·kg-1).IRS为经手口途径的土壤摄入率(mg·d-1), 取默认值: 200[22]. IRa为呼吸途径土壤颗粒吸入率(m3·d-1), 取默认值: 7.6[22]. EF为年暴露天数(d·a-1), 取默认值: 350[22]. ED为暴露持续时间(a), 取默认值: 6[22]. SA为裸露的皮肤面积(cm2·d-1)取默认值: 2 800[22]. AF为皮肤粘附因子(mg·cm-2)取默认值: 0.2[22]. BW为平均体重(kg), 取值: 15. ABS为皮肤吸收因子, 取默认值: 0.001[22]. AT为平均暴露时间(d), 取默认值: 6×365. RfD为每日摄入参考剂量, 取值参考文献[22, 23], 其中Pb、Cd、Cu和Zn的RfD经口分别为3.5×10-3、1.0×10-3、4.0×10-2和3.0×10-1mg·(kg·d)-1. RfD经皮肤分别为5.3×10-4、1.0×10-5、1.2×10-2和6.0×10-2 mg·(kg·d)-1. Pb和Cd的RfD经呼吸分别为2×10-4 mg·(kg·d)-1和1.0×10-5mg·(kg·d)-1, Cu和Zn取值与RfD经口相同[24]. HI表示土壤重金属对儿童产生的总健康风险, 是各重金属元素和暴露途径(HQ)的健康风险总和.HQ和HI值小于1表示健康风险处于安全等级, 大于1表示存在潜在风险[23].

1.4 数据统计

本研究中相关性分析通过SPSS ver. 19.0(IBM, New York, NY, USA)完成.在相关分析之前, 将重金属含量进行对数转换以获得近似正态分布. Igeo、NIPI和HI的计算通过Excel 2016(Microsoft, Redmond, WA, USA)完成.城市土壤重金属含量的空间分布图使用ArcGIS 10.2(ESRI, Redlands, CA, USA)绘制.其它统计图通过Sigmaplot ver. 12.0(Corel Corporation, Ottawa, Canada)和Prism 9.0.0(GraphPad, California, USA)绘制.

2 结果与讨论 2.1 中国主要城市土壤重金属累积特征

表 1所示, 我国主要城市土壤重金属平均ω(Pb)、ω(Cd)、ω(Cu)和ω(Zn)分别为: 58.5、0.49、42.1和156.3 mg·kg-1.城市土壤平均ω(Pb)、ω(Cd)、ω(Cu)和ω(Zn)分别是其平均背景值的2.28、4.45、1.70和2.24倍.我国城市之间的重金属含量差异很大, 土壤Cd、Pb、Zn和Cu的最高含量分别出现在扬州、湘潭和昆明.其中扬州土壤平均ω(Cd)为1.98 mg·kg-1, 湘潭土壤平均ω(Pb)和ω(Zn)分别为466.6 mg·kg-1和564.0 mg·kg-1, 昆明土壤平均ω(Cu)为111.3 mg·kg-1.我国主要城市土壤重金属Igeo均值排序为: Cd(1.10)>Zn(0.36)>Pb(0.28)>Cu(0.13), 超过75%的城市中土壤Zn、Pb和Cu的Igeo值小于1, 超过70%的城市中土壤Cd的Igeo值小于2, 这表明我国大部分城市土壤重金属含量在未累积到中度累积水平.个别城市Cd和Pb的Igeo值大于3, 如开封市和扬州市的Cd的Igeo值, 呼和浩特市、太原市和湘潭市的Pb的Igeo值, 说明这些重金属存在严重累积.湘潭市和开封市具有发达的冶炼工业历史, 冶炼厂排放的含重金属烟尘和废水可能是其土壤重金属Igeo值高的主要原因[25, 26].呼和浩特和太原当地煤矿资源丰富, 煤炭加工产业和发电行业发达, 可能是造成土壤Pb累积的主要原因[27, 28].文献[29]指出扬州市土壤主要采集于城市繁忙道路周边, 高强度的机动车尾气排放、刹车片和轮胎磨损会使得土壤ω(Cd)升高.相反, 南昌和西安的城市土壤中重金属Igeo值较低, 而这两个城市的主要产业是农副产品加工, 食品和设备制造业, 不涉及重金属排放.总之, 发达的重工业和交通运输很大程度上影响了城市土壤重金属的含量和累积程度.

表 1 中国主要城市土壤重金属含量和Igeo值汇总1) Table 1 Summary of heavy metal concentrations and Igeo values in urban soils of major cities in China

2.2 中国主要城市土壤重金属空间分布特征

我国主要城市土壤重金属含量的空间分布见图 1, 各重金属的分布既有差异也有相同之处.江苏和浙江等沿海经济发达省份以及湖南、河南和内蒙古等资源型省份中城市土壤重金属含量普遍较高, 而内陆的中西部地区以及东北三省的城市重金属含量普遍较低.以土壤Pb为例, 沿海城市普遍高于内陆城市, 经济发达城市一般高于经济欠发达城市.土壤ω(Cd)较高的城市主要在内陆资源型省份和沿海发达省份, 如湖南、河南、云南和江苏等.高含量的城市土壤Cu和Zn集中于背景值较高的资源型省份, 如云南、湖南和河南.总的来说, 城市产业结构差异和土壤背景值的地域性是影响我国城市土壤重金属空间分布的主要原因.

图 1 中国主要城市土壤重金属含量分布 Fig. 1 Distribution of heavy metal concentrations in urban soil of major cities in China

重金属的NIPI指数可以反映出城市土壤重金属的整体累积水平.如图 2所示, 大多数城市的NIPI低于5, 说明我国大部分城市中土壤重金属累积程度较低.而高NIPI主要出现东部沿海、中部和西南省份.其中呼和浩特、扬州和湘潭的NIPI高于45, 这与这些城市中发达的煤炭加工业、长期金属冶炼和繁忙交通运输有关.相比之下, 西宁、金华和廊坊的NIPI低于2, 这些城市的主要产业是农副产品加工、食品和纺织业.因此, 城市中涉重金属的行业规模和交通繁忙程度是影响土壤重金属累积水平的主要原因.

图 2 中国主要城市土壤重金属NIPI分布 Fig. 2 Distribution of NIPI values for heavy metals in urban soils of major cities in China

2.3 城市主要功能区土壤重金属含量特征

表 2显示了我国城市主要功能区土壤重金属的含量特征, 土壤平均ω(Cu)和ω(Zn)排序为: 工业区>交通区>居民区>公园; 土壤平均ω(Pb)和ω(Cd)排序为: 交通区>工业区>居民区>公园.总体上不同功能区重金属的Igeo和NIPI值依次排序为: 工业区≈交通区>居民区≈公园.工业区和交通区土壤重金属含量较高, 其次为居民区与公园, 这与之前对特定城市的研究, 如广州、南京和苏州等, 结果一致[40, 55, 63].

表 2 中国主要城市不同功能区土壤重金属含量、Igeo和NIPI均值 Table 2 Concentration, Igeo, and NIPI values for heavy metals in urban soils under different land uses of major cities in China

城市功能区之间土壤重金属含量差异与重金属的排放源有关[41, 68].工业区中涉重金属企业, 如金属冶炼、矿产开采与加工和电镀企业等三废排放等会显著提升周边土壤重金属含量[35].繁忙交通会显著提高道路周边土壤重金属含量[63].居民生活如做饭、取暖和垃圾堆放也会在一定程度上影响周边土壤重金属含量[34].公园土壤重金属含量主要受到城市区域背景沉降和成土母质影响, 同时还会受到建筑材料(如油彩)脱落的影响, 这在历史悠久的公园中更为明显[11].工业区和交通区土壤重金属含量较高, 也说明工业活动和交通运输是我国城市环境中重金属的主要来源.

2.4 城市土壤重金属相关性分析

城市土壤重金属元素之间相关性分析结果见表 3.城市土壤Zn与Pb、Cd和Cu存在显著的相关性(P<0.05), 同时Cu与Cd也存在着显著的相关性.说明这些重金属具有相似的来源, 如交通尾气、轮胎和刹车片磨损会导致Cd、Zn和Cu在道路周边土壤中累积[38].城市的经济和环境指标, 如城市常住人口、国民生产总值(GDP)、ρ(PM10)、ρ(PM2.5)和SO2排放量等可以在一定程度上反映出城市重金属排放总量[76].但是本研究结果表明, 已有研究报道的城市土壤重金属平均含量与之对应城市经济和环境指标的相关性不显著(表 3).因为城市土壤重金属含量往往呈现很强的空间异质性, 单一的平均值难以反映出城市土壤重金属的整体累积水平[77].多种人为和自然因素都可能影响城市土壤重金属的平均含量, 如土壤背景值、土壤扰动、城市发展历史、采样位置和分析误差等[36].另一方面, 城市常住人口和GDP也不能完全反映出重金属的排放总量, 同时ρ(PM10)、ρ(PM2.5)和SO2排放量等大气环境指标随时间变化较大, 进一步掩盖了城市土壤重金属含量与这些经济环境指标的关联性.

表 3 中国主要城市土壤重金属含量与城市环境和经济指标相关性分析结果1) Table 3 Correlations of heavy metal concentrations in urban soils of major cities in China with urban environment and economic indicators

2.5 城市土壤重金属健康风险评价

我国主要城市土壤重金属的非致癌健康风险评价结果见表 4图 3.城市土壤重金属HI均值为0.257, 大多数城市HI均低于1, 这表明大多数城市中土壤重金属对儿童的暴露风险较低.城市土壤重金属各元素的平均HQ值依次为: Pb(0.218)>Cd(0.024)>Cu(0.014)>Zn(0.007), 可知Pb是主要的风险.湘潭市土壤Pb的HQ值最高, 为1.80, 存在潜在风险.从发生途径来看, 健康风险大小排序为: 经口摄入>皮肤接触>经呼吸摄入, 大部分健康风险产生于经口摄入.部分城市中冶炼工业发达且历史悠久, 土壤重金属健康风险相对较高.在这些城市中减少儿童在地面上玩耍, 并督促其在接触土壤后及时洗手, 有助于降低土壤重金属的暴露风险.

表 4 中国主要城市土壤重金属不同暴露途径非致癌健康风险评价结果 Table 4 Non-carcinogenic risks of heavy metals in urban soils of major cities in China under different exposure routes

图 3 中国主要城市土壤重金属儿童非致癌风险评价结果 Fig. 3 Non-carcinogenic risks for children posed by heavy metals in urban soils of major cities in China

3 结论

通过对已发表数据的收集和整理, 发现我国主要城市中土壤重金属ω(Pb)、ω(Cd)、ω(Cu)和ω(Zn)均值分别为: 58.5、0.49、42.1和156.3 mg·kg-1.城市土壤重金属Igeo平均值为: Cd(1.10)>Zn(0.36)>Pb(0.28)>Cu(0.13). Igeo值较高的城市主要包括: 开封市, 扬州、呼和浩特、太原市和湘潭市, 这与城市较为发达的交通运输、金属加工和冶炼业、汽车制造业和煤炭加工行业有关.我国城市工业区和交通区中土壤重金属含量显著高于居民区和公园土壤, 说明工业活动和交通运输是城市土壤重金属的主要来源.城市土壤重金属含量均值与对应的城市人口、GDP、ρ(PM10)、ρ(PM2.5)和SO2排放量等环境和经济指标之间相关性不显著, 可能是因为含量均值难以反映出城市整体污染水平.健康风险评价结果表明大部分城市中土壤重金属儿童非致癌风险处于安全水平, Pb为主要风险元素.经口摄入是健康风险产生的主要途径, 因此减少儿童在地面上玩耍时间, 并在接触土壤后及时洗手, 有助于降低其健康风险.

参考文献
[1] Manno E, Varrica D, Dongarrà G. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily[J]. Atmospheric Environment, 2006, 40(30): 5929-5941. DOI:10.1016/j.atmosenv.2006.05.020
[2] Gope M, Masto R E, George J, et al. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India[J]. Ecotoxicology and Environmental Safety, 2017, 138: 231-241. DOI:10.1016/j.ecoenv.2017.01.008
[3] Tong S M, Li H R, Wang L, et al. Concentration, spatial distribution, contamination degree and human health risk assessment of heavy metals in urban soils across China between 2003 and 2019-a systematic review[J]. International Journal of Environmental Research and Public Health, 2020, 17(9). DOI:10.3390/ijerph17093099
[4] Gu Y G, Yuan P P, Lin Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China's largest city, Guangzhou[J]. Applied Geochemistry, 2016, 67: 52-58. DOI:10.1016/j.apgeochem.2016.02.004
[5] 方淑波, 崔曲, 庞慧焕, 等. 基于源汇理论的浦东新区土壤重金属沿城乡梯度的分布特征[J]. 生态学杂志, 2016, 35(3): 772-780.
Fang S B, Cui Q, Pang H H, et al. Source-sink theory based distribution characters of soil heavy metals along an urban-rural gradient in Pudong new district[J]. Chinese Journal of Ecology, 2016, 35(3): 772-780.
[6] Peng C, Wang M E, Chen W P, et al. Mass balance-based regression modeling of Cd and Zn accumulation in urban soils of Beijing[J]. Journal of Environmental Sciences, 2017, 53: 99-106. DOI:10.1016/j.jes.2016.05.012
[7] Bi X Y, Liang S Y, Li X D. A novel in situ method for sampling urban soil dust: particle size distribution, trace metal concentrations, and stable lead isotopes[J]. Environmental Pollution, 2013, 177: 48-57. DOI:10.1016/j.envpol.2013.01.045
[8] Xie S W, Yang F, Feng H X, et al. Assessment of potential heavy metal contamination in the peri-urban agricultural soils of 31 provincial capital cities in China[J]. Environmental Management, 2019, 64(3): 366-380. DOI:10.1007/s00267-019-01196-1
[9] Li X Y, Cao Y J, Qi L, et al. The distribution characteristics of heavy metals in Guiyang urban soils[J]. Chinese Journal of Geochemistry, 2012, 31(2): 174-180. DOI:10.1007/s11631-012-0564-4
[10] Cheng H X, Li M, Zhao C D, et al. Overview of trace metals in the urban soil of 31 metropolises in China[J]. Journal of Geochemical Exploration, 2014, 139: 31-52. DOI:10.1016/j.gexplo.2013.08.012
[11] Pan L B, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research, 2018, 25(2): 1055-1069. DOI:10.1007/s11356-017-0513-1
[12] 陈秀端. 中国城市土壤重金属空间分布与污染研究[J]. 环境科学与技术, 2011, 34(S2): 60-65.
Chen X D. Study on the spatial distribution and pollution evaluation of heavy metal in urban soil of China[J]. Environmental Science and Technology, 2011, 34(S2): 60-65.
[13] 吕敏, 王婷芳. 我国城市土壤重金属污染研究进展综述[J]. 城市地理, 2017(10): 198-199. DOI:10.3969/j.issn.1674-2508.2017.10.153
[14] 国家统计局城市社会经济调查司. 中国城市统计年鉴-2017[M]. 北京: 中国统计出版社, 2017.
[15] Wang L J, Lu X W, Ren C H, et al. Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, nw China[J]. Environmental Earth Sciences, 2014, 71(5): 2095-2104. DOI:10.1007/s12665-013-2613-7
[16] Ma Z W, Chen K, Li Z Y, et al. Heavy metals in soils and road dusts in the mining areas of western Suzhou, China: a preliminary identification of contaminated sites[J]. Journal of Soils and Sediments, 2016, 16(1): 204-214. DOI:10.1007/s11368-015-1208-1
[17] 魏复盛, 杨国治, 蒋德珍, 等. 中国土壤元素背景值基本统计量及其特征[J]. 中国环境监测, 1991, 7(1): 1-6.
Wei F S, Yang G Z, Jiang D Z, et al. Basic statistics and characteristics of background values of soil elements in China[J]. Environmental Monitoring in China, 1991, 7(1): 1-6.
[18] 黄宏伟, 肖河, 王敦球, 等. 漓江流域水体中重金属污染特征及健康风险评价[J]. 环境科学, 2021, 42(4): 1714-1723.
Huang H W, Xiao H, Wang D Q, et al. Pollution characteristics and health risk assessment of heavy metals in the water of Lijiang river basin[J]. Environmental Science, 2021, 42(4): 1714-1723.
[19] Peng C, Cai Y M, Wang T Y, et al. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: an urbanization-affected drinking water supply area[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep37084
[20] Chen Y R, Xu X J, Zeng Z J, et al. Blood lead and cadmium levels associated with hematological and hepatic functions in patients from an e-waste-polluted area[J]. Chemosphere, 2019, 220: 531-538. DOI:10.1016/j.chemosphere.2018.12.129
[21] Gaier E D, Kleppinger A, Ralle M, et al. High serum Cu and Cu/Zn ratios correlate with impairments in bone density, physical performance and overall health in a population of elderly men with frailty characteristics[J]. Experimental Gerontology, 2012, 47(7): 491-496. DOI:10.1016/j.exger.2012.03.014
[22] Chabukdhara M, Nema A K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach[J]. Ecotoxicology and Environmental Safety, 2013, 87: 57-64. DOI:10.1016/j.ecoenv.2012.08.032
[23] Liu P P, Ren H R, Xu H M, et al. Assessment of heavy metal characteristics and health risks associated with PM2.5 in Xi'an, the largest city in northwestern China[J]. Air Quality, Atmosphere & Health, 2018, 11(9): 1037-1047. DOI:10.1007/s11869-018-0598-9
[24] Han Q, Wang M S, Cao J L, et al. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China[J]. Ecotoxicology and Environmental Safety, 2020, 191. DOI:10.1016/j.ecoenv.2019.110157
[25] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3): 1037-1044.
Li Y M, Ma J H, Liu D X, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 2015, 36(3): 1037-1044.
[26] 蒋武林. 湘潭市道路土壤与灰尘重金属污染研究[D]. 湘潭: 湖南科技大学, 2014.10-25.
Jiang W L. Study on heavy metal pollutions in soil and dust of road in Xiangtan city[D]. Xiangtan: Hunan University of Science and Technology, 2014.10-25.
[27] 杨永志, 闫海霞, 马穆德. 呼和浩特市绿地土壤重金属污染特征及评价[J]. 北方园艺, 2019(16): 110-116.
Yang Y Z, Yan H X, Ma M D. Characteristic and evaluation of soil pollution by heavy metal in different greenbelts of Hohhot[J]. Northern Horticulture, 2019(16): 110-116.
[28] 李科, 丁晴晴, 傅珊. 太原市土壤重金属污染空间分布及评价[J]. 环境化学, 2015, 34(4): 772-778.
Li K, Ding Q Q, Fu S. Spatial distribution and assessment of heavy metals from the soil of different functional areas in Taiyuan City[J]. Environmental Chemistry, 2015, 34(4): 772-778.
[29] 刘文婷, 王子波, 陈满荣. 扬州城区道路两侧土壤重金属污染检测与评价[J]. 扬州大学学报(自然科学版), 2011, 14(4): 78-82.
Liu W T, Wang Z B, Chen M R. Detection and evaluation of heavy metal contamination of roadsides soil in Yangzhou city[J]. Journal of Yangzhou University (Natural Science Edition), 2011, 14(4): 78-82.
[30] 李有文, 王晶, 巨天珍, 等. 白银市不同功能区土壤重金属污染特征及其健康风险评价[J]. 生态学杂志, 2017, 36(5): 1408-1418.
Li Y W, Wang J, Ju T Z, et al. Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China[J]. Chinese Journal of Ecology, 2017, 36(5): 1408-1418.
[31] 张军, 董洁, 梁青芳, 等. 宝鸡城区土壤重金属空间分布特征及生态风险评价[J]. 干旱区资源与环境, 2018, 32(10): 100-106.
Zhang J, Dong J, Liang Q F, et al. Spatial distribution and risk assessment of heavy metals in urban soils of Baoji city[J]. Journal of Arid Land Resources and Environment, 2018, 32(10): 100-106.
[32] 张连科, 张花娟, 黄学敏, 等. 包头市不同功能区土壤重金属污染评价[J]. 水土保持研究, 2016, 23(2): 352-356.
Zhang L K, Zhang H J, Huang X M, et al. Assessment of soil heavy metal pollution in different function areas in Baotou[J]. Research of Soil and Water Conservation, 2016, 23(2): 352-356.
[33] Liu R, Wang M E, Chen W P, et al. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors[J]. Environmental Pollution, 2016, 210: 174-181. DOI:10.1016/j.envpol.2015.11.044
[34] 沈梦楠, 韩相奎, 康春玉, 等. 长春市不同功能区土壤重金属污染风险评价[J]. 工业安全与环保, 2018, 44(10): 102-106.
Shen M N, Han X K, Kang C Y, et al. Ecological risk assessment of soil heavy metal pollution in different function areas in Changchun[J]. Industrial Safety and Environmental Protection, 2018, 44(10): 102-106. DOI:10.3969/j.issn.1001-425X.2018.10.026
[35] Ma L, Yang Z G, Li L, et al. Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in southern China[J]. Environmental Science and Pollution Research, 2016, 23(17): 17058-17066. DOI:10.1007/s11356-016-6890-z
[36] Zhang X X, Zha T, Guo X P, et al. Spatial distribution of metal pollution of soils of Chinese provincial capital cities[J]. Science of the Total Environment, 2018, 643: 1502-1513. DOI:10.1016/j.scitotenv.2018.06.177
[37] 汪嘉利, 李章平, 杨志敏, 等. 重庆市主城区土壤重金属的污染特征[J]. 重庆师范大学学报(自然科学版), 2012, 29(5): 31-35.
Wang J L, Li Z P, Yang Z M, et al. Specificity of heavy metal soils in core zone of Chongqing[J]. Journal of Chongqing Normal University (Natural Science), 2012, 29(5): 31-35.
[38] 刘建奎, 王金路, 殷玉忠, 等. 阜阳市城市规划区土壤重金属积累特征及其污染评价[J]. 城市地质, 2019, 14(2): 73-77.
Liu J K, Wang J L, Yin Y Z, et al. Accumulation characteristics and pollution evaluation of heavy metals in soils of Fuyang City planning area[J]. Urban Geology, 2019, 14(2): 73-77. DOI:10.3969/j.issn.1007-1903.2019.02.013
[39] 何瑞婷. 福州市某区土壤重金属污染特征及成因解析[J]. 云南民族大学学报(自然科学版), 2013, 22(6): 414-417.
He R T. Study on the characteristics and the analysis of causes of soil heavy mental pollution in Fuzhou urban core[J]. Journal of Yunnan University of Nationalities (Natural Science Edition), 2013, 22(6): 414-417. DOI:10.3969/j.issn.1672-8513.2013.06.007
[40] Cai Q Y, Mo C H, Li H Q, et al. Heavy metal contamination of urban soils and dusts in Guangzhou, south China[J]. Environmental Monitoring and Assessment, 2013, 185(2): 1095-1106. DOI:10.1007/s10661-012-2617-x
[41] 何玉生. 海口城市土壤重金属污染特征与生态风险评估[J]. 生态学杂志, 2014, 33(2): 421-428.
He Y S. Pollution characteristics and ecological risk assessment of heavy metals in Haikou urban soils[J]. Chinese Journal of Ecology, 2014, 33(2): 421-428.
[42] Lu S G, Bai S Q. Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: relationship with different land uses[J]. Environmental Earth Sciences, 2010, 60(7): 1481-1490. DOI:10.1007/s12665-009-0283-2
[43] 张久明, 迟凤琴, 宿庆瑞, 等. 哈尔滨市城市土壤重金属空间分布特征及相关分析[J]. 东北农业大学学报, 2010, 41(7): 56-61.
Zhang J M, Chi F Q, Su Q R, et al. Study on spatial variability of soil heavy metal in Harbin building area[J]. Journal of Northeast Agricultural University, 2010, 41(7): 56-61. DOI:10.3969/j.issn.1005-9369.2010.07.011
[44] 李增福, 朱继业, 王腊春. 合肥市城市土壤重金属元素含量及空间分布特征[J]. 城市环境与城市生态, 2009, 22(3): 24-27.
Li Z F, Zhu J Y, Wang L C. Heavy metal contents and their spatial distribution in urban soil of Hefei City[J]. Urban Environment & Urban Ecology, 2009, 22(3): 24-27.
[45] Liu Y, Shen G G, Chen X Y. Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in east China[J]. Human and Ecological Risk Assessment: An International Journal, 2016, 22(6): 1359-1374. DOI:10.1080/10807039.2016.1174924
[46] 马宏伟. 葫芦岛市重点地区土壤重金属污染风险评估[J]. 环境保护与循环经济, 2010, 30(12): 67-69. DOI:10.3969/j.issn.1674-1021.2010.12.023
[47] 佘琳琳, 李凤全, 施秋玮, 等. 城市灰尘重金属含量对城市土壤重金属的影响—以金华市为例[J]. 广东微量元素科学, 2014, 21(10): 7-12.
She L L, Li F Q, Shi Q W, et al. The influence of the heavy metal content in urban dust on heavy metal in urban soil — taking Jinhua City as an example[J]. Guangdong Trace Elements Science, 2014, 21(10): 7-12.
[48] 缪瑞琪. 昆明市土壤重金属元素的环境地球化学特征及时空变化研究[D]. 昆明: 昆明理工大学, 2015.36-46.
[49] 刘波. 昆山土壤重金属空间分布特征及风险评估研究[D]. 南京: 南京大学, 2010.15-25.
[50] 戴彬, 吕建树, 战金成, 等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学, 2015, 36(2): 507-515.
Dai B, Lv J S, Zhan J C, et al. Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong province, eastern China[J]. Environmental Science, 2015, 36(2): 507-515.
[51] 蔡奎, 栾文楼, 李超, 等. 廊坊地区土壤重金属污染程度评价[J]. 物探与化探, 2011, 35(5): 675-679.
Cai K, Luan W L, Li C, et al. The evaluation of soil heavy metal pollution degree in Langfang[J]. Geophysical and Geochemical Exploration, 2011, 35(5): 675-679.
[52] Wang B, Xia D S, Yu Y, et al. Magnetic records of heavy metal pollution in urban topsoil in Lanzhou, China[J]. Chinese Science Bulletin, 2013, 58(3): 384-395. DOI:10.1007/s11434-012-5404-8
[53] 刘亚纳, 朱书法, 魏学锋, 等. 河南洛阳市不同功能区土壤重金属污染特征及评价[J]. 环境科学, 2016, 37(6): 2322-2328.
Liu Y N, Zhu S F, Wei X F, et al. Assessment and pollution characteristics of heavy metals in soil of different functional areas in Luoyang[J]. Environmental Science, 2016, 37(6): 2322-2328.
[54] 刘绍贵, 张桃林, 王兴祥, 等. 南昌市城郊表层土壤重金属污染特征研究[J]. 土壤通报, 2010, 41(2): 463-466.
Liu S G, Zhang T L, Wang X X, et al. Heavy metal pollution characteristics of topsoil in suburban areas——a case study of Nanchang city[J]. Chinese Journal of Soil Science, 2010, 41(2): 463-466.
[55] 庞少东. 基于GIS的城市林业土壤重金属含量空间分布[D]. 南京: 南京林业大学, 2016.25-35.
Pang S D. Spatial distribution of heavy metals in urban forestry soil based on GIS-a case study of Nanjing city[D]. Nanjing: Nanjing Forestry University, 2016.25-35.
[56] 刘宝庆, 陈红路, 郑雄. 南宁市城区土壤重金属污染特征及评价[A]. 见: 2011中国环境科学学会学术年会论文集(第二卷)[C]. 乌鲁木齐: 中国环境科学学会, 2011.
[57] 刘睿, 黄艺, 王丽, 等. 西南典型矿业城市土壤及近地表大气尘中重金属污染特征及评价-以攀枝花市为例[J]. 矿物岩石, 2019, 39(3): 111-119.
Liu R, Huang Y, Wang L, et al. Characteristics and evaluation of heavy metal pollution in soil and near-surface atmospheric dust of typical mining city in Southwest China——a case study for Panzhihua city[J]. Journal of Mineralogy and Petrology, 2019, 39(3): 111-119.
[58] 张晶晶, 马传明, 匡恒, 等. 青岛市土壤重金属污染的物元可拓评价[J]. 中国环境科学, 2017, 37(2): 661-668.
Zhang J J, Ma C M, Kuang H, et al. Assessment of heavy metals pollution in soil of Qingdao based on matter-element extension model[J]. China Environmental Science, 2017, 37(2): 661-668.
[59] Jaffar S T A, Chen L Z, Younas H, et al. Heavy metals pollution assessment in correlation with magnetic susceptibility in topsoils of Shanghai[J]. Environmental Earth Sciences, 2017, 76(7). DOI:10.1007/s12665-017-6598-5
[60] Wang H, Zhao Y M, Adeel M, et al. Characteristics and health risk assessment of potentially toxic metals in urban topsoil in Shenyang City, northeast China[J]. Clean-Soil, Air, Water, 2019, 48(1). DOI:10.1002/clen.201900228
[61] 常文静, 李枝坚, 周妍姿, 等. 深圳市不同功能区土壤表层重金属污染及其综合生态风险评价[J]. 应用生态学报, 2020, 31(3): 999-1007.
Chang W J, Li Z J, Zhou Y Z, et al. Heavy metal pollution and comprehensive ecological risk assessment of surface soil in different functional areas of Shenzhen, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 999-1007.
[62] 柴立立, 崔邢涛. 河北省重点城市土壤重金属污染评价与防治对策-以石家庄市为例[J]. 科学技术与工程, 2019, 19(3): 261-268.
Chai L L, Cui X T. Pollution assessments and prevention countermeasures of heavy metals of soil in main cities of Hebei Province: taking Shijiazhuang as an example[J]. Science Technology and Engineering, 2019, 19(3): 261-268. DOI:10.3969/j.issn.1671-1815.2019.03.043
[63] Wang G, Liu H Q, Gong Y, et al. Risk assessment of metals in urban soils from a typical industrial city, Suzhou, eastern China[J]. International Journal of Environmental Research and Public Health, 2017, 14(9). DOI:10.3390/ijerph14091025
[64] 钟晓兰, 周生路, 赵其国. 长江三角洲地区土壤重金属污染特征及潜在生态风险评价—以江苏太仓市为例[J]. 地理科学, 2007, 27(3): 395-400.
Zhong X L, Zhou S L, Zhao Q G. Spatial characteristics and potential ecological risk of soil heavy metals contamination in the Yangtze river delta——a case study of Taicang City, Jiangsu Province[J]. Scientia Geographica Sinica, 2007, 27(3): 395-400. DOI:10.3969/j.issn.1000-0690.2007.03.019
[65] 陈宗娟, 张倩, 张强, 等. 天津东南部某区域不同土地利用方式下土壤重金属的累积特征[J]. 生态与农村环境学报, 2015, 31(2): 166-173.
Chen Z J, Zhang Q, Zhang Q, et al. Accumulation characteristics of heavy metals in soils as affected by land use in southeast Tianjin[J]. Journal of Ecology and Rural Environment, 2015, 31(2): 166-173.
[66] 李小平, 南晓娟, 侯康, 等. 铜川市土壤重金属形态迁移及抗坏血酸淋溶特性[J]. 干旱区研究, 2012, 29(5): 878-882.
Li X P, Nan X J, Hou K, et al. Mobility of heavy metals and the leaching characteristics with ascorbic acid from urban soil in Tongchuan city[J]. Arid Zone Research, 2012, 29(5): 878-882.
[67] 王亚宇. 乌鲁木齐市土壤重金属空间分布及行道树对重金属的富集特征[D]. 乌鲁木齐: 新疆农业大学, 2008.14-27.
Wang Y Y. Space distribution and accumulations in roadside trees of heavy metal in urban soil of Urumqi City[D]. Urumqi: Xinjiang Agricultural University, 2008.14-27.
[68] 陈华林, 周江敏, 金煜彬, 等. 温州城市土壤Cu, Zn, Pb含量及其形态研究[J]. 水土保持学报, 2007, 21(6): 75-78, 134.
Chen H L, Zhou J M, Jin Y B, et al. Concentration and chemical speciation of Cu, Zn, Pb in Wenzhou urban soils[J]. Journal of Soil and Water Conservation, 2007, 21(6): 75-78, 134. DOI:10.3321/j.issn:1009-2242.2007.06.017
[69] 王海东, 方凤满, 谢宏芳, 等. 芜湖市区土壤重金属污染评价及来源分析[J]. 城市环境与城市生态, 2010, 23(4): 36-40.
Wang H D, Fang F M, Xie H F, et al. Pollution evaluation and source analysis of heavy metal in urban soil of Wuhu City[J]. Urban Environment & Urban Ecology, 2010, 23(4): 36-40.
[70] 刘梦梅, 王利军, 王丽, 等. 西安市不同功能区土壤重金属含量及生态健康风险评价[J]. 土壤通报, 2018, 49(1): 167-175.
Liu M M, Wang L J, Wang L, et al. Concentration and ecological health risk assessment of heavy metals of soil in different functional areas in Xi'an, China[J]. Chinese Journal of Soil Science, 2018, 49(1): 167-175.
[71] 杨蕊, 李小平, 王继文, 等. 西宁市城市土壤重金属分布特征及其环境风险[J]. 生态学杂志, 2016, 35(6): 1531-1538.
Yang R, Li X P, Wang J W, et al. Geochemical distribution and environment risk of heavy metals in urban soil of Xining City[J]. Chinese Journal of Ecology, 2016, 35(6): 1531-1538.
[72] 毛应明, 沈海燕, 代奇志, 等. 徐州市城区土壤重金属污染状况及来源浅析[J]. 山东化工, 2019, 48(10): 240-242.
Mao Y M, Shen H Y, Dai Q Z, et al. Survey of heavy metal pollution and source identificayion of the urban soil in Xuzhou City[J]. Shandong Chemical Industry, 2019, 48(10): 240-242. DOI:10.3969/j.issn.1008-021X.2019.10.106
[73] 王幼奇, 白一茹, 王建宇. 基于GIS的银川市不同功能区土壤重金属污染评价及分布特征[J]. 环境科学, 2016, 37(2): 710-716.
Wang Y Q, Bai Y R, Wang J Y. Distribution of urban soil heavy metal and pollution evaluation in different functional zones of Yinchuan City[J]. Environmental Science, 2016, 37(2): 710-716.
[74] 夏辉. 郑州市不同功能区表层土壤铅铜铬锌锰污染状况研究及评价[D]. 郑州: 郑州大学, 2011.11-21.
Xia H. Investigative pollution and environmental impact assessment on Pb, Cu, Cr, Zn and Mn in Zhengzhou urban soil from different functional areas[D]. Zhengzhou: Zhengzhou University, 2011.11-21.
[75] 息朝庄, 戴塔根, 黄丹艳. 湖南株洲市土壤重金属分布特征及污染评价[J]. 中国地质, 2008, 35(3): 524-530.
Xi C Z, Dai T G, Huang D Y. Distribution and pollution assessments of heavy metals in soils in Zhuzhou, Hunan[J]. Geology in China, 2008, 35(3): 524-530. DOI:10.3969/j.issn.1000-3657.2008.03.017
[76] Jiang Y T, Sun Y J, Zhang L, et al. Influence factor analysis of soil heavy metal Cd based on the geodetector[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(6): 921-930. DOI:10.1007/s00477-020-01806-z
[77] Xie T, Wang M E, Chen W P, et al. Impacts of urbanization and landscape patterns on the accumulation of heavy metals in soils in residential areas in Beijing[J]. Journal of Soils and Sediments, 2019, 19(2): 148-158.