环境科学  2021, Vol. 42 Issue (10): 5010-5020   PDF    
有机无机氮配施对不同程度盐渍土硝化和反硝化作用的影响
周慧1,2, 史海滨1,2, 张文聪1,2, 王维刚1,2, 苏永德1,2, 闫妍1,2     
1. 内蒙古农业大学水利与土木建筑工程学院, 呼和浩特 010018;
2. 内蒙古农业大学旱区农业节水与水土环境研究所, 呼和浩特 010018
摘要: 以内蒙古河套灌区轻度盐渍土S1(EC=0.62 dS·m-1)及中度盐渍土S2(EC=1.17 dS·m-1)为对象,研究硝化和反硝化进程对盐渍化程度和有机无机氮配施比例的响应及其影响因素.本试验设置了6个处理,包括不施氮(CK)、单施无机氮(U1)以及用有机氮(U3O1、U1O1、U1O3和O1)替代25%、50%、75%和100%的无机氮.结果表明,盐度升高会降低土壤硝化势而提高土壤反硝化能力,同一处理S1土壤硝化潜势较S2土壤高出28.81%~69.67%,而反硝化能力降低17.16%~88.91%.盐度升高会降低AOB丰度及硝化贡献率,但会增加AOA丰度和硝化贡献率;盐度增加会提高土壤nirKnirS型菌丰度,同时会增加N2O/(N2O+N2)产物比,但会抑制nosZ丰度.S1土壤,以U1O1处理硝化势和反硝化能力最大,较单施化肥增幅分别达到18.59%和15.87%;S2土壤,各施肥处理之间土壤硝化势差异不显著,反硝化能力以O1处理最大,较单施化肥提高88.26%.S1和S2盐渍土分别以U1O1及O1处理获得较高的AOB基因丰度及硝化贡献率,且增大了nirSnosZ基因丰度,并显著降低N2O/(N2O+N2)产物比.综上,相比单施无机氮,轻度盐渍土以有机无机氮各半配施,中度盐渍土以单施有机氮更加利于土壤硝化反硝化过程进行.
关键词: 盐渍化农田      有机无机氮配施      硝化势      反硝化能力      功能微生物     
Effects of Combination of Organic and Inorganic Nitrogen on Nitrification and Denitrification in Two Salinized Soils
ZHOU Hui1,2 , SHI Hai-bin1,2 , ZHANG Wen-cong1,2 , WANG Wei-gang1,2 , SU Yong-de1,2 , YAN Yan1,2     
1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China;
2. Institute of Water-saving Agricultural and Soil-water Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract: Focusing on typical mildly saline soil, S1 (EC, 0.62 dS·m-1), and moderately saline soil, S2 (EC, 1.17 dS·m-1), in Hetao Irrigation District of Inner Mongolia, the response of nitrification and denitrification process to salinization degree and the proportion of organic and inorganic nitrogen application were studied. The experimental treatments consisted of(1) no nitrogen(CK), (2) only inorganic nitrogen(U1), and(3) organic nitrogen(U3O1, U1O1, U1O3, and O1) compared to 25%, 50%, 75%, and 100% inorganic nitrogen. The results showed that increasing salinity reduced the soil nitrification potential and increased the soil denitrification capacity. The soil nitrification potential of the S1 soil was 28.81%-69.67% higher than that of the S2 soil, while the denitrification capacity was reduced by 17.16%-88.91%. With an increase in salinity, the AOB abundance and nitrification contribution rate were reduced, but the AOA abundance and nitrification contribution rate were increased. Furthermore, an increase in salinity increased the abundance of nirK and nirS bacteria, and increased N2O/(N2O+N2) production, but reduced the abundance of nosZ. In the S1 soil, the nitrification potential and denitrification capacity of U1O1 were highest, increasing by as much as 18.59% and 15.87%, respectively, compared to the U1 treatment. In the S2 soil, the difference in the soil nitrification potential between the various fertilization treatments was not significant, and the denitrification capacity of the O1 treatment was highest. The S1 and S2 saline soils treated with U1O1 and O1, respectively, had higher AOB gene abundance and nitrification contribution rates, increased nirS and nosZ gene abundances, and significantly reduced N2O/(N2O+N2) product ratios. Our findings suggested that mildly saline soils(120 kg·hm-2 urea+120 kg·hm-2 organic fertilizer) and moderately saline soils(240 kg·hm-2 organic fertilizer) are more conducive to soil nitrification and denitrification processes compared to soils to which inorganic nitrogen is applied alone.
Key words: salinity soil      combined application of organic-inorganic nitrogen      nitrification potential      denitrification capacity      function microorganism     

土壤盐度增加是限制干旱和半干旱地区农业发展的主要问题[1].盐渍土这一特殊的生态系统是养分循环的热点, 盐分显著影响着土壤氮素转化及其有效性[2].近年来, 土壤氮循环对环境变化的响应受到广泛关注[3~5], 包括由于水位升高、强降雨以及不合理的农艺措施等引起的盐度增加对氮循环的影响[6~8].目前, 许多研究都集中在硝化和反硝化过程对盐度升高的响应[9~12], 结果表明盐分胁迫会改变土壤氮素的正常转化, 从而减少氮素有效性.

土壤微生物对于土壤肥力和可持续生产力的调控影响显著[13].有研究表明, 盐度对微生物群落组成的影响相较温度、pH或其他理化参数更为强烈[14].因此, 越来越多的研究聚焦于盐渍环境中影响氮素转化土壤微生物的变化规律[15, 16].硝化过程是将土壤铵态氮(NH4+-N)氧化为硝态氮(NO3--N)的过程[17].其中从NH3氧化成NO2-由氨氧化细菌(AOB)和氨氧化古菌(AOA)驱动完成[18, 19].AOA和AOB对盐度的响应在不同环境下存在差异.Zhou等[20]的研究发现, 盐分增加会限制硝化细菌的适应度而抑制硝化作用.也有研究表明, AOA丰度及土壤硝化速率与土壤盐分呈正相关, 而AOB则随盐度的增加呈现不相关或负相关[21, 22].

盐度增加对硝化作用的影响会改变硝酸盐的有效性, 从而对土壤反硝化过程也会有所影响[23].反硝化作用是环境中的NO3-和NO2-通过微生物经多种酶催化逐步还原为含氮气体的过程[24].其中经nirKnirS 基因编码的亚硝酸盐还原酶将NO2-还原为NO被认为是脱硝的限速步骤[25, 26], 是土壤氮素反硝化损失的主要过程.由nosZ基因编码的氧化亚氮还原酶决定了能否将N2O彻底还原为N2, 这一反硝化基因也被广泛研究[27].众多学者已对盐度对土壤反硝化基因影响展开研究, 但仍未得出一致结论.Miao等[28]的研究发现, nirK对盐分的耐受性要高于nirS, 而Zhai等[29]则通过研究得到与其相反的结果.也有研究发现, 盐分对nosZ有显著影响, 盐度的增加会使nosZ丰度降低[28, 30].因此, 盐分对于土壤硝化反硝化微生物基因的影响还有待进一步研究.

中国盐渍化土壤面积在3.6×106 hm2左右[31].其中内蒙古河套灌区土壤盐渍化较为严重, 盐渍化土地已超过当地灌溉面积的50%以上[32], 开发潜力较大.随着人口增长对生产的需求增加, 当地氮肥在农业系统中的应用也在增加, 单位面积化肥施用量远高于世界平均水平[33].有机肥替代化肥对于农业可持续发展具有重要意义[34].施用有机肥可以改善盐渍土理化性质[35, 36], 且较化肥释放养分更为持久, 可以满足作物生育后期对养分的需求[37].此外, 有机肥可以提供微生物所需能量, 改善土壤根际微环境[38, 39], 这可能也会影响土壤硝化细菌和反硝化细菌的多样性, 从而对土壤氮素转化过程产生影响.Shen等[40]的研究表明, 在施用有机肥24 a后土壤AOA基因丰度显著增加.也有研究发现, 施入有机肥增加了土壤硝化和反硝化菌数量, 导致N2O排放量增加[41].Cui等[42]的研究也表明, 有机肥利于nirS型反硝化菌增殖.然而, 针对不同程度盐渍化土壤, 有机肥替代无机肥的比例对土壤硝化和反硝化微生物丰度及其功能的影响在很大程度上仍不清楚.因此, 本文以河套灌区2种盐分水平土壤为研究对象, 探讨不同有机无机氮肥配施比例对土壤硝化反硝化过程及其功能微生物的影响.

1 材料与方法 1.1 试验区概况

本试验开展于解放闸灌域沙壕渠试验基地(40°54′40″N, 107°09′57″E), 该地区多年平均气温为7.7℃, 降雨量为143 mm, 蒸发量2 100 mm.大于10℃的年积温为3 551℃, 全年太阳总辐射约为6 000 MJ·m-2, 属于典型的干旱地区.土壤类型为硫酸盐-氯化物型盐土, 0~20 cm及40~60 cm土层为粉壤土, 20~40 cm和60~100 cm土层分别为粉质黏壤土和砂壤土.施肥处理前(2018年)耕层初始土壤性质详见表 1.

表 1 试验区土壤基本性状 Table 1 Basic properties of the tested soils

1.2 试验设计

本试验始于2018年4月底, 种植作物为玉米(内单314), 播种日期为每年的4月末或5月初, 收获日期为9月中旬.参考当地优化畦灌灌水定额750 m3·hm-2作为灌水量, 优化施氮量240 kg·hm-2为施氮总量, 在S1[轻度盐渍土, 土壤电导率(EC): 0.62 dS·m-1]和S2(中度盐渍土, EC: 1.17 dS·m-1)盐渍化农田上设置了6个处理, 包括不施氮(CK)、单施无机氮(U1)以及用有机氮(U3O1、U1O1、U1O3和O1)替代25%、50%、75%和100%的无机氮, 具体施肥设计见表 2.小区规格为6 m×5 m, 重复3次.无机氮采用当地常规施用的尿素氮(含氮46%), 有机氮采用商品有机肥(由玉米秸秆制成, 含N 10%, P2O5 1%, K2O 1%, 有机质≥45%, 腐殖酸≥17%, S≥8%).有机氮和磷肥(过磷酸钙50 kg·hm-2, 各处理施入磷肥总量一致)于耕作前作为基肥一次性施用(均匀撒施后旋耕20 cm), 尿素按1∶1的比例分基肥和拔节肥2次施, 施肥方式以及相关农艺管理措施每年均保持一致.

表 2 试验设计 Table 2 Design of experimental

1.3 样品采集与测定方法 1.3.1 土样采集

土壤取样在2020年7月5日, 于玉米拔节期(此时期土壤环境适宜, 能较好表征土壤硝化反硝化相关过程)采样(0~20 cm), 采用“S”形取样法采集土样, 混匀并过2 mm筛后装入袋内(约1 kg).带回室内分2部分储存, 一部分用于土壤微生物测定分析(-20℃冰箱储存); 另一部分用于土壤理化性质测定及相关室内试验(-4℃冰箱储存).

1.3.2 土壤理化性质测定

土壤孔隙充水率由公式(1)计算所得, 土水比1∶5浸提液测定土壤(0~20 cm)pH及EC值.采用重铬酸钾容量法-外加热法测定土壤有机质.采用浓H2SO4消煮, 半微量凯氏定氮仪测定土壤全氮; 土壤NO3--N和NH4+-N采用2 mol·L-1 KCl浸提后, 在连续流动分析仪上分析; 土壤可溶性有机碳(DOC)利用0.5 mol·L-1 K2SO4去离子水, 在25℃下恒温振荡30 min, 用可溶性有机碳分析仪(Analytik Jena, Germany)测定[43].

土壤孔隙充水率(WFPS)计算公式为:

(1)

式中, WS为土壤重量含水量(由烘干法测得), SBD为土壤容重(g·cm-3), 土壤密度假定为2.65 g·cm-3.

1.3.3 硝化潜势和恢复硝化强度测定

硝化潜势(nitrification potential, NP)和恢复硝化强度(recovered nitrification potential, RNP)参考Taylor等[44]的方法.其中硝化潜势测定方法为称取5 g土壤鲜样, 将其加入50 mL液体培养基(1.5 mmol·L-1 NH4+), 180 r·min-1, 在30℃下恒温振荡48 h, 期间共5次采样(分别于振荡6、12、24、36和48 h采样), 每次吸取4 mL, 后将所取悬浮液离心10 min, 测定上清液NO3--N和NO2--N浓度, 用单位时间内产生的NO3--N和NO2--N总量来表征土壤硝化势.

RNP具体测定方法为: 称取两组5 g土壤鲜样分别加入两组120 mL培养瓶中, 将50 mL 1.5 mmol·L-1 NH4+液体注入培养基, 然后将体积分数为0.025%的乙炔注入其中, 在30℃下, 恒温振荡6 h后抽去乙炔.其中一组添加浓度为800 μg·mL-1的卡那霉素(Kanamycin)和浓度为200 μg·mL-1大观霉素(Spectinomycin)来抑制AOB中AMO的合成.每间隔12 h测一次硝化势, 共测4次.其中添加抑制剂测的是AOA的硝化势(RNPAOA), 另一组则为总的硝化势(RNPTotal), AOB的硝化势(RNPAOB)为RNPTotal-RNPAOA.

1.3.4 反硝化能力和土壤呼吸测定

反硝化能力测定参考Šimek等[45]的方法, 具体为: 取两份10 g鲜土, 分别放入两组培养瓶(120 mL)中, 随后加入浓度为10 mmol·L-1的KNO溶液4 mL, 加盖密封后用氦气反复冲洗4次.并在其中一组培养瓶中注入10 mL乙炔(另一组则不注入)进行培养, 用装有少量水、没有活塞的注射器插入瓶塞, 来平衡注乙炔的培养瓶内气压.在培养24 h和48 h后, 分别取5 mL气体用气相色谱仪(美国, GC-7890A)测定N2O和CO2浓度.反硝化能力由添加乙炔的培养瓶N2O气体变化率来表征, 代表反硝化总量(N2O+N2)产生率; 反硝化过程N2O排放率则由另一组培养瓶N2O气体变化量表征.

1.3.5 DNA提取及定量PCR检测

土壤DNA根据制造商的要求使用分离试剂盒(MoBio, Carlsbad, 美国)提取.选择A26F(5′-GACTACATMTTCTAYACWGAYTGGGC-3′)/A416R(5′-GGKGTCATRTATGGWGGYAAYGTTGG-3′)[46], amoA-1F(5′-GGGGTTTCTACTGGTGGT-3′)/amoA-2R(5′-CCCCTCKGSAAAGCCTTCTTC-3′)[47], F1aCu(5′-ATCATGGTSCTGCCGCG-3′)/R3Cu(5′-GCCT CGATCAGRTTGTGGTT-3′)[48], cd3af(5′-GTSAAC GTSAAGGARACSGG-3′)/R3cd(5′-GASTTCGGRTG SGTCTTGA-3′)[49], nosZ-F(5′-CGYTGTTCMTCG ACAGCCAG-3′)/nosZ-R(5′-CGSACCTTSTTGCCSTY GCG-3′)[50]为引物分别扩增Arch-amoA、Bac-amoAnirKnirSnosZ. PCR反应体系包括10 μL 2×SYBR Premixture、10 μmol·L-1前后引物各0.4 μL以及稀释后的DNA模板2 μL, 最终用ddH2O补齐至20 μL.硝化反硝化基因标准曲线的R2值均达到0.99以上, 扩增效率在92%~99%.

1.4 数据分析方法

数据用IBM SPSS 20.0软件进行分析, 图表由Origin 2018绘制.

2 结果与分析 2.1 有机无机氮配施对土壤理化性状的影响

表 3可知, 同一盐渍化程度土壤, 各处理表层土壤WFPS、EC和pH差异并不显著.土壤全氮和硝态氮含量随着有机氮比例增加呈先升后降的趋势, 其中以U1O1最大, 而土壤铵态氮则呈现出相反的趋势.土壤有机质、全氮以及可溶性有机碳含量基本呈现出随着有机氮比例增加而增加的态势; S2土壤, 土壤基础肥力基本表现出随着有机氮施入比例增加而增加的趋势.可以看出, S1和S2盐渍土配施有机氮均可以提高土壤基础肥力, 但在不同盐分条件下会产生不同供氮特征.

表 3 不同处理对土壤理化性状的影响1) Table 3 Effects of the different treatments on soil physical and chemical properties

2.2 有机无机氮配施对AOB和AOAamoA基因丰度的影响

图 1可知, 土壤盐渍化程度增加会抑制氨氧化菌活性, 同一处理S2土壤AOB amoA基因丰度较S1土壤降低1.46~1.80倍, 而AOA amoA基因丰度高出1.19~2.05倍.在不同程度盐渍化土壤中, 各处理AOB amoA基因丰度均高于AOA amoA, 各施肥处理AOB/AOA amoA值为7.29~46.03倍.与不施氮相比, 施入氮肥会增加AOB amoA基因拷贝数而大量减少AOA amoA基因拷贝数.

不同小写字母表示同一盐渍化土壤各处理AOB和AOA在P < 0.05水平下差异显著 图 1 不同处理AOB和AOA丰度变化 Fig. 1 Abundances of AOB and AOA with the different treatments

有机无机氮配施比例对不同程度盐渍化土壤氨氧化菌基因丰度影响存在差异.在S1土壤, 随着有机氮施入比例增加, AOB amoA基因拷贝数呈先升后降的趋势, 以U1O1处理最大, 较其余施肥处理显著高出4.71%~62.67%(与U1O3处理不显著, P<0.05).配施有机氮会降低土壤AOA amoA基因丰度, U1处理显著高于其它配施有机氮处理(P<0.05). S2土壤则表现出随着有机氮施入比例增加AOB amoA基因基拷贝数逐渐增加的趋势, O1处理AOB amoA基因基拷贝数较其余施肥处理高出6.40%~66.98%(P<0.05), 而有机无机氮配施对AOA amoA基因丰度影响不显著.

2.3 有机无机氮配施对AOB及AOA硝化贡献率的影响

图 2可知, 高盐度对土壤恢复硝化强度也有明显的抑制作用, 相同处理下S1土壤恢复硝化强度较S2土壤高出27.72%~74.89%.施氮对S1土壤恢复硝化强度提高较大, 而对S2土壤恢复硝化强度提升作用相对较小, S1和S2土壤各施肥处理土壤恢复硝化强度较CK处理分别高出40.95%~87.53%和2.93%~52.86%. 在S1土壤, 各施氮处理AOB硝化潜势贡献率为63.81%~77.70%, S2土壤AOB硝化潜势贡献率相对较小, 但仍然达到55.67%~59.59%.可见硝化细菌在盐渍化土壤氮素转化过程占十分重要的地位, 但随着土壤盐分增大而有所减弱.

不同小写字母表示同一盐渍化土壤AOB和AOA在恢复硝化强度中的贡献差异显著(P < 0.05), 不同大写字母表示同一盐渍化土壤恢复硝化强度差异显著(P < 0.05); 堆叠柱形中斜线柱子(RNPAOB)和白色柱子(RNPAOA)分别表示同一盐渍化土壤AOB和AOA在恢复硝化强度(RNP)中的贡献, 其和即为恢复硝化强度(RNP) 图 2 不同处理氨氧化细菌和古菌硝化贡献率变化 Fig. 2 Relative contributions of AOB and AOA abundances with the different treatments

与单施化肥相比, S1土壤配施有机氮会降低AOA的硝化贡献率, U1处理较其余施氮处理高出8.69%~21.97%, 但施入有机氮会显著增加AOB的硝化贡献率, 其中以U1O1处理最大, 较U1处理高出62.00%(P<0.05).S2土壤表现出随着有机氮施入比例增加AOB硝化贡献率增大的趋势, O1处理AOB硝化贡献率较单施化肥高出60.64%, 而各处理之间AOA硝化贡献率无显著差异.

2.4 有机无机氮配施对硝化势的影响

图 3可知, 高盐度会抑制土壤硝化潜势, 相同处理下S1土壤硝化潜势较S2土壤高出28.81%~69.67%.与不施氮相比, 各有机无机氮配施处理均可以提高土壤硝化潜势, 在S1土壤, 土壤硝化潜势较低, 随有机氮施入比例的增加呈先升后降的趋势, 其中以U1O1处理最大, 较单施化肥显著高出18.59%(P<0.05), 但与U1O1和O1处理之间差异并不显著.在S2土壤, 土壤硝化潜势呈现出随有机氮施入比例增加而降低的趋势, 但各处理之间差异并不显著(除U1外).

不同小写字母表示同一盐渍化土壤各处理硝化潜势在P < 0.05水平下差异显著 图 3 不同处理土壤硝化势变化 Fig. 3 Nitrification potential with the different treatments

2.5 有机无机氮配施对土壤反硝化能力、N2O/(N2O+N2)和土壤呼吸的影响

图 4可知, 高盐度对土壤反硝化能力有促进作用, 但会抑制土壤呼吸, 相同处理下S2土壤反硝化能力较S1土壤提高17.16%~88.91%, 而土壤呼吸降低了17.67%~75.29%.在S1土壤, 随着有机氮投入比例增加, 土壤反硝化能力和土壤呼吸均呈先升后降的趋势, 其中U1O1处理土壤反硝化能力和土壤呼吸最大, 较其余施氮处理分别高出15.28%~44.07%和15.87%~55.21%(P<0.05).在S2土壤, 随着有机氮投入量增加, 土壤反硝化能力和土壤呼吸都呈增加的趋势, 其中以O1处理土壤反硝化能力和土壤呼吸最高, 较其余施氮处理分别高出11.60%~88.26%和4.04%~60.44%(与U1O3处理不显著, P<0.05).

不同小写字母表示同一盐渍化土壤各处理反硝化能力和土壤呼吸在P < 0.05水平下差异显著 图 4 不同处理土壤反硝化能力和土壤呼吸变化 Fig. 4 Denitrification capacity and soil respiration with the different treatments

图 5可知, 土壤盐度升高会提高土壤N2O/(N2O+N2)产物比, 而施氮则会降低N2O/(N2O+N2)产物比.在S1土壤, CK、U1和U3O1处理之间N2O/(N2O+N2)产物比无显著差异, 但均显著高于其余处理. S2土壤则表现出有机氮投入量越大N2O/(N2O+N2)产物比越小的态势.

不同小写字母表示同一盐渍化土壤N2O/(N2O+N2)产物比在P < 0.05水平下差异显著 图 5 不同处理土壤N2O/(N2O+N2)变化 Fig. 5 N2O/(N2O+N2)ratios with the different treatments

2.6 有机无机氮配施对土壤反硝化菌群丰度的影响

图 6可以看出, S1和S2土壤nosZ基因数量均显著高于nirKnirS(P<0.05), 前者比后者要高出1~2个数量级.土壤盐度升高会提高土壤nirKnirS的基因丰度, 但会降低土壤nosZ基因丰度, 相同处理下S2土壤nirKnirSnosZ基因拷贝数较S1土壤分别高出27.59%~76.11%、7.86%~142.25%和-44.98%~-28.49%.施肥会显著提高土壤反硝化基因拷贝数, 但有机无机氮配施对不同反硝化基因丰度影响不一, 随着有机肥投入量加大, S1和S2土壤nirK基因拷贝数均呈降低的趋势[图 6(a)].nirSnosZ基因丰度变化趋势基本一致, 在S1土壤表现出随着有机氮施入比例增加nirSnosZ基因拷贝数呈先升后降的趋势, 其中以U1O1处理最大, 而在S2土壤则表现出随着有机氮投入量增大而增加的趋势.

不同小写字母表示同一盐渍化土壤各处理nirKnirSnosZ拷贝数在P < 0.05水平下差异显著 图 6 不同处理nirKnirSnosZ基因拷贝数变化 Fig. 6 nirK, nirS, and nosZ copies with the different treatments

2.7 相关性分析

表 4表 5为土壤微生物相关参数与土壤理化性质相关性分析结果, 可以看出, S1和S2土壤AOA与各土壤肥力要素均呈极显著负相关关系(P<0.01), 而AOB与各土壤肥力要素呈极显著正相关关系(除S1土壤AOB与铵态氮相关性不显著, P<0.01). S1和S2土壤硝化潜势与AOA均呈极显著负相关关系(P<0.01). S1土壤硝化潜势与AOB呈极显著正相关关系(P<0.01), 而与AOA呈极显著负相关关系(P<0.01). S2土壤硝化潜势与AOB相关性并不显著(P>0.05), 而与AOA呈极显著正相关(P<0.01).

表 4 S1土壤不同处理测定变量间相关性分析1) Table 4 Correlation analysis among measured variables in different treatment in the S1 soil

表 5 S2土壤不同有机无机肥配施测定变量间相关性分析 Table 5 Correlation analysis among measured variables in different treatment in the S2 soil

S1和S2土壤反硝化能力与土壤呼吸呈极显著正相关关系(P<0.01), 同时二者也与nirK(S2土壤不显著)、nirSnosZ呈极显著正相关(P<0.01), 反硝化能力与各土壤肥力要素均呈极显著正相关(P<0.01), 而与N2O/(N2O+N2)产物比呈极显著负相关关系(P<0.01).

3 讨论 3.1 有机无机氮配施对氨氧化微生物、硝化贡献率及硝化潜势的影响

有研究表明, 盐分是影响AOA和AOB生长的关键因素[51].本研究通过连续3 a定位试验后发现, 相同处理下, 中度盐渍化土壤AOB amoA 硝化基因丰度较轻度盐渍化土壤显著降低, 而AOA amoA基因丰度却呈现出增大的趋势(图 1).Jin等[52]的研究也发现, 盐度增加会抑制土壤AOB丰度, 而Zhang等[22]的研究却发现AOB丰度对土壤盐度并不敏感.前人对于AOA的研究结果也各有不同, Wang等[53]的研究表明, 盐分对AOA的影响并不显著.也有学者发现, 在中等盐分条件下土壤AOA丰度最大[22, 54].可以看出, 在不同试验条件下, 盐分对AOA和AOB的影响结果各不相同, 这些矛盾的结果可能是因为自然环境复杂多变, 导致AOA和AOB这两种不同种类的微生物对盐分的响应不一[55].

有研究发现, AOA在酸性和低氮含量环境中起着更重要的作用(< 15 μg·g-1, 以NH4+-N/dw soil计)[56, 57], Wang等[58]的研究也证明AOA仅在低铵态氮环境中增长.本研究中, 在每个处理中都添加了等量氮肥, 较高氮素含量和碱度条件可能是AOA增长的限制因素, 导致AOB较AOA高出7.23~46.29倍.同时, 相关性显示, AOA和AOB分别与土壤氮素呈显著负相关(P<0.05)和极显著正相关(P<0.01)关系, 这也证明施肥对土壤AOB提升更为有利, 而对土壤AOA则会产生负效应.有机无机氮配施对不同程度盐渍化土壤AOB和AOA的影响存在显著差异, 在轻度盐渍化土壤, 以有机无机氮各半配施土壤AOB丰度最大, 而中度盐渍化土壤则以单施有机氮处理最大, 这是因为这2种处理对土壤养分提升程度最大, 而在高营养环境中, 更加利于AOB生长[59, 60].轻度和中度盐渍土均表现出尿素氮施入比例越大AOA基因丰度越大的趋势, 这可能由于AOA具有脲酶基因, 能够利用尿素增殖, 并通过尿素水解进行NH4+-N氧化作用有关[61].相关性分析表明, 土壤呼吸与AOA丰度呈极显著负相关关系(P<0.01), 这是因为AOA在低CO2环境下更容易固定[62], 而尿素较有机肥产生的CO2更少, 这可能也是增大无机氮施入比例AOA增殖的原因.

有研究表明, 耕地中AOB对于硝化作用的贡献要更大[58], 本研究对硝化贡献率的测定结果也表明, 轻度和中度盐渍化土壤AOB的硝化贡献率达到了55.67%~77.70%, 这可能是由于AOB较AOA丰度更大所致.中度盐渍土AOA的硝化贡献率较轻度盐渍土有所增加, 这也证明在本研究条件下AOA对于盐分的耐受性要大于AOB.轻度盐渍化土壤各处理土壤硝化潜势显著高于中度盐渍化土壤, 这可能是因为轻度盐渍土AOB基因丰度较大的原因.此外, 有研究发现, 中度盐渍化土壤氨挥发也明显高于轻度盐渍化土壤[63], 这可能是由于盐分抑制了土壤AOB活性, 导致较多氮素以NH3形式存在而造成的.本研究表明, 施肥会显著提高土壤硝化潜势, 这与前人研究结果基本一致[64, 65].轻度盐渍土硝化潜势随着有机氮施入比例增加呈先升后降的趋势, 其中有机无机氮各半配施处理的硝化潜势最大, 这可能与该处理AOA与AOB之和在所有处理中最大有关.在中度盐渍化土壤, 各有机无机氮配施处理之间硝化潜势差异并不显著, 这可能是因为在盐分较高的条件下, 会提高AOA丰度而抑制AOB丰度, 且施入无机氮对AOA基因丰度提升较大, 因而会缩小各处理间硝化潜势的差异.

3.2 有机无机氮配施对反硝化能力及反硝化菌的影响

反硝化作用使N以N2O和N2的形式返回到大气中, 也显示出与盐度不同的关系[53]. Giblin等[23]的研究表明, 盐度升高会减少反硝化作用底物从而限制土壤反硝化作用进行.而本研究表明, 土壤盐度升高虽然会减少土壤硝酸盐, 但却会促进土壤反硝化作用的进行.一方面, 这可能是因为盐度增加会通过增强硝酸盐还原酶活性进而增加硝酸还原菌的丰度, 促进硝酸盐向亚硝酸盐的转化[66], 另一方面, 本研究发现土壤盐度升高会显著提高土壤nirKnirS基因丰度, 更加利于土壤反硝化进行.因此, 即使在中度盐渍化土壤硝酸盐较少的情况下, 其反硝化能力依然强于轻度盐渍化土壤.本研究还发现, 盐度增加会提高N2O/(N2O+N2)产物比, 这是因为nosZ基因丰度受盐分胁迫而显著减少, 抑制了N2O向N2还原而造成的.

有机肥带入的大量碳源为土壤反硝化微生物提供了丰富的电子供体, 从而对反硝化过程也可能产生影响.总体来看, 本研究轻度和中度盐渍土施入有机氮均会促进土壤反硝化过程进行.相关性分析表明, 土壤反硝化能力与可溶性有机碳呈极显著正相关, 说明土壤中可利用碳源是影响反硝化的重要原因, 这与前人研究结果基本一致[43, 65].同时, 本研究发现土壤呼吸与土壤反硝化能力存在极显著正相关, 说明适当的有机无机氮配施比例会促进土壤呼吸, 为反硝化过程提供低氧环境[67].

Akiyama等[68]的研究表明, 反硝化作用在有机肥料改良土壤中占主导优势, 这是因为有机氮施入对反硝化基因影响较大, 从而可能对反硝化能力产生一定影响.本研究表明, 配施有机氮会抑制土壤nirK反硝化菌生长, 这与王军等[69]的研究结果一致.而轻度和中度盐渍土配施有机氮均可以提高土壤nirSnosZ基因丰度, 分别以有机无机氮各半配施和单施有机氮最佳, 相关性分析表明, 除轻度盐渍土nirSnosZ与土壤铵态氮相关性不显著外, 轻度和中度盐渍土均与其它土壤肥力要素呈极显著正相关关系, 表明nirSnosZ型菌更喜欢营养元素丰富的环境.而Tatti等[65]的研究发现, 长期施入有机肥对nirK基因拷贝数也有明显的提升, 这可能与试验田土壤性质以及定位试验周期不同有关.此外, 轻度和中度盐渍土土壤反硝化能力均与nirSnosZ基因丰度呈极显著正相关, 而与nirK基因丰度相关性不显著.由此可见, 本试验条件下, nirSnosZ型菌在土壤反硝化过程中起主要驱动作用.反硝化作用不仅会造成氮肥损失, 而且产生的N2O会造成温室效应并破坏臭氧层.本研究发现, N2O/(N2O+N2)产物比与土壤nosZ基因拷贝数呈极显著负相关关系, 说明提高土壤nosZ基因拷贝数会显著减少N2O排放.因此, 在不同程度盐渍化土壤施入有机肥虽然会提高土壤反硝化损失, 但也会促进N2O还原为N2.

笔者通过前面的研究发现, 相比于NO3--N, 氮素以NH4+-N形式存在更加利于土壤N2O排放[70], 证明本研究区反硝化过程并不会产生较多的N2O.因此, 施入有机氮虽然会促进土壤反硝化作用进行, 但并不会显著增大氮素损失, 而适宜的有机无机氮配施利于土壤氨氧化微生物的生存, 从而缩短土壤硝化过程, 可以减少硝化-反硝化过程中N2O排放量.此外, 盐度较高可能抑制亚硝酸盐氧化菌活性, 导致施入无机氮较多的处理硝化过程停留在亚硝酸盐阶段, 可能增加土壤硝化-反硝化过程中土壤N2O排放.因此, 在未来的研究中, 有机无机肥配施对盐渍土亚硝酸盐氧化菌活性影响应该进一步探讨.

4 结论

(1) 土壤EC从0.62 dS·m-1升高至1.17 dS·m-1时, 土壤硝化势受到抑制, 显著减少了土壤AOB的丰度和硝化贡献率, 而有利于AOA硝化贡献率的增加; 盐度升高增强了土壤反硝化能力, 并促进nirKnirS型反硝化菌的生长, 而抑制nosZ基因丰度.

(2) 轻度盐渍土以有机无机氮各半配施(120 kg·hm-2无机氮+120 kg·hm-2有机氮)土壤硝化势及反硝化势最高, AOB基因丰度及硝化贡献率也达到最大值, 同时增大了nirSnosZ基因丰度.无机氮会增加AOA的丰度和硝化贡献率, 同时会提高nirK型反硝化菌基因丰度.

(3) 中度盐渍土各施肥处理对硝化势无显著影响, 同时对AOA丰度和硝化贡献率影响也较小.单施有机氮(240 kg·hm-2有机氮)可以显著提高AOB基因丰度, 硝化贡献率也达到最大值; 且增大了nirSnosZ基因丰度, 土壤反硝化势也显著增加, 而增施无机氮会提高nirK型反硝化菌基因丰度.

(4) 轻度盐渍土AOB在硝化作用中起主导作用, 盐度升高会提高AOA丰度及硝化贡献率, 中度盐渍土由AOB和AOA共同主导土壤硝化作用; 轻度和中度盐渍土反硝化作用均以nirSnosZ起主要驱动作用.

参考文献
[1] Osman K T. Saline and sodic soils[A]. In: Osman K T(Ed. ). Management of Soil Problems[M]. Cham: Springer International Publishing AG, 2018. 255-298.
[2] Irshad M, Honna T, Yamamoto S, et al. Nitrogen mineralization under saline conditions[J]. Communications in Soil Science and Plant Analysis, 2005, 36(11-12): 1681-1689. DOI:10.1081/CSS-200059116
[3] Abalos D, Jeffery S, Sanz-cobena A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture, Ecosystems & Environment, 2014, 189: 136-144.
[4] Allen DE, Kingston G, Rennenberg H, et al. Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils[J]. Agriculture, Ecosystems & Environment, 2010, 136(3-4): 209-217.
[5] Arrigo K R. Marine microorganisms and global nutrient cycles[J]. Nature, 2005, 437(7057): 349-355. DOI:10.1038/nature04159
[6] Hadrich J. Managing the economics of soil salinity in the Red River Valley of North Dakota[J]. Journal of the ASFMRA, 2012, 2012: 80-88.
[7] Thapa R, Wick A, Chatterjee A. Response of spring wheat to sulfate-based salinity stress under greenhouse and field conditions[J]. Agronomy Journal, 2017, 109(2): 442-454. DOI:10.2134/agronj2016.07.0384
[8] Céccoli G, Senn M E, Bustos D, et al. Genetic variability for responses to short-and long-term salt stress in vegetative sunflower plants[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(6): 882-890. DOI:10.1002/jpln.201200303
[9] Akhtar M, Hussain F, Ashraf M Y, et al. Influence of salinity on nitrogen transformations in soil[J]. Communications in Soil Science and Plant Analysis, 2012, 43(12): 1674-1683. DOI:10.1080/00103624.2012.681738
[10] Elgharably A, Marschner P. Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues[J]. European Journal of Soil Biology, 2011, 47(5): 310-315. DOI:10.1016/j.ejsobi.2011.07.005
[11] Walpola B C, Arunakumara K K I U. Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils[J]. Journal of Agricultural Sciences, 2010, 5(1): 9-18. DOI:10.4038/jas.v5i1.2319
[12] Chandra S, Joshi H C, Pathak H, et al. Effect of potassium salts and distillery effluent on carbon mineralization in soil[J]. Bioresource Technology, 2002, 83(3): 255-257. DOI:10.1016/S0960-8524(01)00230-9
[13] Nannipieri P, Ascher J, Ceccherini M T, et al. Microbial diversity and soil functions[J]. European Journal of Soil Science, 2017, 68(1): 12-26. DOI:10.1111/ejss.4_12398
[14] Wang Y F, Gu J D. Effects of allylthiourea, salinity, and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms[J]. Applied Microbiology and Biotechnology, 2014, 98(7): 3257-3274. DOI:10.1007/s00253-013-5399-3
[15] Emel S, Gerard M. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary[J]. FEMS Microbiology Ecology, 2008, 64(2): 175-186. DOI:10.1111/j.1574-6941.2008.00462.x
[16] Franklin R B, Morrissey E M, Morina J C. Changes in abundance and community structure of nitrate-reducing bacteria along a salinity gradient in tidal wetlands[J]. Pedobiologia, 2017, 60: 21-26. DOI:10.1016/j.pedobi.2016.12.002
[17] Fawcett S E, Lomas M W, Casey J R, et al. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea[J]. Nature Geoscience, 2011, 4(10): 717-722. DOI:10.1038/ngeo1265
[18] Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55(1): 485-529. DOI:10.1146/annurev.micro.55.1.485
[19] Cavagnaro T R, Jackson L E, Hristova K, et al. Short-term population dynamics of ammonia oxidizing bacteria in an agricultural soil[J]. Applied Soil Ecology, 2008, 40(1): 13-18. DOI:10.1016/j.apsoil.2008.02.006
[20] Zhou M H, Butterbach-Bahl K, Vereecken H, et al. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems[J]. Global Change Biology, 2017, 23(3): 1338-1352. DOI:10.1111/gcb.13430
[21] Bernhard A E, Donn T, Giblin A E, et al. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system[J]. Environmental Microbiology, 2005, 7(9): 1289-1297. DOI:10.1111/j.1462-2920.2005.00808.x
[22] Jiang S Q, Yu Y N, Gao R W, et al. High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil[J]. Science of the Total Environment, 2019, 687(15): 601-609.
[23] Giblin A E, Weston N B, Banta G T, et al. The effects of salinity on nitrogen losses from an oligohaline estuarine sediment[J]. Estuaries and Coasts, 2010, 33(5): 1054-1068. DOI:10.1007/s12237-010-9280-7
[24] Henderson S L, Dandie C E, Patten C L, et al. Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues[J]. Applied and Environmental Microbiology, 2010, 76(7): 2155-2164. DOI:10.1128/AEM.02993-09
[25] Zhang L H, Zeng G M, Zhang J C, et al. Response of denitrifying genes coding for nitrite(nirK or nirS)and nitrous oxide(nosZ)reductases to different physico-chemical parameters during agricultural waste composting[J]. Applied Microbiology and Biotechnology, 2015, 99(9): 4059-4070. DOI:10.1007/s00253-014-6293-3
[26] Jones C M, Hallin S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities[J]. The ISME Journal, 2010, 4(5): 633-641. DOI:10.1038/ismej.2009.152
[27] Philippot L, Andert J, Jones C M, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil[J]. Global Change Biology, 2011, 17(3): 1497-1504. DOI:10.1111/j.1365-2486.2010.02334.x
[28] Miao Y, Liao R H, Zhang X X, et al. Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Chemical Engineering Journal, 2015, 277: 116-123. DOI:10.1016/j.cej.2015.04.125
[29] Zhai S Y, Ji M, Zhao Y X, et al. Shift of bacterial community and denitrification functional genes in biofilm electrode reactor in response to high salinity[J]. Environmental Research, 2020, 184. DOI:10.1016/j.envres.2019.109007
[30] Magalhães C, Bano N, Wiebe W J, et al. Dynamics of nitrous oxide reductase genes(nosZ)in intertidal rocky biofilms and sediments of the Douro River estuary(Portugal), and their relation to N-biogeochemistry[J]. Microbial Ecology, 2008, 55(2): 259-269. DOI:10.1007/s00248-007-9273-7
[31] Lim S J, Shin M N, Son J K, et al. Evaluation of soil pore-water salinity using a Decagon GS3 sensor in saline-alkali reclaimed tidal lands[J]. Computers and Electronics in Agriculture, 2017, 132: 49-55. DOI:10.1016/j.compag.2016.11.017
[32] Feng Z Z, Wang X K, Feng Z W. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China[J]. Agricultural Water Management, 2005, 71(2): 131-143. DOI:10.1016/j.agwat.2004.07.001
[33] 杜军, 杨培岭, 李云开, 等. 基于水量平衡下灌区农田系统中氮素迁移及平衡的分析[J]. 生态学报, 2011, 31(16): 4549-4559.
Du J, Yang P L, Li Y K, et al. Nitrogen balance in the farmland system based on water balance in Hetao irrigation district, Inner Mongolia[J]. Acta Ecologica Sinica, 2011, 31(16): 4549-4559.
[34] Wei W, Isobe K, Shiratori Y, et al. N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer[J]. Soil Biology and Biochemistry, 2014, 69: 157-167. DOI:10.1016/j.soilbio.2013.10.044
[35] Tejada M, Garcia C, Gonzalez J L, et al. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil[J]. Soil Biology and Biochemistry, 2006, 38(6): 1413-1421. DOI:10.1016/j.soilbio.2005.10.017
[36] López-Valdez F, Fernández-Luqueño F, Luna-Guido M L, et al. Microorganisms in sewage sludge added to an extreme alkaline saline soil affect carbon and nitrogen dynamics[J]. Applied Soil Ecology, 2010, 45(3): 225-231. DOI:10.1016/j.apsoil.2010.04.009
[37] Fan F L, Yang Q B, Li Z J, et al. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community[J]. Microbial Ecology, 2011, 62(4): 982-990. DOI:10.1007/s00248-011-9897-5
[38] Xun W B, Zhao J, Xue C, et al. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China[J]. Environmental Microbiology, 2016, 18(6): 1907-1917. DOI:10.1111/1462-2920.13098
[39] Mavi M S, Sanderman J, Chittleborough D J, et al. Sorption of dissolved organic matter in salt-affected soils: Effect of salinity, sodicity and texture[J]. Science of the Total Environment, 2012, 435-436: 337-344. DOI:10.1016/j.scitotenv.2012.07.009
[40] Shen W S, Xu T T, Liu J J, et al. Long-term application of organic manure changes abundance and composition of ammonia-oxidizing archaea in an acidic red soil[J]. Soil Science and Plant Nutrition, 2015, 61(4): 620-628. DOI:10.1080/00380768.2015.1023687
[41] Thangarajan R, Bolan N S, Tian G L, et al. Role of organic amendment application on greenhouse gas emission from soil[J]. Science of the Total Environment, 2013, 465: 72-96. DOI:10.1016/j.scitotenv.2013.01.031
[42] Cui P Y, Fan F L, Yin C, et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes[J]. Soil Biology and Biochemistry, 2016, 93: 131-141. DOI:10.1016/j.soilbio.2015.11.005
[43] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[44] Taylor A E, Zeglin L H, Wanzek T A, et al. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials[J]. The ISME Journal, 2012, 6(11): 2024-2032. DOI:10.1038/ismej.2012.51
[45] Šimek M, Kal Dč ík J. Carbon and nitrate utilization in soils: the effect of long-term fertilization on potential denitrification[J]. Geoderma, 1998, 83(3-4): 269-280. DOI:10.1016/S0016-7061(98)00002-0
[46] Park S J, Park B J, Rhee S K. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments[J]. Extremophiles, 2008, 12(4): 605-615. DOI:10.1007/s00792-008-0165-7
[47] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712. DOI:10.1128/aem.63.12.4704-4712.1997
[48] Hallin S, Lindgren P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria[J]. Applied and Environmental Microbiology, 1999, 65(4): 1652-1657. DOI:10.1128/AEM.65.4.1652-1657.1999
[49] Zhou Z F, Zheng Y M, Shen J P, et al. Response of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil[J]. Environmental Science and Pollution Research, 2011, 18(9): 1644-1652. DOI:10.1007/s11356-011-0482-8
[50] Kloos K, Mergel A, Rösch C, et al. Denitrification within the genus Azospirillum and other associative bacteria[J]. Australian Journal of Plant Physiology, 2001, 28(9): 991-998.
[51] Min W, Guo H J, Zhang W, et al. Irrigation water salinity and N fertilization: Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton field[J]. Journal of Integrative Agriculture, 2016, 15(5): 1121-1131. DOI:10.1016/S2095-3119(15)61158-3
[52] Jin T, Zhang T, Ye L, et al. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary[J]. Applied Microbiology and Biotechnology, 2011, 90(3): 1137-1145. DOI:10.1007/s00253-011-3107-8
[53] Wang H T, Gilbert J A, Zhu Y G, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment[J]. Science of the Total Environment, 2018, 631-632: 1342-1349. DOI:10.1016/j.scitotenv.2018.03.102
[54] Zhang Y, Chen L J, Dai T J, et al. The influence of salinity on the abundance, transcriptional activity, and diversity of AOA and AOB in an estuarine sediment: a microcosm study[J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9825-9833. DOI:10.1007/s00253-015-6804-x
[55] Santos J P, Mendes D, Monteiro M, et al. Salinity impact on ammonia oxidizers activity and amoA expression in estuarine sediments[J]. Estuarine, Coastal and Shelf Science, 2018, 211: 177-187. DOI:10.1016/j.ecss.2017.09.001
[56] Pester M, Rattei T, Flechl S, et al. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14(2): 525-539. DOI:10.1111/j.1462-2920.2011.02666.x
[57] Li Y Y, Chapman S J, Nicol G W, et al. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 2018, 116: 290-301. DOI:10.1016/j.soilbio.2017.10.023
[58] Wang Q, Zhang L M, Shen J P, et al. Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils[J]. Biology and Fertility of Soils, 2016, 52(8): 1163-1171. DOI:10.1007/s00374-016-1151-3
[59] Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions[J]. FEMS Microbiology Ecology, 2010, 72(3): 386-394. DOI:10.1111/j.1574-6941.2010.00861.x
[60] Pratscher J, Dumont M G, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 4170-4175. DOI:10.1073/pnas.1010981108
[61] Lu L, Han W Y, Zhang J B, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. The ISME Journal, 2012, 6(10): 1978-1984. DOI:10.1038/ismej.2012.45
[62] Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266): 976-979. DOI:10.1038/nature08465
[63] 周慧, 史海滨, 徐昭, 等. 化肥有机肥配施对盐渍化土壤氨挥发及玉米产量的影响[J]. 农业环境科学学报, 2019, 38(7): 1649-1656.
Zhou H, Shi H B, Xu Z, et al. Effects of combined application of chemical and organic fertilizers on ammonia volatilization and maize yield in salinized soil[J]. Journal of Agro-Environment Science, 2019, 38(7): 1649-1656.
[64] Chu H Y, Fujii T, Morimoto S, et al. Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management[J]. Soil Biology and Biochemistry, 2008, 40(7): 1960-1963. DOI:10.1016/j.soilbio.2008.01.006
[65] Tatti E, Goyer C, Zebarth B J, et al. Short-term effects of mineral and organic fertilizer on denitrifiers, nitrous oxide emissions and denitrification in long-term amended vineyard soils[J]. Soil Science Society of America Journal, 2013, 77(1): 113-122. DOI:10.2136/sssaj2012.0096
[66] 刘浩荣, 宋海星, 刘强, 等. 喷施氯化钾对小白菜体内硝酸盐累积的影响[J]. 土壤, 2008, 40(2): 222-225.
Liu H R, Song H X, Liu Q, et al. Effect of spraying KCL solution on nitrate accumulation in the Chinese cabbage[J]. Soils, 2008, 40(2): 222-225.
[67] Chen Z, Hou H J, Zheng Y, et al. Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1064-1072. DOI:10.1002/jsfa.4533
[68] Akiyama H, McTaggart I P, Ball B C, et al. N2O, NO, and NH3 emissions from soil after the application of organic fertilizers, urea and water[J]. Water, Air, and Soil Pollution, 2004, 156(1): 113-129. DOI:10.1023/B:WATE.0000036800.20599.46
[69] 王军, 申田田, 车钊, 等. 有机和无机肥配比对黄褐土硝化和反硝化微生物丰度及功能的影响[J]. 植物营养与肥料学报, 2018, 24(3): 641-650.
Wang J, Shen T T, Che Z, et al. Effects of combination of organic and inorganic fertilizers on abundances of nitrifiers and denitrifiers and their function in yellow-cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 641-650.
[70] 周慧, 史海滨, 郭珈玮, 等. 有机无机肥配施对不同程度盐渍土N2O排放的影响[J]. 环境科学, 2020, 41(8): 3811-3821.
Zhou H, Shi H B, Guo J W, et al. Effects of the combined application of organic and inorganic fertilizers on N2O emissions from saline soil[J]. Environmental Science, 2020, 41(8): 3811-3821.