环境科学  2021, Vol. 42 Issue (10): 4864-4871   PDF    
同步短程硝化-厌氧氨氧化-短程反硝化颗粒污泥培育过程及其性能
周锋1, 刘勇弟1,2,3, 厉巍1,2,3     
1. 华东理工大学资源与环境工程学院, 高浓度难降解有机废水处理技术国家工程实验室, 上海 200237;
2. 华东理工大学资源与环境工程学院, 国家环境保护化工过程环境风险评价与控制重点实验室, 上海 200237;
3. 上海污染控制与生态安全研究院, 上海 200092
摘要: 本研究以低碳氮比废水为基质,厌氧氨氧化污泥优配普通活性污泥为接种物,在新型气升式内循环反应器中培育同步短程硝化-厌氧氨氧化-短程反硝化颗粒污泥.结果表明,经过225 d的连续运行可培育成熟稳定的颗粒污泥,其总氮去除率高达91.4%.相较于絮状污泥,颗粒污泥中厌氧氨氧化活性显著增加,并且厌氧氨氧化活性在4个脱氮过程中活性最大,其次是短程硝化,且短程反硝化比活性是亚硝酸盐还原比活性的2.1倍.高通量测序结果表明,颗粒污泥中短程硝化和厌氧氨氧化的优势菌分别为NitrosomonasCandidatus_Brocadia,并相较于絮状污泥,它们的丰度分别增加至0.70%和0.57%.Thauera可能是颗粒污泥中潜在的短程反硝化优势菌,其丰度达到0.26%.RT-qPCR分析结果表明,相比接种阶段,短程硝化的功能基因amoAhao转录水平分别增加了3.5和1.5倍,厌氧氨氧化功能基因hzsA转录水平增加了2.1倍,短程反硝化过程中napAnarG转录水平增加的倍数之和是nirKnirS的倍数之和的4.8倍.本研究结果将为处理低碳氮比废水提供新的思路.
关键词: 颗粒污泥      短程硝化      厌氧氨氧化      短程反硝化      微生物群落结构     
Cultivation and Performance Analysis of Simultaneous Partial Nitrification, ANAMMOX, and Denitratation Granular Sludge
ZHOU Feng1 , LIU Yong-di1,2,3 , LI Wei1,2,3     
1. National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China;
3. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
Abstract: We cultivated simultaneous partial nitrification, anaerobic ammonium oxidizing(ANAMMOX), and denitratation granular sludge in a novel air-lift internal circulation reactor using low C/N wastewater as the substrate and ANAMMOX sludge matched with ordinary activated sludge as the inoculum. The results showed that the mature and stable granular sludge could be cultivated after 225 d of continuous operation, and the total nitrogen removal rate was as high as 91.4%. Compared with flocculated sludge, the ANAMMOX activity in the granular sludge increased significantly, and the ANAMMOX activity was highest among the four nitrogen removal processes followed by partial nitrification, and the specific denitratation activity was 2.1-times higher than the specific nitrite reduction activity. High-throughput sequencing results showed that the dominant bacteria in partial nitrification and ANAMMOX were Nitrosomonas and Candidatus_Brocadia, respectively, compared to flocculated sludge, with abundances increasing to 0.70% and 0.57%, respectively. Thauera may also be the potential dominant bacteria for denitratation, with an abundance of up to 0.26%. RT-qPCR analysis showed that compared to the inoculation stage, the transcript levels of the amoA and hao genes for partial nitrification increased 3.5-and 1.5-fold, respectively, and the transcript levels of the hzsA gene for ANAMMOX increased 2.1-fold. During denitrataion, the overall abundance of napA and narG transcript levels was 4.8-times higher than that of nirK and nirS. The results of this study provide new insights for the treatment of low C/N wastewater.
Key words: granular sludge      partial nitrification      ANAMMOX      denitratation      structure of microbial community     

开发结构紧凑, 占地面积小的高效生物反应器是未来污水处理领域的重要研究方向[1].同普通絮体污泥相比, 颗粒污泥具有密度大、强度高和沉降性突出等优点[2, 3].这使得基于颗粒污泥的反应器可保有较高的生物量, 因而能够承受较高浓度的污染物和有毒物质的冲击, 同时能够使水处理构筑物具有紧凑的结构, 较小的体积和占地面积[4, 5].因此, 基于颗粒污泥的废水生物处理技术一直是环境工程水处理领域的研究热点.

自20世纪70年代, 厌氧颗粒化技术已经在许多污水处理厂中应用, 并已成功证明其去除有机物的可行性和高效性[6].基于序批式反应器技术的发展, 为好氧脱氮颗粒污泥的研发带来革新动力.大量研究证明, 好氧脱氮颗粒污泥能够实现同时降解有机底物、营养物和磷[7].厌氧氨氧化(anaerobic ammonium oxidizing, ANAMMOX)的发现刺激了第3种重要的颗粒污泥技术的发展.ANAMMOX是以氨为电子供体、亚硝酸盐为电子受体产生氮气的微生物反应[8].以该反应为基础的ANAMMOX工艺是一种崭新的废水生物脱氮工艺, 可同时去除氨和亚硝酸两种氮素污染物[9].有研究发现ANAMMOX颗粒污泥的UASB反应器中, 脱氮负荷可达到77 kg ·(m3·d)-1[5].另外, 该技术由于其具有能耗低、无需外加有机碳源、污泥产量低等优势被誉为最具前景的污水处理工艺[10].然而, 工业废水往往具有高浓度氨氮(200~5 000 mg·L-1)[11]会使ANAMMOX过程的硝酸盐副产物浓度过高, 占进水总无机氮10%[12], 无法满足总氮的纳管标准(70 mg·L-1).因此, 对于具有低碳高氮(氨氮)特征的工业废水完全脱氮的要求, 单一ANAMMOX工艺往往无法满足废水处理总氮达标的要求, 它不仅依赖亚硝氮供应源且会产生硝氮副产物.因此, 研发配套工艺是实现ANAMMOX工艺应用的必由之路.

短程硝化-厌氧氨氧化工艺和短程反硝化-厌氧氨氧化工艺是两种基于ANAMMOX典型的脱氮工艺, 但它们仍存在着硝态氮副产物导致总氮超标和工艺流程复杂等问题[12~14].Li等[15]在2020年首次证明了在单个反应器中实现短程硝化-厌氧氨氧化耦合短程反硝化-厌氧氨氧化工艺的可行性.但其在序批式反应器(sequencing batch reactor, SBR)中运行仍存在自动化控制要求高以及操作流程复杂等问题.因此, 本研究在连续流态下, 以低碳氮比废水为基质, 厌氧氨氧化污泥优配普通活性污泥为接种物, 在新型气升式内循环反应器中培育同步短程硝化(提供亚硝氮)、短程反硝化(消除硝氮)和厌氧氨氧化这3种过程的颗粒污泥, 并解析其污泥特性及微生物群落结构, 以期为颗粒污泥技术处理低碳氮比废水提供技术支持.

1 材料与方法 1.1 实验装置和运行条件

本实验装置是由聚乙烯复合材料制成的新型气升式内循环生物反应器(自主研发), 有效体积11 L(高度为1 m, 直径为0.13 m), 其装置如图 1所示.通过蠕动泵连续进水, 通过曝气来提供溶解氧(dissolved oxygen, DO)和带动基质向上运动, 其中废水由微好氧区进入, 经上部的沉淀区再到限氧区, 反应液自循环, 最后从上部的沉淀区出水.

1.进水桶; 2.进水泵; 3.空气泵; 4.气体流量计; 5.微好氧区; 6.沉淀区; 7.限氧区; 8.出水桶 图 1 新型气升式内循环生物反应器装置示意 Fig. 1 Schematic diagram of the novel air-lift internal circulation reactor

该反应器接种污泥为200 mL厌氧氨氧化污泥(本实验室稳定运行ANAMMOX反应器[16])和1 000 mL活性污泥(长桥污水处理厂)的混合污泥(图 2).进水采用模拟废水, NH4+-N、COD(醋酸钠)和KHCO3浓度分别维持在100、300和1 000 mg ·L-1, 此外其他的矿物盐培养基和适量微量元素配方见文献[17]. 污泥浓度大约为2 g ·L-1, 温度控制为(30±1)℃, 进水pH为7.0~8.0, 水力停留时间(HRT)为6.6 h, 微好氧区和限氧区的DO分别在0.5~1.0 mg ·L-1和0.2~0.5 mg ·L-1.此外, 反应器运行分为两个阶段, 阶段Ⅰ为污泥驯化阶段(1~109 d)和阶段Ⅱ为颗粒成型阶段(110~245 d), 其对应两个阶段的曝气强度分别在0.2~0.9 L ·min-1和1.0~1.1 L ·min-1.定期采集进出水, 测定NH4+-N、NO2--N、NO3--N和COD浓度.使用注射器采集混合液样品, 并立即通过一次性Millipore过滤膜(孔径为0.22 μm)过滤, 其测定方式依照标准方法[18].

图 2 接种的混合污泥形态 Fig. 2 Morphology of the inoculated sludge

1.2 污泥形貌特性和比活性实验

污泥的粒径采用马尔文粒度测定仪器(Malvern 3000)测定.污泥的形态采用Hitachi SU-8010型扫描电镜观察.为了获得不同阶段的污泥脱氮速率, 对阶段Ⅰ中絮状污泥(第65 d)和阶段Ⅱ中的颗粒污泥(第225 d)做比活性实验.分别测定两个阶段中的短程硝化比活性(SAOA)、亚硝酸盐氧化比活性(SNOA)、厌氧氨氧化比活性(SAA)、短程反硝化比活性(SDAA)和亚硝酸盐还原比活性(SNRA), 其方法见文献[19, 20].

1.3 微生物分析

使用FastDNA®SPIN试剂盒(MP Biomedicals, 美国)和RNAiso Plus试剂盒(Takara, 中国)分别从污泥样品中提取DNA和RNA.然后分别使用QuantiFluorTM-ST荧光仪(Promega, 美国)和Quawell Q3000紫外分光光度计(Quawell, 美国)评估提取的总DNA和RNA的质量和数量.纯化的总RNA用于cDNA合成, 并使用PrimeScriptTMRT Master Mix(Takara, 中国)进行合成.表 1列出了用于扩增16S rRNA基因和脱氮功能基因的引物.所有PCR反应均在10 μL反应混合物中进行, 其中包括5 μL的2×TB Green Premix Ex Taq Ⅱ(Tli RNaseH Plus), 0.4 μL的每种引物, 0.2 μL的50×ROX参考染料, 1 μL的模板DNA和3 μL的蒸馏水.循环参数如下: 95℃变性3 min, 95℃变性20 s, 55℃变性30 s, 72℃变性30 s, 循环40次.将PCR扩增子发送至上海美吉生物医药科技有限公司(中国, 上海)进行Illumina高通量测序和QIIME分析[21].

表 1 引物的寡核苷酸序列 Table 1 Oligonucleotide sequences of the primers

2 结果与讨论 2.1 颗粒污泥培育过程

本文采用絮状普通活性混合厌氧氨氧化污泥作为接种物(图 2), 进行驯化培育历经两个阶段, 阶段Ⅰ为驯化阶段(1~109 d)和阶段Ⅱ为稳定阶段(110~245 d).采用光学显微镜和粒径分析仪观察到了阶段Ⅰ(第65 d)和阶段Ⅱ(第225 d)的污泥样品的颗粒污泥形态, 结果如图 3所示.阶段Ⅰ污泥呈现絮体状态[图 3(a)], 通过160 d的运行培育后, 可观察到污泥表面存在丝状物并形成轮廓清晰的成熟颗粒[图 3(b)].同时阶段Ⅰ中污泥的平均粒径为0.18 mm, 阶段Ⅱ污泥的平均粒径高达1.22 mm, 已经远远大于0.20 mm[图 3(c)], 表明此阶段已形成颗粒污泥[24].采用扫描电镜(SEM)进一步地观察阶段Ⅱ的污泥形貌, 发现颗粒污泥表面结构致密[图 3(d1)], 且丝状细菌紧密包裹在颗粒表面[图 3(d2)], 并且增加放大倍率后可观察到颗粒污泥出现了形似火山口状的微生物[图 3(d3)], 该形貌被认为是厌氧氨氧化细菌特有的特征[25, 26].同时颗粒表面有大量缠结的丝状菌, 其可能在颗粒结构中起骨架作用[27].有研究发现丝状菌的缠绕可以促进颗粒污泥的形成[28].此外, 合理的曝气强度、好氧缺氧交替运行模式和反应器合理的高径比对颗粒污泥的形成有着重要的意义.He等[29]的研究发现, 在曝气强度为0.9~1.5 L ·min-1的环境下是有利于好氧颗粒污泥的形成.李冬等[30]采用缺氧/好氧交替连续流运行模式, 好氧颗粒污泥可实现稳定运行, 并且李冬等[31]的研究中发现当反应器高径比从3 ∶1增加至6 ∶1时, 将更有利于加速颗粒污泥形成以及增大其粒径.而本研究在曝气强度为1.0~1.1 L ·min-1时, 观察到颗粒污泥的形成, 同时新型反应器具备了微好氧(DO: 1.0 mg ·L-1)和限氧(DO: 0.5 mg ·L-1)交替运行的优势, 且其高径比更是高达8 ∶1.因而上述条件和措施均成为本研究能够实现成功培育颗粒污泥的重要措施.

(a)显微镜观察阶段Ⅰ颗粒的大小; (b)显微镜观察阶段Ⅱ颗粒的大小; (c)不同阶段的污泥平均粒径; (d1)~(d3)阶段Ⅱ成熟颗粒的SEM图像 图 3 污泥的形貌特性 Fig. 3 Profiles of sludge indices

通过反应器效能可发现, 在絮状污泥的阶段Ⅰ中, 其出水的平均TN高达48.5 mg ·L-1, 而在颗粒成型的阶段Ⅱ出水TN浓度低至8.6 mg ·L-1, 该出水浓度已满足当前中国最严格的污水综合排放标准(DB31/199-2018), 且出水COD也始终小于1.0 mg ·L-1(表 2).综上所述, 在长达245 d的连续流态运行下, 本文首次在单个反应器中成功培育出具备高效同步脱氮除碳的颗粒污泥且呈现较高的去除效率, 其TN去除率高达91.6%且COD去除率约为100%, 同时相较于其他不同类型反应器的效能, 本文所培育的颗粒污泥脱氮除碳效能是处于领先地位的(表 3).

表 2 新型反应器的运行性能 Table 2 Performance indicators of the novel reactor

表 3 比较不同反应器的脱氮除碳性能 Table 3 Comparisons of different reactors in nitrogen removal performance and COD removal performance

2.2 污泥比活性分析

为了进一步探析该反应器中颗粒污泥的脱氮速率, 分别对阶段Ⅰ和阶段Ⅱ中的污泥进行了比活性实验, 其结果如图 4所示.结果发现阶段Ⅱ的颗粒污泥的SAA远远大于阶段Ⅰ的絮状污泥, 并且阶段Ⅱ的SAA是阶段Ⅰ的3.8倍, 同时阶段Ⅱ中SAOA也是显著大于阶段Ⅰ的SAOA.有研究表明, 厌氧氨氧化功能微生物是倾向于自团聚, 易形成颗粒污泥而不是絮状污泥[37].而颗粒污泥不仅可以承受高负荷, 而且可以帮助积累和保持高生物量浓度[1].因此, 颗粒污泥的成功培育将有助于功能菌的持留, 并保持其稳定的脱氮性能.同时, 通过阶段Ⅱ颗粒污泥的比活性结果分析, 发现其厌氧氨氧化活性在4个主要脱氮过程中最大, 其次为短程硝化, 亚硝盐还原的活性最小, 且短程反硝化比活性是亚硝酸盐还原比活性的2.1倍(图 4).上述结果表明该反应器培育的污泥可能是以短程硝化和厌氧氨氧化的协同作用主, 短程反硝化作用为辅的颗粒污泥.

图 4 在不同阶段的短程硝化比活性(SAOA)、亚硝酸盐氧化比活性(SNOA)、厌氧氨氧化比活性(SAA)、短程反硝化比活性(SDAA)和亚硝酸盐还原比活性(SNRA) Fig. 4 Specific activities of partial nitrification, nitrite oxidation, ANAMMOX, denitratation, and nitrite reduction during different stages

2.3 微生物群落分析

为了探析在颗粒污泥培育过程中微生物群落组成及其变化情况, 本研究对3组污泥样品[接种; 阶段Ⅰ(65 d); 阶段Ⅱ(225 d)]进行了16S rRNA基因高通量测序及分析, 其结果如表 4.在属水平上发现发硫菌(Thiothrix)是该反应器中主要的优势菌, 其丰度高达41.11%, 而该种微生物鉴定为丝状菌, 并有研究报道其可能在颗粒污泥中起骨架作用, 且在自凝聚和形态保持方面起到重要作用[38, 39].该结果与观察到的污泥形貌特性结果一致.此外, 对颗粒污泥中的相关脱氮微生物分析发现, 对于短程硝化, 亚硝化单胞菌(Nitrosomonas)被鉴定为主要的氨氧化细菌, 并相较接种物(0.13%), 其在阶段Ⅱ中的丰度增加至0.70%.对于厌氧氨氧化, 结果表明Candidatus_Brocadia是反应器中唯一被鉴定的厌氧氨氧化菌, 其原因可能是在有机物存在的情况下, Candidatus_Brocadia比其他类型的厌氧氨氧化菌更加具有竞争力[40, 41], 且相较接种物(0.01%)和阶段Ⅰ(0.002%), 其在阶段Ⅱ中的丰度增加至0.59%.对于短程反硝化, 有研究发现陶厄氏菌(Thauera)可实现NO3--N还原为NO2--N的功能[42], 并在阶段Ⅱ中的丰度达到0.26%, 因而其可能是颗粒污泥中潜在的短程反硝化菌, 并在其中起到为厌氧氨氧化提供NO2--N从而提高脱氮效率的作用.此外, 假单胞菌(Pseudomonas)和Denitratisoma是主要的反硝化菌[43, 44], 并在颗粒污泥中的丰度分别高达2.09%和4.70%, 其值显著大于Thauera的丰度值, 这与比活性中短程反硝化活性大于亚硝酸盐还原活性的结果不一致, 因而该微生物可能在颗粒污泥中实现短程反硝化功能的表达活性更强, 因此, 仍需要进一步对颗粒污泥中的短程反硝化功能基因转录水平进行研究.

表 4 反应器运行过程中菌群结构组成(属水平) Table 4 Bacterial abundance in the reactor(genus level)

2.4 功能基因转录分析

为了进一步探究颗粒污泥形成后的功能基因转录水平的变化情况, 本文采用荧光定量PCR(RT-qPCR)技术对其进行分析(图 5), 发现相较于接种阶段时, 在阶段Ⅱ中的短程硝化的功能基因amoAhao转录水平分别增加了3.5和1.5倍, 厌氧氨氧化功能基因hzsA转录水平增加了2.1倍.此外, 短程反硝化的功能基因napAnarG转录水平相较于接种阶段时增加了1.7和1.2倍, 而亚硝酸盐还原基因nirKnirS转录水平仅分别增加了0.3和0.3倍, 且napAnarG的增加倍数之和是nirKnirS之和的4.8倍.反观, 在阶段Ⅰ中厌氧氨氧化功能基因hzsA转录水平相比接种阶段时减少了0.8倍.因此, 该结果也进一步验证, 阶段Ⅱ中的颗粒污泥能实现同步短程硝化、厌氧氨氧化和短程反硝化的完全脱氮功能.

其中mRNA转录水平是指相比接种阶段时的转录水平 图 5 功能基因在阶段Ⅰ和阶段Ⅱ中的mRNA转录水平 Fig. 5 The mRNA transcription levels of functional genes at stage Ⅰ and Ⅱ

3 结论

(1) 新型反应器在连续流态下运行245 d, 以厌氧氨氧化污泥优配普通活性污泥为接种物, 运行条件为微好氧区和限氧区的DO浓度分别控制为1.0和0.5 mg ·L-1和HRT为6.6 h, 本研究成功培育了同步短程硝化、厌氧氨氧化和短程反硝化高效脱氮除碳的颗粒污泥, 其TN去除率高达91.4%且COD的去除率约100%.

(2) 采用16S rRNA高通量测序对微生物多样性分析, 发现NitrosomonasCandidatus_BrocadiaThauera可能分别是短程硝化、厌氧氨氧化和短程反硝化的优势菌, 其丰度分别为0.70%、0.59%和0.26%.

(3) 采用RT-qPCR分析表明, 发现相比接种阶段时, 短程硝化功能基因amoAhao转录水平分别增加了3.5和1.5倍, 厌氧氨氧化功能基因hzsA转录水平增加了2.1倍, 短程反硝化过程中napAnarG转录水平增加的倍数之和是nirKnirS的倍数之和的4.8倍.

参考文献
[1] Baeten J E, Batstone D J, Schraa O J, et al. Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors-A review[J]. Water Research, 2019, 149: 322-341. DOI:10.1016/j.watres.2018.11.026
[2] Winkler M K H, Meunier C, Henriet O, et al. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater[J]. Chemical Engineering Journal, 2018, 336: 489-502. DOI:10.1016/j.cej.2017.12.026
[3] Wang Z Y, Shan X Y, Li W, et al. Robustness of ANAMMOX granule sludge bed reactor: effect and mechanism of organic matter interference[J]. Ecological Engineering, 2016, 91: 131-138. DOI:10.1016/j.ecoleng.2016.02.015
[4] Lotti T, Kleerebezem R, Hu Z, et al. Simultaneous partial nitritation and anammox at low temperature with granular sludge[J]. Water Research, 2014, 66: 111-121. DOI:10.1016/j.watres.2014.07.047
[5] Tang C J, Zheng P, Wang C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. DOI:10.1016/j.watres.2010.08.018
[6] Lettinga G, Van Velsen A F M, Hobma S W, et al. Use of the upflow sludge blanket(USB)reactor concept for biological wastewater treatment, especially for anaerobic treatment[J]. Biotechnology and Bioengineering, 1980, 22(4): 699-734. DOI:10.1002/bit.260220402
[7] Corsino S F, Capodici M, Morici C, et al. Simultaneous nitritation-denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge[J]. Water Research, 2016, 88: 329-336. DOI:10.1016/j.watres.2015.10.041
[8] Kuenen J G. Anammox bacteria: from discovery to application[J]. Nature Reviews Microbiology, 2008, 6(4): 320-326. DOI:10.1038/nrmicro1857
[9] Kartal B, Kuenen J G, Van Loosdrecht M C M. Sewage treatment with anammox[J]. Science, 2010, 328(5979): 702-703. DOI:10.1126/science.1185941
[10] Li W, Zhuang J L, Zhou Y Y, et al. Metagenomics reveals microbial community differences lead to differential nitrate production in anammox reactors with differing nitrogen loading rates[J]. Water Research, 2020, 169. DOI:10.1016/j.watres.2019.115279
[11] Rongwong W, Goh K. Resource recovery from industrial wastewaters by hydrophobic membrane contactors: a review[J]. Journal of Environmental Chemical Engineering, 2020, 8(5). DOI:10.1016/j.jece.2020.104242
[12] Arora A S, Nawaz A, Qyyum M A, et al. Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects[J]. Renewable and Sustainable Energy Reviews, 2021, 135. DOI:10.1016/j.rser.2020.110126
[13] Li W, Li H, Liu Y D, et al. Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for anammox[J]. Environmental Science & Technology, 2018, 52(18): 10665-10672.
[14] Cao Y S, Van Loosdrecht M C M, Daigger G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. DOI:10.1007/s00253-016-8058-7
[15] Li J L, Peng Y Z, Zhang L, et al. Improving efficiency and stability of anammox through sequentially coupling nitritation and denitritation in a single-stage bioreactor[J]. Environmental Science & Technology, 2020, 54(17): 10859-10867.
[16] Zhuang J, Zhou Y Y, Liu Y D, et al. Flocs are the main source of nitrous oxide in a high-rate anammox granular sludge reactor: insights from metagenomics and fed-batch experiments[J]. Water Research, 2020, 186. DOI:10.1016/j.watres.2020.116321
[17] Van De Graaf A A, De Bruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187-2196. DOI:10.1099/13500872-142-8-2187
[18] AP HA. Standard methods for the examination of water and wastewater(21st ed.)[M]. Washington: American Public Health Association, 2005.
[19] Chen R, Takemura Y, Liu Y, et al. Using partial nitrification and anammox to remove nitrogen from low-strength wastewater by co-immobilizing biofilm inside a moving bed bioreactor[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1353-1361.
[20] Li W, Zheng P, Wu Y L, et al. Sludge bulking in a high-rate denitrifying automatic circulation(DAC)reactor[J]. Chemical Engineering Journal, 2014, 240: 387-393. DOI:10.1016/j.cej.2013.11.071
[21] Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. DOI:10.1038/nmeth.f.303
[22] Wang J P, Liu Y D, Meng F G, et al. The short-and long-term effects of formic acid on rapid nitritation start-up[J]. Environment International, 2020, 135. DOI:10.1016/j.envint.2019.105350
[23] Harhangi H R, Le Roy M, Van Alen T, et al. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria[J]. Applied and Environmental Microbiology, 2012, 78(3): 752-758. DOI:10.1128/AEM.07113-11
[24] Zhu G B, Peng Y Z, Li B K, et al. Biological removal of nitrogen from wastewater[A]. In: Whitacre D M(Ed. ). Reviews of Environmental Contamination and Toxicology[M]. New York, NY: Springer, 2008.
[25] Chen G H, Li J, Tabassum S, et al. Anaerobic ammonium oxidation(ANAMMOX)sludge immobilized by waterborne polyurethane and its nitrogen removal performance-a lab scale study[J]. RSC Advances, 2015, 5(32): 25372-25381. DOI:10.1039/C4RA14451A
[26] Zheng Z M, Li J, Ma J, et al. Nitrogen removal via simultaneous partial nitrification, anammox and denitrification(SNAD)process under high DO condition[J]. Biodegradation, 2016, 27(4-6): 195-208. DOI:10.1007/s10532-016-9766-5
[27] Sezgin M, Jenkins D, Parker D S. A unified theory of filamentous activated sludge bulking[J]. Journal(Water Pollution Control Federation), 1978, 50(2): 362-381.
[28] Mishima K, Nakamura M. Self-immobilization of aerobic activated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Science and Technology, 1991, 23(4-6): 981-990. DOI:10.2166/wst.1991.0550
[29] He Q L, Chen L, Zhang S J, et al. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen(C/N)municipal wastewater treatment[J]. Bioresource Technology, 2019, 271: 48-58. DOI:10.1016/j.biortech.2018.09.102
[30] 李冬, 杨敬畏, 李悦, 等. 缺氧/好氧交替连续流的生活污水好氧颗粒污泥运行及污染物去除机制[J]. 环境科学, 2021, 42(5): 2385-2395.
Li D, Yang J W, Li Y, et al. Aerobic granular sludge operation and nutrient removal mechanism from domestic sewage in an anaerobic/aerobic alternating continuous flow system[J]. Environmental Science, 2021, 42(5): 2385-2395.
[31] 李冬, 王樱桥, 张杰, 等. 高径比对生活污水好氧颗粒污泥系统的影响[J]. 中国环境科学, 2019, 39(1): 141-148.
Li D, Wang Y Q, Zhang J, et al. The impact of height/diameter ratio on aerobic granular sludge(AGS)system in domestic sewage[J]. China Environmental Science, 2019, 39(1): 141-148. DOI:10.3969/j.issn.1000-6923.2019.01.015
[32] Liu W R, Yang D H, Shen Y L, et al. Two-stage partial nitritation-anammox process for high-rate mainstream deammonification[J]. Applied Microbiology and Biotechnology, 2018, 102(18): 8079-8091. DOI:10.1007/s00253-018-9207-y
[33] Ding S Z, Bao P, Wang B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification(SNAD)process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339: 180-188. DOI:10.1016/j.cej.2018.01.128
[34] Ma B, Qian W T, Yuan C S, et al. Achieving mainstream nitrogen removal through coupling anammox with denitratation[J]. Environmental Science & Technology, 2017, 51(15): 8405-8413.
[35] Ji J T, Peng Y Z, Li X Y, et al. A novel partial nitrification-synchronous anammox and endogenous partial denitrification(PN-SAEPD)process for advanced nitrogen removal from municipal wastewater at ambient temperatures[J]. Water Research, 2020, 175. DOI:10.1016/j.watres.2020.115690
[36] Chen R, Ji J Y, Chen Y J, et al. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater[J]. Water Research, 2019, 155: 288-299. DOI:10.1016/j.watres.2019.02.041
[37] Wang Y Y, Xie H C, Wang D L, et al. Insight into the response of anammox granule rheological intensity and size evolution to decreasing temperature and influent substrate concentration[J]. Water Research, 2019, 162: 258-268. DOI:10.1016/j.watres.2019.06.060
[38] 季斌, 陈威, 樊杰, 等. 好氧颗粒污泥的微生物研究进展[J]. 科学通报, 2017, 62(23): 2639-2648.
Ji B, Chen W, Fan J, et al. Research progress on microbes in aerobic granular sludge[J]. Chinese Science Bulletin, 2017, 62(23): 2639-2648.
[39] Figueroa M, Val Del Río A, Campos J L, et al. Filamentous bacteria existence in aerobic granular reactors[J]. Bioprocess and Biosystems Engineering, 2015, 38(5): 841-851. DOI:10.1007/s00449-014-1327-x
[40] Jin P F, Li B K, Mu D Y, et al. High-efficient nitrogen removal from municipal wastewater via two-stage nitritation/anammox process: long-term stability assessment and mechanism analysis[J]. Bioresource Technology, 2019, 271: 150-158. DOI:10.1016/j.biortech.2018.09.097
[41] Jenni S, Vlaeminck S E, Morgenroth E, et al. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios[J]. Water Research, 2014, 49: 316-326. DOI:10.1016/j.watres.2013.10.073
[42] Du R, Peng Y Z, Cao S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 2011-2021. DOI:10.1007/s00253-015-7052-9
[43] 侯爱月, 李军, 卞伟, 等. 不同短程硝化系统中微生物群落结构的对比分析[J]. 中国环境科学, 2016, 36(2): 428-436.
Hou A Y, Li J, Bian W, et al. Analysis of microbial community structure in different partial nitrification system[J]. China Environmental Science, 2016, 36(2): 428-436. DOI:10.3969/j.issn.1000-6923.2016.02.019
[44] 杨娅男, 李彦澄, 李江, 等. 基于甲烷氧化菌的城镇污水厂尾水极限脱氮系统构建及机制[J]. 环境科学, 2020, 41(4): 1787-1793.
Yang Y N, Li Y C, Li J, et al. Construction and mechanism of methanotroph-based ultimate denitrification system for tailwater of urban sewage plants[J]. Environmental Science, 2020, 41(4): 1787-1793.