环境科学  2021, Vol. 42 Issue (9): 4319-4331   PDF    
输水情景下白洋淀好氧反硝化菌群落对溶解性有机物的响应
周石磊, 张甜娜, 陈召莹, 张紫薇, 于明会, 姚波, 崔建升, 罗晓     
河北科技大学环境科学与工程学院, 河北省污染防治生物技术实验室, 石家庄 050018
摘要: 溶解性有机物(DOM)是影响微生物群落演变的重要因素,而生态输水是白洋淀的一个重要特征,为了探究输水情境下DOM对好氧反硝化菌的影响,本文结合水体DOM的组分解析和好氧反硝化高通量测序技术,进行了水体好氧反硝化菌对DOM的响应研究.结果显示,白洋淀水体DOM的相对浓度存在显著差异,河口区要低于内部区;DOM呈现出较强自生源特征,河口区具有更高的分子量和更强的腐殖化;平行因子法解析出3种类蛋白组分和1种类腐殖质组分,类蛋白组分占比达到35.64%~96.38%,与荧光区域积分得到类蛋白占主体的结果相一致.与此同时,该时期水体好氧反硝化菌主要属于变形菌门(Protebacterice),主要包括CupriavidusAeromonasThaueraShewanellaPseudomonas,与随机森林筛选出的指示物种相一致;网络分析得到35个网络关键节点,主要隶属于ThaueraCupriavidus以及Unclassified_bacteria;冗余分析(RDA)显示类腐殖质物质是影响水体整体好氧反硝化菌群落组成的因子,类蛋白物质是影响指示物种群落和关键节点群落结构分布的重要因素.综上可知,水体溶解性有机物中类蛋白组分可以作为筛选适于生态输水期水体特征的耐低温高效好氧反硝化菌的碳源选择.
关键词: 白洋淀      溶解性有机物(DOM)      平行因子分析(PARAFAC)      好氧反硝化      生物信息分析      网络分析     
Structure of Aerobic Denitrification Bacterial Community in Response to Dissolved Organic Matter in Baiyangdian Lake During the Water Delivery Period
ZHOU Shi-lei , ZHANG Tian-na , CHEN Zhao-ying , ZHANG Zi-wei , YU Ming-hui , YAO Bo , CUI Jian-sheng , LUO Xiao     
Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Abstract: Dissolved organic matter (DOM) plays an important role in the evolution of microbial communities. Meanwhile, ecological water delivery is an important feature of Baiyangdian Lake. To explore how the structure of the aerobic denitrification bacteria community responds to DOM during the water delivery period, the DOM components of water were examined and high-throughput sequencing of aerobic denitrification bacteria was performed. The results showed significant differences in DOM concentration in Baiyangdian Lake, with the estuary area exhibiting lower DOM concentrations. The water exhibited strong autogenous source, while DOM in the estuary area had a higher molecular weight and degree of humification. Three protein-like substances (C1, C2, and C4) and one humic-like substance (C3) were identified through PARAFAC. The protein-like substances accounted for the major proportion of DOM, which was consistent with the results of fluorescence regional integration (FRI). The genera of the water body were mainly in the Protebacterice phylum, including Cupriavidus, Aeromonas, Thauera, Shewanella, and Pseudomonas. Meanwhile, Cupriavidus, Thauera, Shewanella, Agrobacterium, and Pseudomonas were the main indicator species, according to random forest (RF) analysis. Through network analysis, 35 key nodes of the network were obtained, belonging to Thauera, Cupriavidus, and Unclassified_bacteria, respectively. Redundancy analysis (RDA) showed that a humic-like substance was the main environmental factor regulating the whole structure of the aerobic denitrification bacterial community, while protein-like substances played important roles in changes to the indicator species and key nodes of the community. Overall, protein-like substances could provide an important reference for selecting carbon sources during the screening of efficient and cold resistance aerobic denitrification bacteria that are adapted to actual water bodies.
Key words: Baiyangdian Lake      dissolved organic matter (DOM)      parallel factor analysis(PARAFAC)      aerobic denitrification      bioinformatics analysis      network analysis     

好氧反硝化不仅可以在同一系统中完成硝化和反硝化的过程, 同时还能利用反硝化过程产生的碱中和硝化过程产生的酸.因此, 好氧反硝化逐渐成为生物脱氮的研究热点[1].近年来, 研究者从不同的环境中分离出大量的高效好氧反硝化菌.比如, 人工湿地系统中的Alcaligenes faecalis strain WT14[2]Paracoccus thiophilus strain LSL 251[3]; 水产养殖废水处理系统中的Pseudomonas sp. DM02[4]Achromobacter sp. JL9[5]Arthrobacter sp. HHEP5[6]; 海底淤泥中的Paracoccus versutus LYM[7]; 污水处理厂中的Pseudomonas mendocina X49[8]Thauera sp. strain SND5[9]; 水库沉积物中的Pseudomonas sp. HXF1[10]; 河流沉积物中的Pseudomonas stutzeri ADP-19[11]; 松花江中的Janthinobacterium sp. M-11[12]; 工业园区沉积物中的Achromobacter sp. L3[13].众多分离的高效好氧反硝化菌还具有异养硝化、聚磷、耐低温、耐重金属以及降解抗生素的特性[14, 15].

然而, 目前关于好氧反硝化菌的分析大多集中于分离鉴定和实验室的脱氮特性分析[14, 15].虽然, 在自然环境中关于好氧反硝化有所研究[16, 17].但是, 涉及应用好氧反硝化菌进行实际天然水体环境脱氮的研究却鲜见报道.仅有如下研究涉及实际水体的应用, Guo等[18]将好氧反硝化菌Pseudomonas stutzeri strain T1投加到太湖水体试验系统中实现总氮水质从Ⅴ类到Ⅱ类水体的转变; Tang等[19]应用好氧反硝化菌剂修复城市河流, 实现沉积物中14.7%的总氮的去除; 文献[20, 21]通过原位混合充氧强化了水库土著好氧反硝化菌, 使水体氮素得到高效去除.适于实际天然水体的高效好氧反硝化菌难于获取很重要的原因, 可能是实验室采用的培养基与实际水体中碳源组成差异太大, 使筛选出来的高效好氧反硝化菌株无法在实际水体中发挥作用.然而, 涉及天然环境中好氧反硝化菌群分布与环境中溶解性有机物的相关分析却相对较少.目前, 有学者研究了不同分子量的天然有机物[22]以及水库沉积物中有机物[23]对好氧反硝化细菌脱氮的影响; 有学者研究了白洋淀冬季好氧反硝化菌群落空间分布特征及驱动因素[24, 25].考虑到自然环境下好氧反硝化菌群分布与溶解性有机物存在耦合作用, 有机碳源的种类直接影响高效好氧反硝化菌筛选的成功与否.因此, 开展天然环境中好氧反硝化菌群落对溶解性有机物的响应研究变得十分必要.

白洋淀作为雄安新区的核心水体, 是新区建设的重要生态屏障.为恢复白洋淀的生态功能, 河北省统筹调度了黄河水、南水北调水、上游水库水以及再生水等多种水源对白洋淀进行了生态输水.本文选取冬季输水期白洋淀典型区域的水体样品, 通过研究该时期水体好氧反硝化菌群落分布特征和关键物种; 并结合溶解性有机物组分的分析, 来研究输水情景下好氧反硝化菌群落对溶解性有机物的响应, 以期为将来制定适应白洋淀冬季输水期水体特征的耐低温好氧反硝化菌筛选的碳源选择提供必要的技术支持.

1 材料与方法 1.1 研究区域与样品采集

结合研究者的文献资料和白洋淀的历史承载功能[26], 白洋淀划分为5个典型区域, 分别为河口区、自然区、旅游区、养殖区以及生活区[24](图 1).

图 1 白洋淀采样点示意 Fig. 1 Locations of the sampling sites in Baiyangdian Lake

其中, 河口区承接上游入淀河流的来水, 主要包括白沟引河(BGYH, 水库水)、萍河(PH, 水库水)、瀑河(BH, 南水北调水)、府河(FH, 保定再生水)、唐河(TH, 南水北调和水库水)和潴龙河(ZLH, 黄河水); 自然区包括藻苲淀(ZZD); 旅游区为白洋淀主要观赏景点、承接游客的区域, 主要包括文化苑(WHY)、鸳鸯岛(YYD)和烧车淀(SCD); 养殖区主要包括端村(DC)和鲥鯸淀(SHD); 生活区主要包括捞王淀(LWD)、平阳淀(PYD)和枣林庄(ZLZ).同时依据河流输水的影响程度, 将白洋淀分为河口区和内部区(自然区、旅游区、养殖区和生活区).本研究于2020年1月(生态输水期)对白洋淀进行取样, 用纯水清洗过的聚乙烯瓶采集各采样点5 L中层水样, 冷藏避光运回实验室, 用于分析水体好氧反硝化菌群落分布和溶解性有机物特征.其中, 水样用0.45 μm醋酸纤维滤膜过滤后进行光谱测定, 3 d内测定完成.

1.2 DNA提取与PCR扩增

本文利用0.22 μm醋酸纤维滤膜过滤水样, 将滤膜送至测序公司进行水体总DNA样本的提取.通过引物F: 5′-TGGACVATGGGYTTYAAYC-3′和R: 5′-ACYTCRCGHGCVGTRCCRCA-3′对水体的napA基因进行PCR扩增, 完成好氧反硝化菌高通量测序[27] (上海派森诺生物科技股份有限公司). 25 μL PCR反应体系为: 5×reaction buffer 5 μL, 5×GC buffer 5 μL, 2.5mmol·L-1 dNTP 2 μL, forward primer(10 μmol·L-1) 1 μL, reverse primer(10 μmol·L-1) 1 μL, Q5 DNA polymerase 0.25 μL, DNA Template 2 μL, ddH2O 8.75 μL.扩增条件为: 预变性温度98℃ 2 min; 98℃变性15 s, 55℃退火30 s, 72℃延伸30 s, 循环30次; 72℃延伸10 min.

1.3 溶解性有机物测定及分析

利用紫外-可见分光光度计(DR6000, 美国)和荧光分光光度计(F-7000, 日本) 测量过滤水样的紫外-可见吸收光谱和三维荧光光谱, 具体测定参数设定参见文献[28, 29]执行.采用a254a355a440来表征溶解性有机物相对浓度[29].采用三维荧光平行因子法[28]和荧光区域积分法[30]对三维荧光光谱的组分进行解析.与此同时, 选用了一系列紫外可见光谱以及三维荧光光谱的光谱指数来表征DOM的特征, 包括E2/E3、E3/E4、SR、荧光指数(FI)、腐殖化指数(HIX)、生物源指数(BIX)以及新鲜度指数(βα)等(表 1).三维荧光光谱的荧光强度进行拉曼(单位R.U)的标准化处理, 具体操作详见文献[38].

表 1 荧光区域积分组分以及光谱特征指数 Table 1 Components of fluorescence region integration and spectra indices

1.4 生物信息分析

利用R进行好氧反硝化菌的生物信息学分析(http://www.r-project.org/).具体分析如下, 通过Chao1指数来表征好氧反硝化菌的丰度[39], 通过香农指数、辛普森指数来反映好氧反硝化菌的多样性[39], 通过覆盖度指数评估好氧反硝化菌的测序深度[39]; 通过主坐标分析(principal co-ordinates analysis, PCoA)来研究不同区域好氧反硝化菌的差异; 基于随机森林分析(random forest, RF)来筛选输水期好氧反硝化菌群落的指示物种[40, 41]; 依据Spearman的相关分析, 选取相关性|r|>0.7, 显著性P < 0.05的物种进行网络分析; 研究好氧反硝化菌群落中各个物种的相互关系[42], 并基于对节点的类型分析研究网络中关键物种[43]; 通过冗余分析(redundancy analysis, RDA)得到溶解性有机物各组分与好氧反硝化菌的相关性[44].本文中绘图由R和Gephi完成, 数据统计分析中P值< 0.05, 0.001 < P值< 0.01以及P值< 0.001表示统计学不同水平上存在显著差异.

2 结果与讨论 2.1 水体溶解性有机物分析

a254a355a440的数据可知(图 2), 河口区的a254a355a440达到(35.05±3.98)、(9.88±1.15)和(5.21±0.51) m-1, 白洋淀内部区的a254a355a440达到(47.81±8.64)、(12.66±1.85)和(6.55±1.02) m-1; 河口区的溶解性有机物的相对浓度显著低于内部区(P < 0.05).从统计学上看, 河口区和内部区的E2/E3不存在显著差异, 但是白洋淀内部区的E2/E3达到3.70±0.31高于河口区的3.35±0.32; 数据表明河口区的水体溶解性有机物的分子量要高于内部区, 与入淀河流输水携带大分子量溶解性有机物有关.河口区的E3/E4达到2.41±0.20, 要小于内部区的2.66±0.18, 表明河口区水体溶解性有机物的腐殖化程度要高于内部区. SR值呈现出河口区(0.72±0.02)高于内部区(0.71±0.01), 也显示出河口区溶解性有机物呈现出更高的分子量和腐殖化特征.白洋淀内部区FI达到2.00±0.24, 高于河口区的1.83±0.20; 内部区FI大于1.9, 河口区的小于1.9, 表明内部区水体溶解性有机物的自生源特征要强于河口区.河口区和内部区的BIX达到1.19±0.46和1.23±0.38, 都大于1.0, 表明都呈现较强的自生源特征, 其中内部区的自生源更强一些.两个区域的HIX都小于4, 与FI和BIX呈现的结果相一致, 该时期水体的溶解性有机物腐殖化程度较低.内部区和河口区的βα达到1.10±0.32和1.02±0.39, 结果表明内部区的新生DOM占比要高于河口区. Fn280和Fn355指数显示, 河口区和内部区在统计学上不存在显著差异; 但是相比于河口区而言, 内部区具有更高的类蛋白丰度.

WW表示河口区采样点; ZX表示内部区采样点,下同;图中不同小写字母表示存在显著差异 图 2 白洋淀溶解性有机物相对浓度和光谱特征指数 Fig. 2 Concentration of DOM and spectral characteristics of the sampling sites in Baiyangdian Lake

通过平行因子分析得出4种荧光组分(图 3):组分C1(Ex/Em=275 nm/340 nm)为长波类酪氨酸物质, 多源于微生物降解和生活污水[45]; 组分C2(Ex/Em=230 nm/340 nm)为类色氨酸物质, 属于类蛋白组分, 多源于微生物降解和生活污水[46]; 组分C3(Ex/Em=240 nm/400 nm)为富里酸物质, 属于腐殖质类, 较难降解[47]; 组分C4(Ex/Em=220 nm/325 nm)为短波类酪氨酸物质, 属于类蛋白组分, 多源于微生物降解和生活污水[48].C1组分相对丰度的变化范围为5.92%~52.04%, 最大值为养殖区的SHD采样点, 最小值为河口区的PH采样点; C2组分相对丰度的变化范围为3.71%~40.00%, 最大值为TH采样点, 最小值为PH采样点; C3组分相对丰度的变化范围为3.62%~64.36%, 最大值为PH采样点, 最小值为DC采样点; C4组分相对丰度的变化范围为5.70%~26.01%, 最大值为PH采样点, 最小值为FH采样点; 类蛋白类物质(C1+C2+C4)变化范围为35.64%~96.38%, 最大值为SHD采样点, 最小值为PH采样点.基于河口区和内部区进行分类, 平行因子解析的各组分荧光强度和相对丰度在统计学上不存在显著差异, 但是类蛋白类组分C1、C2和C4都呈现出内部区高于河口区的特点, 类腐殖质物质C3呈现出河口区高于内部区的特点(图 3), 与入淀河流输送腐殖质的情况有关.

图 3 基于平行因子法解析出的白洋淀水体CDOM的荧光组分及分布特征 Fig. 3 Distribution and fluorescence components of CDOM identified using the PARAFAC model in Baiyangdian Lake

荧光区域积分解析的5种组分的分布情况如图 4所示, 河口区和内部区的各个组分同样在统计学上都不存在显著差异.其中类蛋白物质(P1、P2和P4)都呈现出内部区占比高于河口区的特征, 类腐殖质物质(P3和P5)呈现出河口区高的特征.荧光区域积分的结果与平行因子解析出荧光组分的情况相一致.

(a)~(e)荧光区域积分组分分布情况; (f)~(g)基于紫外可见、平行因子以及区域积分的主坐标分析 图 4 荧光区域积分组分分布特征及DOM光谱的主坐标分析 Fig. 4 Distribution characteristics of components identified using the FRI model and PCoA of the DOM spectrum

与此同时, 分布对紫外可见光谱[图 4(f)]、平行因子分析组分[图 4(g)]和荧光区域积分组分[图 4(h)]进行了PCoA分析.基于紫外可见光谱的PCoA分析显示, 前两轴共解释了总体变化的88.94%, 河口区与内部区呈现显著差异(Adonis, R2=0.49, P < 0.01); 基于平行因子分析组分的PCoA分析显示, 前两轴共解释了总体变化的75.85%; 基于荧光区域积分组分的PCoA分析显示, 前两轴共解释了总体变化的82.15%; 平行因子和荧光区域积分组分并未存在统计学上的显著差异.平行因子解析的荧光组分与紫外可见光谱和荧光区域积分组分的相关性分析如图 5所示, 荧光组分C1与C2和C4呈现显著正相关(P < 0.001), C2与C4呈现显著正相关(P < 0.001), C1、C2和C4与Fn280呈现显著正相关(P < 0.001), 表明C1、C2和C4存在相似的来源, 与3个组分为类蛋白物质相一致.类蛋白类物质(C1、C2和C4)与E2/E3呈现显著正相关(P < 0.05), 表明分子量越小类蛋白物质越多.类蛋白类物质(C1、C2、C4和Fn280)与荧光区域积分的类蛋白组分P2和P4呈现显著正相关(P < 0.01), 与类腐殖质组分P3和P5呈现显著负相关(P < 0.001).综上可知, 平行因子法解析的组分和荧光区域积分划分的组分呈现较高的一致性.

*表示P < 0.05, **表示0.01 < P < 0.05, ***表示P < 0.001 图 5 三维荧光平行因子荧光组分与荧光区域积分组分以及光谱特征的相关性分析 Fig. 5 Correlation analysis of PARAFAC components and FRI components/spectral characteristics

2.2 微生物α多样性分析

表 2所示, 依据历史功能划分来看, 自然区的Chao1指数最高, 其次为旅游区和生活区, 最后为河口区和养殖区, 表明自然区的好氧反硝化菌微生物群落的丰富度最高; 依据河口区和内部区划分, 内部区的Chao1指数(2 184.37±323.35)高于河口区(1 815.93±260.70).各个采样点的Simpson和Shannon指数中, 养殖区和河口区较高, 自然区最低; 内部区的Simpson和Shannon指数要低于河口区.各个采样点间覆盖度指数大于0.99, 显示出各样本测序深度能够很好地覆盖物种信息.综上, 白洋淀河口区与内部区的好氧反硝化菌群落丰富度和多样性存在一定差异.

表 2 白洋淀好氧反硝化菌微生物多样性指数 Table 2 Microbial diversity indices of aerobic denitrification bacteria in Baiyangdian Lake

2.3 好氧反硝化菌群落组成

该时期各个采样点的好氧反硝化菌主要属于变形菌门(Protebacterice)和未分类(Unclassified_bacteria), 其中变形菌门为第一大门类, 占比为39.34%~57.92%; 未分类菌达到41.93%~60.54%.变形菌门中, β-Proteobacteria为第一大纲, 占比达到15.46%~32.11%; γ-Proteobacteria是第二大纲, 占比达到4.14%~12.95%; α-Proteobacteria是为第三大纲, 占比为3.05%~8.03%.在属水平上(图 6), Cupriavidus是第一大属, 占比范围为2.05%~14.91%, 自然区ZZD最多, 河口区BH最少. Cupriavidus作为重要的好氧反硝化菌属被广泛报道, 包括具有耐重金属性能的高效异养硝化-好氧反硝化菌Cupriavidus sp. S1[49], 能在好氧条件下同时去除硝酸盐、磷和镉的高效菌株Cupriavidus sp. H29[50]以及兼具修复地下水硝酸盐和锰污染的混合营养的反硝化菌Cupriavidus sp. HY129[51]. Aeromonas是第二大属, 占比为2.22%~4.08%, 在DC和ZLZ的占比最大; 与此同时, 有研究不仅发现Aeromonas是水源水库好氧反硝化脱氮过程中主要的菌属[37], 而且还发现好氧反硝化菌Aeromonas sp. VNT[52]Aeromonas sp. HN-02[53]都具有耐低温的特性. Thauera占比为2.06%~3.83%, 在TH和PH占比较多; 有研究发现Thauera sp. strain SND5是1株高效且同时具有脱氮和聚磷功能的菌株[9], 而且还有以好氧反硝化菌Thauera为主的微生物燃料电池实现脱氮和发电的报道[54, 55].Shewanella占比0.05%~7.83%, 有研究发现Shewanella baltica OS678具有好氧反硝化特性[56], 而且Shewanella oneidensis MR-1还可以通过影响电子竞争和分布提高反硝化性能[57]. Pseudomonas作为典型好氧反硝化菌被广泛地研究, 包括:能在高溶解氧环境下实现氨氮、硝氮和亚硝氮高效去除的Pseudomonas sp. DM02[4], 能同时去除地下水中氮素和氟的Pseudomonas sp. HXF1[10], 具有脱氮和聚磷的Pseudomonas stutzeri ADP-19[11], 还有耐低温的Pseudomonas sp. VNT[52].Magnetospirillum菌在府河的占比最大, 达到0.91%.Janthinobacterium sp. M-11是1株分离于松花江的耐低温高效异养硝化-好氧反硝化菌[12].异养硝化-好氧反硝化菌Agrobacterium sp. LAD9能实现氮素以“NH4+NH2OHNO2-N2ON2”的方式高效去除[58]. Azoarcus菌是低盐度硝化反硝化系统中的优势菌[59]. Serratia marcescens W5是1株高效的异养脱氮菌[60]. Achromobacter sp. JL9是能同时降解抗生素和氮素的高效菌株[61]. Bradyrhizobium也是具有脱氮功能的反硝化菌[62].综上分析, 白洋淀冬季输水期解析的好氧反硝化菌与已报道的典型高效好氧反硝化菌相吻合.

图 6 好氧反硝化菌在属水平上前20的菌种分布 Fig. 6 Distribution characteristics of top 20 aerobic denitrification bacteria at genus level

基于属水平对该时期的好氧反硝化菌进行了PCoA分析[图 7(a)], 结果显示, PCoA1和PCoA2分别解释了总体变化的53.65%和18.1%, 其中PCoA1起主要作用.在河口区和内部区的划分角度来看, 不存在统计学上的显著差异; ZLH、BGYH和FH采样点的差异较小, PH和TH间物种组成差异较小, DC、WHY和SHD采样点的差异较小, SCD、YYD、PYD、LWD和ZLZ间的差异较小.与此同时, 对该时期的好氧反硝化菌进行随机森林分析, 筛选出重要性前20的重要物种[图 7(b)].其中属于丰度前10的主要有Thauera (2.06%~3.83%)、Shewanella (0.05%~7.83%)、Agrobacterium (0.07%~1.42%)、Pseudomonas (0.39%~3.03%)、Bradyrhizobium (0.03%~0.66%)、Aeromonas (2.24%~4.08%)、Cupriavidus (2.05%~14.91%)、Sinorhizobium (0.07%~0.47%)、Magnetospirillum (0.35%~0.91%)和Achromobacter (0.01%~0.26%); 其他为相对低丰度菌, 包括DechloromonasFerrimonasPasteurellaJanthinobacteriumCampylobacterMoraxellaCutibacteriumPhotobacteriumEscherichiaSulfuritalea.

Z-score 表示一种数据的标准化,也叫Z分数,是一个分数与平均数的差再除以标准差的过程 图 7 白洋淀好氧反硝化菌的主坐标分析和随机森林分析 Fig. 7 PCoA and random forest analysis of aerobic denitrification bacteria in Baiyangdian Lake

与此同时, 本文通过RDA分析研究该时期水体好氧反硝化菌与溶解性有机物的关系(图 8).基于紫外可见光谱的RDA分析结果显示, RDA1和RDA2共同解释了总体变化的79.24%, E2/E3、E3/E4和SR主要影响其分布[图 8(a)]; 基于随机森林筛选出的指示物种群落的RDA结果显示[图 8(d)], RDA1和RDA2共同解释了总体变化的80.74%, E2/E3、E3/E4和SR主要影响其分布, 河口区与E2/E3、E3/E4和SR呈现反向变化, 表明分子量大的腐殖化较强的有机物与入淀河口好氧反硝化菌群落分布关系密切.基于平行因子解析的结果进行RDA分析, 对于整体好氧反硝化菌群落来说[图 8(b)], RDA1和RDA2共同解释了总体变化的75.6%, 组分C3是其主要影响因子, 与RDA1的相关性系数达到0.64; 对于随机森林筛选出的指示物种群落而言[图 8(e)], RDA1和RDA2共同解释了总体变化的65.89%, 组分C1、C2和C4是其主要影响因子, 与RDA1的相关性系数达到-0.81、-0.81和-0.64.基于荧光区域积分解析的结果进行RDA分析, 对于整体好氧反硝化菌群落来说[图 8(c)], RDA1和RDA2共同解释了总体变化的75.76%, 组分P3和P4是其主要影响因子, 与RDA1的相关性系数达到-0.51和0.63; 对于随机森林筛选出的指示物种群落而言[图 8(f)], RDA1和RDA2共同解释了总体变化的79.63%, 组分P2、P3和P4是其主要影响因子, 与RDA1的相关性系数达到0.58、-0.82和0.74.综合平行因子分析和荧光区域积分分析的结果, 类腐殖质物质主要影响整体好氧反硝化菌群落分布, 而类蛋白物质主要影响指示物种群落的分布.

(a)~(c)基于整体好氧反硝化菌群落和紫外可见光谱/平行因子分析/荧光区域积分的RDA, (d)~(f)基于指示物种群落和紫外可见光谱/平行因子分析/荧光区域积分的RDA 图 8 白洋淀好氧反硝化菌与环境因子的冗余分析 Fig. 8 RDA of aerobic denitrification bacteria and environmental factors in Baiyangdian Lake

2.4 微生物网络分析

OTU分类水平的微生物网络如图 9所示, 其中节点大小与网络节点度成正比, 节点间连线的宽度与相关系数|r|成正比; 节点间的连线颜色表示节点间的相关关系, 红色表示正相关, 绿色表示负相关.微生物网络分析共得到252个节点1 323个相关关系, 有1 293个正向相关关系, 30个负向相关关系(图 9).本研究得到的经验网络平均度为20.69, 网络直径为6.03, 平均路径长度为2.98, 模块性为0.36; 随机网络的相关参数: 网络平均度为11.47±0.07、网络直径为4.2±0.42、平均路径长度为2.6±0.01、模块性为0.27±0.01.与同等节点数据以及相关关系数据的随机网络相比, 本研究的经验网络具有明显的模块结构.本研究的微生物网络共得到35个模块, 本文将其划分成9个模块, 其中模块9为占比较小模块的汇总, 具体比例情况见图 9(a).有关节点的物种分类如图 9(b)所示, 该网络分为5个模块, 其中Unclassified_bacteria比例达到63.10%、β-Proteobacteria比例达到23.91%、γ-Proteobacteria比例达到6.35%、α-Proteobacteria比例达到5.95%、ε-Proteobacteria比例达到0.79%.结合模块分析, 模块1和模块3中主要为未分类菌, 模块2主要为β-Proteobacteria.

(a)基于模块的微生物网络; (b)基于物种分类的微生物网络 图 9 白洋淀好氧反硝化菌微生物网络 Fig. 9 Network of aerobic denitrification bacteria in Baiyangdian Lake

基于网络中节点的分类标准[43], 本文共得到35个关键节点, 具体包括4个网络核心节点(Zi≥2.5, Pi>0.62)和31个连接点(Zi < 2.5, Pi>0.62) [图 10(a)]. 其中4个网络核心节点为OTU6、OTU11、OTU17和OTU18, 都属于Unclassified_bacteria. 31个连接点OTU主要隶属于ThaueraCupriavidus以及Unclassified_bacteria, 其中13个OTU位于前50丰度的菌属.与此同时, 35个关键节点的度都大于5, 中介中心值都小于1 000, 也同时满足关键物种的判别标准[24].本网络中的35个关键节点, 隶属于α-Proteobacteria的节点达到2.7%、β-Proteobacteria的节点达到21.62%和Unclassified_bacteria达到75.68%.同时属于模块5的节点占比为29.73%, 属于模块6的节点占比为13.51%, 属于模块9的节点占比为56.76%.与此同时, 基于微生物网络的关键节点和溶解性有机物组成进行了RDA分析[图 10(b)], 结果显示RDA1和RDA2分别解释了关键节点菌群分布总体变化的21.19%和3.58%, 其中RDA1对菌群的分布起主要作用.基于膨胀因子分析(VIF)得到组分C2(VIF=12.82)、C3(VIF=3.59)、C4(VIF=11.43)、P1(VIF=6.72)、P2(VIF=6.55)和P4(VIF=4.28)是影响关键菌群分布的重要环境因子, 同时与RDA1的相关性系数达到0.86、0.77、0.70、-0.60、0.48和0.81.RDA结果显示影响关键节点菌群分布的主要是类蛋白物质, 与前文关于随机森林分析筛选的指示物种的影响因素相一致.因此, 为了得到适应于实际水体环境的好氧反硝化菌, 在将来的耐低温高效好氧反硝化菌株驯化过程中需要加入类蛋白物质的碳源进行富集驯化.

(a)微生物网络节点Z-P; (b)关键节点群落与环境因子的RDA分析 图 10 白洋淀好氧反硝化菌生态网络节点分布以及关键物种与环境因子的冗余分析 Fig. 10 Distribution of nodes in the molecular ecological network and RDA of key aerobic denitrification bacteria and environmental factors in Baiyangdian Lake

3 结论

(1) 冬季输水期水体溶解性有机物的相对浓度在白洋淀河口区和内部区间呈现显著差异, 水体溶解性有机物呈现出较强自生源、低腐殖化特征, 河口区相对于内部区呈现出高分子量和强腐殖化特征.

(2) 基于平行因子法解析出3种类蛋白组分和1种类腐殖质组分, 其中类蛋白类物质占主体, 达到35.64%~96.38%; 荧光区域积分组分显示类蛋白类物质(P1、P2和P4)也占主体, 达到68.22%~94.85%; 两种解析方法得到的类蛋白物质分布都是内部区要高于河口区, 并且两种方法划分的组分呈现出显著相关, 得到的物质组成结果相一致.

(3) 水体好氧反硝化菌主要为未分类菌和变形菌, 主要包括CupriavidusThaueraShewanellaPseudomonas以及Aeromonas; 类腐殖质物质主要影响白洋淀整体好氧反硝化菌群分布, 而类蛋白物质主要影响好氧反硝化菌指示物种群落和关键节点群落的分布.

参考文献
[1] Huang T L, Zhou S L, Zhang H H, et al. Nitrogen removal characteristics of a newly isolated indigenous aerobic denitrifier from oligotrophic drinking water reservoir, Zoogloea sp. N299[J]. International Journal of Molecular Sciences, 2015, 16(5): 100038-10060.
[2] Chen J L, Xu J, Zhang S N, et al. Nitrogen removal characteristics of a novel heterotrophic nitrification and aerobic denitrification bacteria, Alcaligenes faecalis strain WT14[J]. Journal of Environmental Management, 2021, 282. DOI:10.1016/j.jenvman.2021.111961
[3] Chen S N, Li S L, Huang T L, et al. Nitrate reduction by Paracoccus thiophilus strain LSL 251 under aerobic condition: Performance and intracellular central carbon flux pathways[J]. Bioresource Technology, 2020, 308. DOI:10.1016/j.biortech.2020.123301
[4] Deng M, Zhao X L, Senbati Y, et al. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas sp. DM02: removal performance, mechanism and immobilized application for real aquaculture wastewater treatment[J]. Bioresource Technology, 2021, 322. DOI:10.1016/j.biortech.2020.124555
[5] Liang D H, Hu Y Y, Liang D M, et al. Bioaugmentation of Moving Bed Biofilm Reactor (MBBR) with Achromobacter JL9 for enhanced sulfamethoxazole (SMX) degradation in aquaculture wastewater[J]. Ecotoxicology and Environmental Safety, 2021, 207. DOI:10.1016/j.ecoenv.2020.111258
[6] Zhang M Y, Pan L Q, Liu L P, et al. Phosphorus and nitrogen removal by a novel phosphate-accumulating organism, Arthrobacter sp. HHEP5 capable of heterotrophic nitrification-aerobic denitrification: safety assessment, removal characterization, mechanism exploration and wastewater treatment[J]. Bioresource Technology, 2020, 312. DOI:10.1016/j.biortech.2020.123633
[7] Sun C Y, Zhang Y, Qu Z P, et al. Simultaneous cobalt(Ⅲ)-histidine reduction and aerobic denitrification by Paracoccus versutus LYM[J]. Bioresource Technology, 2020, 310. DOI:10.1016/j.biortech.2020.123404
[8] Xie F X, Thiri M, Wang H. Simultaneous heterotrophic nitrification and aerobic denitrification by a novel isolated Pseudomonas mendocina X49[J]. Bioresource Technology, 2021, 319. DOI:10.1016/j.biortech.2020.124198
[9] Wang Q K, He J Z. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Research, 2020, 185. DOI:10.1016/j.watres.2020.116300
[10] Hu X F Su J F, Ali A, et al. Heterotrophic nitrification and biomineralization potential of Pseudomonas sp. HXF1 for the simultaneous removal of ammonia nitrogen and fluoride from groundwater[J]. Bioresource Technology, 2021, 323. DOI:10.1016/j.biortech.2020.124608
[11] Li B T, Jing F Y, Wu D S, et al. Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19[J]. Bioresource Technology, 2021, 321. DOI:10.1016/j.biortech.2020.124445
[12] Yang M, Lu D W, Qin B D, et al. Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11[J]. Bioresource Technology, 2018, 256: 366-373. DOI:10.1016/j.biortech.2018.02.049
[13] Liang D H, Hu Y Y. Application of a heavy metal-resistant Achromobacter sp. for the simultaneous immobilization of cadmium and degradation of sulfamethoxazole from wastewater[J]. Journal of Hazardous Materials, 2021, 402. DOI:10.1016/j.jhazmat.2020.124032
[14] Yang J X, Feng L, Pi S S, et al. A critical review of aerobic denitrification: Insights into the intracellular electron transfer[J]. Science of the Total Environment, 2020, 731. DOI:10.1016/j.scitotenv.2020.139080
[15] Ji B, Yang K, Zhu L, et al. Aerobic denitrification: a review of important advances of the last 30 years[J]. Biotechnology and Bioprocess Engineering, 2015, 20(4): 643-651. DOI:10.1007/s12257-015-0009-0
[16] Gao H, Schreiber F, Collins G, et al. Aerobic denitrification in permeable Wadden Sea sediments[J]. The ISME Journal, 2010, 4(3): 417-426. DOI:10.1038/ismej.2009.127
[17] Marchant H K, Ahmerkamp S, Lavik G, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously[J]. The ISME Journal, 2017, 11(8): 1799-1812. DOI:10.1038/ismej.2017.51
[18] Guo L Y, Chen Q K, Fang F, et al. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water[J]. Bioresource Technology, 2013, 142: 45-51. DOI:10.1016/j.biortech.2013.05.021
[19] Tang Y Q, Li M, Xu D N, et al. Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment[J]. Environmental Science and Pollution Research, 2018, 25(6): 5980-5993. DOI:10.1007/s11356-017-0903-4
[20] Zhou S L, Huang T L, Zhang H H, et al. Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water[J]. Bioresource Technology, 2016, 201: 195-207. DOI:10.1016/j.biortech.2015.11.041
[21] Zhou S L, Huang T L, Ngo H H, et al. Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology[J]. Bioresource Technology, 2016, 214: 63-73. DOI:10.1016/j.biortech.2016.04.071
[22] Wen G, Wang T, Li K, et al. Aerobic denitrification performance of strain Acinetobacter johnsonii WGX-9 using different natural organic matter as carbon source: Effect of molecular weight[J]. Water Research, 2019, 164. DOI:10.1016/j.watres.2019.114956
[23] 王彤, 文刚, 黄廷林, 等. 水库热分层期沉积物中有机物特性及对好氧反硝化细菌脱氮的影响[J]. 环境科学, 2020, 41(11): 5027-5036.
Wang T, Wen G, Huang T L, et al. Characteristics of organic matter in sediments during the thermal stratification of a reservoir and effects on an aerobic denitrifier[J]. Environmental Science, 2020, 41(11): 5027-5036. DOI:10.3969/j.issn.1000-6923.2020.11.045
[24] 周石磊, 孙悦, 岳哿丞, 等. 雄安新区-白洋淀冬季冰封期水体好氧反硝化菌群落空间分布特征及驱动因素[J]. 环境科学, 2020, 41(5): 2177-2187.
Zhou S L, Sun Y, Yue G C, et al. Spatial distribution characteristics and driving factors of aerobic denitrification bacterial community structure from Baiyangdian Lake in Xiong'an New Area during the winter freezing period[J]. Environmental Science, 2020, 41(5): 2177-2187.
[25] Zhou S L, Sun Y, Li Z X, et al. Characteristics and driving factors of the aerobic denitrifying microbial community in Baiyangdian Lake, Xiong'an New Area[J]. Microorganisms, 2020, 8(5). DOI:10.3390/microorganisms8050714
[26] 杜奕衡, 刘成, 陈开宁, 等. 白洋淀沉积物氮磷赋存特征及其内源负荷[J]. 湖泊科学, 2018, 30(6): 1537-1551.
Du Y H, Liu C, Chen K N, et al. Occurrence and internal loadings of nitrogen and phosphorus in the sediment of Lake Baiyangdian[J]. Journal of Lake Sciences, 2018, 30(6): 1537-1551.
[27] Wang H L, Han J Q, Deng N, et al. Effects of the natural restoration time of abandoned farmland in a semiarid region on the soil denitrification rates and abundance and community structure of denitrifying bacteria[J]. Applied Microbiology and Biotechnology, 2019, 103(4): 1939-1951. DOI:10.1007/s00253-018-09575-0
[28] 周石磊, 孙悦, 张艺冉, 等. 基于UV-vis和EEMs解析白洋淀冬季冰封期间隙水DOM的光谱特征及来源[J]. 环境科学学报, 2020, 40(2): 604-614.
Zhou S L, Sun Y, Zhang Y R, et al. Spectral characteristics and sources of DOM in sediment interstitial water from Baiyangdian Lake in Xiong'an new area during the winter freezing period based on UV-Vis and EEMs[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 604-614.
[29] 周石磊, 孙悦, 苑世超, 等. 岗南水库沉积物间隙水有色溶解有机物的时空分布特征及差异分析[J]. 环境科学, 2020, 41(6): 2635-2645.
Zhou S L, Sun Y, Yuan S C, et al. Temporal and spatial distribution characteristics and difference analysis of chromophoric dissolved organic matter in sediment interstitial water from Gangnan Reservoir[J]. Environmental Science, 2020, 41(6): 2635-2645. DOI:10.3969/j.issn.1000-6923.2020.06.034
[30] Song K S, Shang Y X, Wen Z D, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis[J]. Water Research, 2019, 150: 403-417. DOI:10.1016/j.watres.2018.12.004
[31] Li P H, Hur J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. DOI:10.1080/10643389.2017.1309186
[32] Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969. DOI:10.4319/lo.2008.53.3.0955
[33] Lavonen E E, Kothawala D N, Tranvik L J, et al. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production[J]. Water Research, 2015, 85: 286-294. DOI:10.1016/j.watres.2015.08.024
[34] Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746.
[35] Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. DOI:10.1016/j.orggeochem.2009.03.002
[36] Zhou S L, Zhang Y R, Huang T L, et al. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir[J]. Science of the Total Environment, 2019, 651: 998-1010. DOI:10.1016/j.scitotenv.2018.09.160
[37] Zhang Y L, Liu M L, Qin B Q, et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation[J]. Hydrobiologia, 2009, 627(1): 159-168. DOI:10.1007/s10750-009-9722-z
[38] Lawaetz A J, Stedmon C A. Fluorescence intensity calibration using the Raman scatter peak of water[J]. Applied Spectroscopy, 2009, 63(8): 936-940. DOI:10.1366/000370209788964548
[39] Rogers M B, Firek B, Shi M, et al. Disruption of the microbiota across multiple body sites in critically ill children[J]. Microbiome, 2016, 4(1). DOI:10.1186/s40168-016-0211-0
[40] Hu he, Chen X J, Hou F J, et al. Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology, 2017, 8. DOI:10.3389/fmicb.2017.00606
[41] Jiao S, Chen W M, Wang J L, et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems[J]. Microbiome, 2018, 6(1). DOI:10.1186/s40168-018-0526-0
[42] Li Y, Wu H N Shen Y, et al. Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China[J]. Environmental Pollution, 2019, 246: 753-762. DOI:10.1016/j.envpol.2018.12.087
[43] Zhou J Z, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. mBio, 2011, 2(4). DOI:10.1128/mBio.00122-11
[44] Kernan M R, HelliwelL R C. Partitioning the variation within the acid neutralizing capacity of surface waters in Scotland in relation to land cover, soil and atmospheric depositional factors[J]. Science of the Total Environment, 2001, 265(1-3): 39-49. DOI:10.1016/S0048-9697(00)00648-3
[45] 周石磊, 孙悦, 张艺冉, 等. 雄安新区-白洋淀冬季冰封期水体溶解性有机物的空间分布、光谱特征及来源解析[J]. 环境科学, 2020, 41(1): 213-223.
Zhou S L, Sun Y, Zhang Y R, et al. Spatial distribution, spectral characteristics, and sources analysis of dissolved organic matter from Baiyangdian Lake in Xiong'an New District during the winter freezing period[J]. Environmental Science, 2020, 41(1): 213-223.
[46] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3-4): 239-254. DOI:10.1016/S0304-4203(03)00072-0
[47] Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21): 8142-8149.
[48] 卢松, 江韬, 张进忠, 等. 两个水库型湖泊中溶解性有机质三维荧光特征差异[J]. 中国环境科学, 2015, 35(2): 516-523.
Lu S, Jiang T, Zhang J Z, et al. Three-dimensional fluorescence characteristic differences of dissolved organic matter (DOM) from two typical reservoirs[J]. China Environmental Science, 2015, 35(2): 516-523.
[49] Sun Z Y, Lv Y K, Liu Y X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1[J]. Bioresource Technology, 2016, 220: 142-150. DOI:10.1016/j.biortech.2016.07.110
[50] Su J F, Wang Z, Huang T L, et al. Simultaneous removal of nitrate, phosphorous and cadmium using a novel multifunctional biomaterial immobilized aerobic strain Proteobacteria Cupriavidus H29[J]. Bioresource Technology, 2020, 307. DOI:10.1016/j.biortech.2020.123196
[51] Bai Y H, Su J F, Wen Q, et al. Characterization and mechanism of Mn(Ⅱ)-based mixotrophic denitrifying bacterium (Cupriavidus sp. HY129) in remediation of nitrate (NO3--N) and manganese (Mn(Ⅱ)) contaminated groundwater[J]. Journal of Hazardous Materials, 2020, 408. DOI:10.1016/j.jhazmat.2020.124414
[52] Yasin N H M, Sanchez-Torres V, Maeda T. Enhanced reduction of waste activated sludge at a low temperature by locally isolated strains Pseudomonas sp. VNT and Aeromonas sp. VNT[J]. Bioresource Technology, 2014, 174: 134-141. DOI:10.1016/j.biortech.2014.10.005
[53] Chen M X, Wang W C, Feng Y, et al. Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02[J]. Bioresource Technology, 2014, 167: 456-461. DOI:10.1016/j.biortech.2014.06.001
[54] Yang N, Zhan G Q, Li D P, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2019, 356: 506-515. DOI:10.1016/j.cej.2018.08.161
[55] Yang N, Zhan G Q, Wu T T, et al. Effect of air-exposed biocathode on the performance of a Thauera-dominated membraneless single-chamber microbial fuel cell (SCMFC)[J]. Journal of Environmental Sciences, 2018, 66: 216-224. DOI:10.1016/j.jes.2017.05.013
[56] Caro-Quintero A, Auchtung J, Deng J, et al. Genome sequencing of five Shewanella baltica strains recovered from the oxic-anoxic interface of the Baltic Sea[J]. Journal of Bacteriology, 2012, 194(5). DOI:10.1128/JB.06468-11
[57] Jiang M, Zheng X, Liu H, et al. Shewanella oneidensis MR-1 improving denitrification performance via influencing electron competition and distribution[J]. Bioresource Technology Reports, 2020, 10. DOI:10.1016/j.biteb.2020.100381
[58] Chen Q, Ni J R. Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification[J]. Journal of Bioscience and Bioengineering, 2012, 113(5): 619-623. DOI:10.1016/j.jbiosc.2011.12.012
[59] Huang W Y, She Z L, Gao M C, et al. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity[J]. Science of the Total Environment, 2019, 651: 859-870. DOI:10.1016/j.scitotenv.2018.09.218
[60] Wang T, Dang Q F, Liu C S, et al. Heterotrophic nitrogen removal by a newly-isolated alkalitolerant microorganism, Serratia marcescens W5[J]. Bioresource Technology, 2016, 211: 618-627. DOI:10.1016/j.biortech.2016.03.142
[61] Liang D H, Hu Y Y, Cheng J H, et al. Simultaneous sulfamethoxazole biodegradation and nitrogen conversion in low C/N ratio pharmaceutical wastewater by Achromobacter sp. JL9[J]. Science of the Total Environment, 2020, 703. DOI:10.1016/j.scitotenv.2019.135586
[62] Sánchez C, Minamisawa K. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions[J]. FEMS Microbiology Letters, 2018, 365(5). DOI:10.1093/femsle/fny015