2. 中国海洋大学海洋环境与生态教育部重点实验室, 青岛 266100
2. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
As是自然界中对人体有害的元素, 人类活动排放占大气As排放量的57%[1].大气中的As主要来自金属的冶炼、化石燃料燃烧以及农药使用等[2].As在大气介质中主要以颗粒物形式存在, 是潜在的有毒环境污染物.大气颗粒物中的As超过一定浓度可增加人类肺癌的风险[3].利用[GEOS]-Chem模型模拟结果表明, 中国东部是大气As浓度最高值区之一, 存在较高癌症健康风险[4].对中国7个省份和地区的TSP中As研究发现, 不同地区气溶胶中As的季节变化存在显著差异, 不同的季节模式受气候和供暖排放的影响[5].中国台湾台南市[6]和青岛市[7]的研究表明, As在细粒子中的浓度高于粗粒子, 主要受人为源影响.气溶胶中As的干湿沉降是近海海水中As的重要来源, 约占海水As来源的10%, 对近岸海水以及沉积物中As的积累有重要贡献[8].
黄渤海是中国近海海域, 被东亚主要经济区所环绕, 是人为影响最严重的海域之一.冬季, 中国北方供暖期间, 霾天频发, 燃煤供暖和生物质燃烧会加重大气As污染[9], 在冬季风的影响下可输送至黄渤海.长江三角洲等东部沿海地区污染物也可经南向气团输送至黄渤海.黄渤海气溶胶中As的输送路径、As空间分布以及季节变化等还少见报道.因此, 本文采集2017~2018年冬、春和夏季黄渤海走航TSP样品, 分析了As、As(Ⅴ)和As(Ⅲ)浓度, 结合HYSPLIT后向轨迹模型以及水溶性离子浓度, 讨论黄渤海气溶胶中As的空间分布、季节变化、来源和沉降通量.
1 材料与方法 1.1 采样地点2017年冬季(2017年12月19日至2018年1月9日)与2018年春季(2018年3月18日至2018年4月16日)和2018年夏季(2018年7月24日至2018年8月10日), 乘“东方红2号”在黄渤海海域进行走航采样(图 1).TSP样品用KC-1000(崂山电子)大流量采样器采集, 采样膜为500℃高温处理的石英纤维膜(Whatman 41), 采样流量为1.05 m3 ·min-1, 采样器位于船舶顶层甲板, 距离海面约15 m.为了避免船舶尾气的影响, 仅在开船时采样, 每个样品累积采样时间24 h.采样完毕后, 将采样膜对折后放入聚乙烯封口袋中, 置于-20℃条件下保存, 空白膜与样品膜用相同方法处理.风速、风向、气温和相对湿度等气象参数由船舶携带的自动观测仪器测定.
![]() |
W、SP和S分别代表冬、春和夏季采样航段编号; 彩色线条代表走航路径, 箭头代表航向 图 1 大气气溶胶采样区域和走航示意 Fig. 1 Study area and aerosol sampling sites along the cruise track in three seasons |
裁取40 cm2采样膜, 加入体积比为3 ∶1硝酸和盐酸混合溶液进行微波消解(EPA 3051A), 过0.45 μm微孔滤膜, 取5 mL过滤后样品, 加入2 mL 5%硫脲-抗坏血酸溶液, 采用原子荧光光谱仪(AFS-920)测定总As; 截取40 cm2采样膜, 用1 mol ·L-1磷酸超声提取1 h, 用0.45 μm微孔滤膜过滤, 取5 mL过滤液加硫脲-抗坏血酸测定总无机As, 取5 mL过滤液直接测定As(Ⅲ), As(Ⅴ)含量为总无机As和As(Ⅲ)的差值.同步分析空白膜和近海沉积物(GBW07314)标准样品, As的回收率为95%.取40 cm2采样膜, 水浴超声萃取45 min, 0.45 μm微孔滤膜过滤, 用离子色谱仪(ICS-3000)测定主要水溶性离子.采用水溶性离子标准储备液作为标准物质, 8种水溶性离子的回收率为94% ~107%.
1.3 后向轨迹分析利用美国国家海洋与大气局(NOAA)的后向轨迹式模型(HYSPLIT4)[10], 以各航段采样站点为起点, 模拟了500 m高度72 h后向轨迹图, 用于气溶胶As的来源及输送路径的分析.
1.4 As干沉降通量通过模型估算As的干沉降按照以下公式计算:
![]() |
(1) |
式中, F为干沉降通量[ng ·(m2 ·s)-1]; ci是大气颗粒物中As的浓度(ng ·m-3), Vi是干沉积速度(cm ·s-1).气象参数(风速、温度等)、颗粒物粒径和采样方式等均影响颗粒物沉降速度[11], 难以准确地确定.Qin等[12]将细颗粒(< 2.5 μm)和粗颗粒(>2.5 μm)沉降速率分别设为0.1 cm ·s-1和0.5 cm ·s-1, 估算了中国近海(黄海、渤海和东海)TPM的干沉降通量, 经计算Vi为0.2 cm ·s-1.因此, 本文选用Vi=0.2 cm ·s-1估算As干沉降通量.
2 结果与讨论 2.1 黄渤海气溶胶中As浓度空间分布和季节变化渤海春、夏季气溶胶中As浓度分别为6.0 ng ·m-3和4.4 ng ·m-3, 均低于冬季结果8.8 ng ·m-3.北黄海春季气溶胶中As含量分别为11.3 ng ·m-3, 都远大于其他季节(冬季:6.8 ng ·m-3; 夏季:5.6 ng ·m-3).夏季北、南黄海As浓度分别为5.6 ng ·m-3和6.0 ng ·m-3, 高于渤海4.4 ng ·m-3, 且各海域差异较小(图 2).冬、春、夏季气溶胶中As浓度的最高值分别出现在区域采样站点W5(10.3 ng ·m-3)、SP7(14.0 ng ·m-3)和S6(16.8 ng ·m-3)(图 3).渤海属于内海, 北黄海是半封闭海域, 被山东、辽宁、河北、天津、北京以及韩国等经济区包围, 受人为活动排放污染物的影响大于南黄海.
![]() |
图 2 黄渤海各季节气溶胶中As和TSP浓度 Fig. 2 Average concentrations of As and TSP in the Bohai Sea and Yellow Sea in three seasons |
![]() |
W、SP和S分别代表冬、春和夏季采样航段编号 图 3 黄渤海各季节气溶胶中TSP和As的浓度空间分布 Fig. 3 Distributions of As and TSP in the Bohai Sea and Yellow Sea in three seasons |
从季节变化来看, 黄渤海海域2017年冬季航次气溶胶中As浓度(6.6 ng ·m-3)高于2018年夏季(5.5 ng ·m-3), 明显高于2018年春季(4.4 ng ·m-3)(图 2), 这可能与气溶胶中As的来源的季节差异有关.与国内部分城市对比发现, 黄渤海气溶胶的As含量小于保定[9](131~233 ng ·m-3)、郑州[13](28.7 ng ·m-3)、延吉市[14](11.9 ng ·m-3)和中国7地区PM2.5中As平均浓度(湖南、河北、湖北、山西、云南和上海等)[15] (11.3 ng ·m-3).本研究的浓度与青岛市[7](6.0 ng ·m-3)、兰州[14](6.68 ng ·m-3)和上海[18][(6.6±4.7)ng ·m-3]的浓度相近(表 1).
![]() |
表 1 黄渤海及其他地区气溶胶中As浓度比较 Table 1 Concentrations of As over the Bohai Sea and Yellow Sea compared with other sites around the world |
2.2 As的形态
冬季, 黄渤海海域As(Ⅴ)和As(Ⅲ)的浓度分别为4.9 ng ·m-3和1.7 ng ·m-3, 均高于夏季测定值4.5 ng ·m-3和1.0 ng ·m-3, 表现为冬季>夏季, As(Ⅴ)和As(Ⅲ)浓度的季节差异与As分布一致.气溶胶中As主要以As(Ⅴ)的形式存在, 这与之前在北京[5]和Wuelva[19]气溶胶中As的形态分布相同.相较于As(Ⅴ), As(Ⅲ)具有更强的生物毒性.冬、夏季海洋气溶胶中As(Ⅲ)/As(Ⅴ)比值分别为0.41和0.21, 这可能与陆源大气污染排放组成和大气氧化性差异有关.石绍萱等[18]对北京PM2.5中砷污染特征研究发现, 夏季As(Ⅲ)/As(Ⅴ)比值远低于其他季节.夏季高温强辐射促进O3等氧化基团生成, 海洋大气环境氧化性增强, 有利于颗粒物中As(Ⅲ)向As(Ⅴ)的转化, 导致As(Ⅲ)/As(Ⅴ)比值较小.
2.3 气溶胶中As和As/TSP的含量及其与其它参数的关系黄渤海气溶胶中TSP浓度为20.26~137.84 μg ·m-3, 季节变化较为明显, 呈现冬季(78.2 μg ·m-3)与夏季(73.0 μg ·m-3)相近, 大于春季(46.7 μg ·m-3)的季节变化趋势.
黄渤海气溶胶中As、As(Ⅴ)和As(Ⅲ)和TSP含量不存在显著的相关关系(P>0.05).相反, 北京大气气溶胶As形态中, As及As(Ⅲ)和As(Ⅴ)均与TSP呈现显著的正相关性[5].As的含量与风速呈显著负相关(P < 0.01), 表明气象扩散条件较好时As污染不易累积.其他研究也表明, 气象因素如风速、温度、湿度和太阳辐射等, 均是影响As在气溶胶中分布的重要因素[20].
相较于质量浓度, As在TSP中的质量分数(As/TSP)能更好地反映As在颗粒物上的富集程度.As/TSP平均数和范围分别为(μg ·g-1):冬季95.5(44.0~176.6)、春季83.9(35.1~262.2)和夏季81.4(6.7~279.7), 季节差异可能是由于陆地污染物排放的季节差异和气象因素不同造成的.在保定的研究结果表明, 冬季As在TSP中粒径分布主要集中在粗模态(PM2.5~10), 陆地向海洋传输过程中, 粗颗粒逐渐沉降, 细颗粒物占比增加, 使冬季As/TSP与TSP存在显著负相关(r=0.69, P < 0.05).春季则呈现显著的正相关(r=0.94, P < 0.01), 这可能与春季受陆地和海洋气团的混合影响, 大气颗粒物来源不同和粒径差异有关.夏季相关性不明显(图 4).
![]() |
春季中黑色方块表示异常值不参与方程拟合 图 4 黄渤海各季节气溶胶As/TSP随TSP变化 Fig. 4 Correlationships between As/TSP and TSP in the Bohai Sea and Yellow Sea in three seasons |
整体上来看, 气溶胶中As与水溶性离子之间均不存在显著相关性(表 2).但冬季As/TSP与K+/TSP存在显著的相关性(表 3), K+可以作为生物质燃烧的示踪剂, 表征海洋气溶胶受到陆地生物质燃烧的影响[21], 表明冬季陆地生物质燃烧是气溶胶中As的重要来源, 而在夏季生物质燃烧较少, 这种相关性不明显.
![]() |
表 2 As与水溶性离子的相关性 Table 2 Correlations between As and water-soluble ions in two seasons |
![]() |
表 3 As/TSP与水溶性离子质量浓度的相关性1) Table 3 Correlations between As/TSP and mass concentration of water-soluble ions in two seasons |
2.4 后向轨迹分析
从2017年冬季、2018年春季和夏季黄渤海海域后向轨迹分析可以看到(图 5), 黄渤海海域气团来源季节差异明显.
![]() |
图 5 2017年冬季、2018年春季和夏季黄渤海海域后向轨迹分析 Fig. 5 Distribution of backward trajectories over the Bohai Sea and Yellow Sea in winter 2017, spring and summer 2018 |
冬季北方供暖排放较多大气污染物, 黄渤海位于中国大陆的下风向, 易受陆地排放污染的影响导致As浓度升高; 而夏季受东南季风的影响, 东部沿海经济区污染气团导致夏季气溶胶As浓度增高.
冬季, 研究海域主要受来自西北高压冷气团的影响, 气团来自蒙古和西伯利亚地区, 经过京津冀、山东半岛和辽东半岛等大气污染较重的区域.有研究表明, As与燃料燃烧排放密切相关[22].影响渤海气团轨迹较短, 移动速度较慢, 携带了京津冀近地面的污染物, 导致渤海气溶胶中As浓度最高为8.8 ng ·m-3.与渤海和北黄海不同, 南黄海部分航段受南向沿岸气团影响, As浓度偏低, 为5.4 ng ·m-3, 而且气团在近海海面有较长时间的停留, 受相对清洁的海洋大气稀释.
春季, 气团主要来自西伯利亚和东南远海两个方向.渤海和北黄海受西北长距离气团的控制.与冬季不同的是, 北黄海气溶胶中As浓度(11.3 ng ·m-3)高于渤海(6.0 ng ·m-3), 这可能是由于到达北黄海的气团移动缓慢, 携带了山东半岛和辽东半岛之间近地面大气污染物有关.而到渤海的气团为高空输送, 携带污染物较少.南黄海, 在来自西北太平洋气团影响下气溶胶中As浓度偏低.春季, 采样期间风速较高, 高空气团较多, 陆地排放污染物影响偏小.
夏季, 影响研究海域的气团主要来自海洋, 大部分气团来自东海, 途经福建、浙江和江苏沿海以及山东半岛, 少部分来自北方蒙古和西太平洋以及日本海.气团来源的变化, 可能是夏季气溶胶中As浓度相较于春季较高的原因.从模拟2015年全球大气As分布发现, 长江三角洲地区和山东中部是As的重要污染源区[4].夏季, 东部沿海地区是气溶胶中As的主要来源.但渤海和北黄海气溶胶中As浓度仍然较高.值得注意的是, S5和S6采样点As浓度显著升高, 分别为16.3 ng ·m-3和16.8 ng ·m-3, 是夏季气溶胶中As平均浓度的3倍左右.影响S5和S6气团路径为:西太平洋日本南部日本海韩国黄海, 因此日本和韩国是该点气溶胶中高浓度As的主要原因.
2.5 沉降通量气溶胶干沉降是海水中重金属的重要来源[23, 24].本研究估算了黄渤海走航采样期间气溶胶中As的干沉积通量.冬、春和夏季, As干沉降通量分别为1.15、0.77和0.97 μg ·(m2 ·d)-1, 冬、夏季高于春季.黄渤海气溶胶As干沉降通量平均为0.95 μg ·(m2 ·d)-1, 低于沿海城市和郊区As的沉降通量[7, 25, 26, 27], 明显低于在徐州北郊的观测结果[28](表 4).
![]() |
表 4 黄渤海与各地区As沉降通量对比 Table 4 Atmospheric dry deposition fluxes of As in this study and comparison with other regions |
3 结论
(1) 黄渤海海域气溶胶中As浓度冬、夏季高于春季, 存在明显的季节变化特征.春、夏季渤海和北黄海远大于南黄海; 冬季渤海高于北黄海和南黄海, 南北黄海差异较小.冬、夏季海洋气溶胶中As(Ⅲ)/As(Ⅴ)比值分别为0.41和0.21.冬、春和夏季As/TSP平均值分别为95.5、83.9和81.4 μg ·g-1, 冬季高于春季和夏季.
(2) 后向轨迹分析表明, 冬季气团受京津冀、山东半岛和辽东半岛地区大气污染物输送的影响明显; 夏季以东海沿岸气团为主, 受中国东部和东南沿海城市排放的影响明显, 来自日、韩的气团具有最高的As浓度; 春季影响气团主要为西北内陆和东南远海, As浓度偏低.
(3) 冬季气溶胶中As/TSP与K+/TSP显著相关, 表明其受陆地生物质燃烧影响较大.黄渤海气溶胶中As的沉降通量为0.95 μg ·(m2 ·d)-1, 冬季>夏季>春季.
[1] | Wang S L, Mulligan C N. Occurrence of arsenic contamination in Canada: sources, behavior and distribution[J]. Science of the Total Environment, 2006, 366(2-3): 701-721. |
[2] | Hedberg E, Gidhagen L, Johansson C. Source contributions to PM10 and arsenic concentrations in central Chile using positive matrix factorization[J]. Atmospheric Environment, 2005, 39(3): 549-561. DOI:10.1016/j.atmosenv.2004.11.001 |
[3] | Yoshikawa M, Aoki K, Ebine N, et al. Correlation between the arsenic concentrations in the air and the SMR of lung cancer[J]. Environmental Health and Preventive Medicine, 2008, 13(4): 207-218. DOI:10.1007/s12199-008-0032-2 |
[4] | Zhang L, Gao Y, Wu S L, et al. Global impact of atmospheric arsenic on health risk: 2005 to 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 13975-13982. DOI:10.1073/pnas.2002580117 |
[5] | Yang G S, Ma L L, Xu D D, et al. Levels and speciation of arsenic in the atmosphere in Beijing, China[J]. Chemosphere, 2012, 87(8): 845-850. DOI:10.1016/j.chemosphere.2012.01.023 |
[6] | Tsai Y I, Kuo S C, Lin Y H. Temporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southern Taiwan[J]. Atmospheric Environment, 2003, 37(24): 3401-3411. DOI:10.1016/S1352-2310(03)00358-3 |
[7] |
李鹏志, 李茜, 石金辉, 等. 夏季青岛大气粗细粒子中微量元素的浓度、溶解度及干沉降通量[J]. 环境科学, 2018, 39(7): 3067-3074. Li Z P, Li Q, Shi J H, et al. Concentration, solubility, and dry deposition flux of trace elements in fine and coarse particles in Qingdao during summer[J]. Environmental Science, 2018, 39(7): 3067-3074. |
[8] | Liang X X, Tian C G, Zong Z, et al. Flux and source-sink relationship of heavy metals and arsenic in the Bohai Sea, China[J]. Environmental Pollution, 2018, 242: 1353-1361. DOI:10.1016/j.envpol.2018.08.011 |
[9] | Xie J J, Yuan C G, Xie J, et al. Fraction distribution of arsenic in different-sized atmospheric particulate matters[J]. Environmental Science and Pollution Research, 2019, 26(30): 30826-30835. DOI:10.1007/s11356-019-06176-w |
[10] | Draxler R R, Hess G D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308. |
[11] | Zhu L, Chen Y, Guo L, et al. Estimate of dry deposition fluxes of nutrients over the East China Sea: the implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans[J]. Atmospheric Environment, 2013, 69: 131-138. DOI:10.1016/j.atmosenv.2012.12.028 |
[12] | Qin X F, Wang F W, Deng C R, et al. Seasonal variation of atmospheric particulate mercury over the East China Sea, an outflow region of anthropogenic pollutants to the open Pacific Ocean[J]. Atmospheric Pollution Research, 2016, 7(5): 876-883. DOI:10.1016/j.apr.2016.05.004 |
[13] |
闫广轩, 张朴真, 黄海燕, 等. 郑州-新乡冬季PM2.5中元素浓度特征及其源分析[J]. 环境科学, 2019, 40(5): 2027-2035. Yan G Z, Zhang P Z, Huang H Y, et al. Concentration characteristics and source analysis of PM2.5 during wintertime in Zhengzhou-Xinxiang[J]. Environmental Science, 2019, 40(5): 2027-2035. |
[14] |
扈孟楠, 金光洙, 王爽, 等. 延吉市大气颗粒物中重金属的分布特征和风险评价[J]. 延边大学农学学报, 2020, 42(4): 50-57. Hu M N, Jin G S, Wang S, et al. Distribution characteristics and risk assessment of heavy metals in air particulates in Yanji City[J]. Journal of Agricultural Science Yanbian University, 2020, 42(4): 50-57. |
[15] | Wang J W, Wan Y J, Cheng L, et al. Arsenic in outdoor air particulate matter in China: tiered study and implications for human exposure potential[J]. Atmospheric Pollution Research, 2020, 11(4): 785-792. DOI:10.1016/j.apr.2020.01.006 |
[16] |
程妍, 刘小云, 夏智恒, 等. 2015-2018年兰州市两区大气PM2.5中10种金属和类金属元素浓度变化[J]. 卫生研究, 2021, 50(1): 79-85. Cheng Y, Liu X Y, Xia Z H, et al. Concentration changes of ten metal and metalloid elements in atmospheric PM2.5 in two districts of Lanzhou City from 2015 to 2018[J]. Journal of Hygiene Research, 2021, 50(1): 79-85. |
[17] | 马瑾. 上海市大气细颗粒物中元素分析及来源解析[D]. 上海: 上海师范大学, 2018. |
[18] |
石绍萱, 杨艳蓉, 秦娟娟, 等. 北京市PM2.5中砷污染特征[J]. 环境科学, 2020, 41(1): 57-64. Shi S X, Yang Y R, Qin J J, et al. Chemical characteristics of arsenic in PM2.5 in Beijing[J]. Environmental Science, 2020, 41(1): 57-64. |
[19] | de la Campa A M S, de la Rosa J D, Sánchez-Rodas D, et al. Arsenic speciation study of PM2.5 in an urban area near a copper smelter[J]. Atmospheric Environment, 2008, 42(26): 6487-6495. |
[20] | Gao J J, Wang K, Wang Y, et al. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China[J]. Environmental Pollution, 2018, 233: 714-724. |
[21] | Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4): 955-966. |
[22] | Gao J J, Tian H Z, Cheng K, et al. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability[J]. Atmospheric Environment, 2014, 99: 257-265. |
[23] | Chen Y, Paytan A, Chase Z, et al. Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D5). DOI:10.1029/2007JD009110 |
[24] | Duan X Y, Li Y X. Distributions and sources of heavy metals in sediments of the Bohai Sea, China: a review[J]. Environmental Science and Pollution Research, 2017, 24(32): 24753-24764. DOI:10.1007/s11356-017-0330-6 |
[25] |
张国忠, 崔阳, 潘月鹏, 等. 渤海湾大气金属元素沉降和来源解析研究[J]. 环境科学学报, 2019, 39(8): 2708-2716. Zhang G Z, Cui Y, Pan Y P, et al. Deposition fluxes and source apportionment of atmospheric trace metals in the Bohai Bay[J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2708-2716. |
[26] | Wu Y C, Zhang J P, Ni Z X, et al. Atmospheric deposition of trace elements to Daya Bay, South China Sea: fluxes and sources[J]. Marine Pollution Bulletin, 2018, 127: 672-683. |
[27] | Morera-Gómez Y, Santamaría J M, Elustondo D, et al. Determination and source apportionment of major and trace elements in atmospheric bulk deposition in a Caribbean rural area[J]. Atmospheric Environment, 2019, 202: 93-104. |
[28] |
栾慧君, 塞古, 徐蕾, 等. 徐州北郊大气降尘重金属污染特征与风险评价[J]. 中国环境科学, 2020, 40(11): 4679-4687. Luan H J, Mohamed-Conde S, Xu L, et al. Characteristics and risk assessment of heavy metals from atmospheric deposition in northern suburban of Xuzhou[J]. China Environmental Science, 2020, 40(11): 4679-4687. |