2. 中国海洋大学海洋环境与生态教育部重点实验室, 青岛 266100
2. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
在中国沿海城市, 因淡水资源短缺, 生活用水和工业生产常采用海水直接代替淡水作为原水进行利用[1].例如, 将海水用于海产品加工、道路清洗、冲厕和消防等[2]; 海水也常用作工业冷却水, 广泛应用于钢铁、石化、机械火电和核电等行业[3].同时, 海水养殖业的快速发展, 也产生大量养殖废水[4].这些含盐废水中除含有大量无机盐外, 还存在有机物、氮和磷等污染物, 若未经处理排放会对沿海生态系统造成巨大破坏[5].生物法因具有经济、环保等优点[6], 广泛应用于市政和工业废水的处理.然而, 高浓度的无机盐会改变微生物群落结构, 影响有机物和营养物的去除[7].有研究表明, 无机盐会抑制亚硝酸盐氧化菌(nitrite-oxidizing bacteria, NOB), 而氨氧化菌(ammonia oxidizing bacteria, AOB)具有更强的适应能力, 在好氧段造成亚硝酸盐的积累[8], 形成短程硝化.
通过耐盐驯化, 可提高污泥中微生物对盐度的适应能力[9], 且驯化方式对污泥的耐盐性也会产生影响.有研究表明, 逐步提升盐度和高盐环境直接驯化污泥对反应器性能和微生物群落会产生不同的影响[10, 11].然而, 快速提升盐度和缓慢提升盐度的驯化方式, 对活性污泥特性及微生物群落结构的影响却很少研究.本实验采用序批式生物反应器(sequencing batch reactor, SBR)处理含盐废水, 考察了提盐速率对COD降解和脱氮性能的影响, 以及盐度和曝气量对亚硝酸盐积累率(nitrite accumulation rate, NAR)的影响.同时, 本文研究盐度对污泥沉降性能和胞外聚合物(extracellular polymeric substances, EPS)的影响, 探究驯化过程中微生物群落结构的演变, 以期为快速驯化具有良好特性的耐盐污泥提供理论参考与支撑.
1 材料与方法 1.1 实验装置和进水水质本实验装置如图 1所示, SBR主体是有机玻璃材质的圆柱体, 高25 cm, 直径22 cm, 有效容积为8 L, 温度通过电热丝控制在30℃左右.接种污泥取自青岛市海泊河污水处理厂, 混合液悬浮固体浓度为4 000 mg·L-1左右.进水为模拟含盐有机废水, 主要成分为葡糖糖、NH4Cl和KH2PO4, 浓度分别约为200、150和9 mg·L-1, pH为7.3~8.2(投加NaHCO3), 盐度和微量元素均由海水晶提供.
![]() |
图 1 SBR装置示意 Fig. 1 Schematic of the SBR |
通过逐步提升盐度来驯化污泥, 设置盐度梯度为5‰、10‰、15‰、20‰、25‰和30‰, SBR1、SBR2和SBR3每个盐度梯度的驯化时间分别为5、10和15 d, 盐度达到30‰后, 继续运行.反应器每天运行4个周期, 每个周期分6个阶段:进水(5 min)、缺氧(60 min)、曝气(180 min)、沉淀(30 min)、出水(5 min)和闲置(80 min).反应器运行115 d, 其中阶段1(1~71 d)曝气量1.0 L·min-1, 阶段2(71~119 d)曝气量0.5 L·min-1.
1.3 EPS的提取取50 mL污泥混合液, 在4 000 r·min-1下离心10 min后, 弃去上清液后加入等体积的0.9% NaCl溶液, 摇匀后80℃水浴30 min, 在4 000 r·min-1下离心10 min后, 取上清液经0.45 μm滤膜过滤后即为EPS.EPS主要成分为蛋白质和多糖, 两者之和即为EPS的含量.
1.4 水质指标测定方法本实验过程中对COD、NH4+-N、NO2--N和NO3--N等常规水质指标进行监测, 每两天测定一次.NH4+-N、NO2--N和NO3--N分别采用水杨酸比色法、N-(1-萘基)-乙二胺分光光度法和紫外分光光度法测定; COD采用重铬酸钾法测定; MLSS采用重量法测定; 蛋白质采用Folin-酚分光光度法测定, 多糖采用蒽酮比色法测定.
另外, 当SBR1运行第113 d, SBR3运行第18、69和113 d时(盐度分别为0‰、15‰和30‰)取活性污泥样品, 命名为F-3、T-1、T-2和T-3.
1.5 DNA提取和PCR扩增采用SDS方法对样本的基因组DNA进行提取, 利用琼脂糖凝胶电泳检测DNA的纯度和浓度, 使用无菌水稀释样本DNA至1 ng·μL-1.以稀释后的基因组DNA为模板, 采用引物515F、806R和高效高保真酶对16S rDNA的V4区域进行扩增, 确保扩增效率和准确性.
1.6 高通量测序与OTUs聚类采用Illumina NovaSeq测序平台进行双末端测序(paired end), 经过Reads拼接过滤, OTUs(operational taxonomic units)聚类, 进行物种注释及丰度分析; 通过α多样性(α diversity)和β多样性分析(β diversity), 可以揭示出样品中物种组成和样本间群落结构的差异.
2 结果与讨论 2.1 不同提盐速率下盐度对COD去除效果的影响如图 2所示, 各个盐度阶段初期, COD去除率均出现明显的下降, 表明微生物的活性受到抑制.经过长时间的驯化, COD去除率达到85%左右.当SBR1盐度低于20‰, COD去除率高于80%; 盐度高于20‰, COD去除率降至70%左右, 且需较长适应时间达到较好的去除效果.相较于SBR1, SBR2能够很快适应盐度变化.SBR3仅在71~83 d(活性污泥恢复期)COD去除率较低, 其它期间, 均表现出良好的COD降解能力.Wang等[12]的研究结果与本研究的类似, 当盐度低于30‰, COD去除率高于90%, 但盐度提升至60‰, 去除率降至33%.也有研究报道, 采用活性污泥法处理皮革废水[13], 出水COD平均为225 mg·L-1, 去除率约为70%.这种差异可能是由于实际废水中含有难降解有机物且有机负荷较高.
![]() |
图 2 不同提盐速率下出水COD的变化 Fig. 2 Variation in COD in effluent at different rates of salinity increase |
图 3所示, 提盐速率和盐度对NH4+-N去除影响较小.类似地, Navada等[14]的研究也发现提盐速率对氨氧化能力影响较小.当SBR1盐度提升至30‰, 出水NO2--N浓度高于NO3--N, 表明高盐抑制NO2--N向NO3--N的转化[15], 实现短程硝化.当SBR2盐度为20‰, NO2--N出现积累, 但NAR较低, 值得注意的是, 出水NO3--N大幅减少, 由22.67 mg·L-1降至13.39 mg·L-1.SBR3盐度低于20‰, 出水以NO3--N为主, 脱氮途径仍为传统的硝化-反硝化; 盐度为30‰, 出水NO3--N浓度极低, NO2--N浓度为8.69 mg·L-1.
![]() |
图 3 不同提盐速率下出水氮素的变化 Fig. 3 Variation in nitrogen in effluent at different rates of salinity increase |
图 4为不同提盐速率下NAR和总氮(total nitrogen, TN)去除率的变化.SBR1盐度为25‰, NAR突然升高; 盐度升至30‰, NAR约为60%; 降低曝气量后NAR明显升高, 稳定在90%左右, TN去除率约为75%.当SBR2和SBR3盐度高于20‰, 均实现NO2--N积累, NAR和TN去除率与SBR1相似.
![]() |
图 4 不同提盐速率下NAR和TN去除率的变化 Fig. 4 Variation in NAR and TN removal rates in different rates of salinity increase |
图 5为特定周期内NH4+-N、NO2--N和NO3--N的变化, 其中图 5(a)~5(c)为67 d周期实验, 图 5(d)为95 d周期实验.由图 5(a)可知, 盐度为30‰, SBR1实现短程硝化, 且较高曝气量不利于NO2--N积累[16].图 5(b)所示, SBR2好氧段末期NO2--N浓度很低, 但整个周期仍有一定的NO2--N, 推测部分NH4+-N通过短程硝化-反硝化得以去除, 提高碳源利用率[17], 降低出水TN.由图 5(c)和5(d)可知, 盐度为实现短程硝化的决定性因素, 盐度为15‰, 缺氧段末期NO2--N和NO3--N较高; 盐度为25‰, 周期内NO3--N浓度较低, 缺氧段反硝化主要为NO2--N.
![]() |
图 5 特定周期内SBR1、SBR2和SBR3中氮素的变化 Fig. 5 Variation in nitrogen in specific cycle of SBR1, SBR2, and SBR3 |
上述实验结果表明, 20‰的盐度为实现短程硝化的阈值, 较低的曝气有利于NO2--N积累, 提高碳源利用率, 提高脱氮性能.
2.3 不同提盐速率下盐度对SVI的影响通过污泥体积指数(sludge volume index, SVI)表征污泥的沉降性能.如图 6所示, 驯化初期SVI约为50 mL·g-1, 盐度提升后, SBR1和SBR3污泥SVI显著下降, 在50 d降至30 mL·g-1左右.推测高盐环境抑制了丝状菌生长, 污泥絮体紧密结合, 提高污泥的沉降性能[18].SBR2污泥SVI随着盐度提升无明显变化, 为50~60 mL·g-1, 但恢复期出现污泥膨胀现象.
![]() |
图 6 不同提盐速率下SVI的变化 Fig. 6 Variation in SVI in different rates of salinity increase |
图 7为不同提盐速率下EPS中蛋白质和多糖含量的变化情况.结果表明, EPS含量(以VSS计, 下同)随着盐度提升而增加.最初EPS主要为蛋白质, 多糖很低.SBR1盐度为20‰, 多糖为13.9 mg·g-1(41 d); SBR2和SBR3盐度为15‰, 多糖升至13.5 mg·g-1(41 d)和14.5 mg·g-1(67 d).有研究发现, 多糖可减轻钠离子对细胞的压力, 在保护细胞中发挥重要作用[19].本实验, 15‰的盐度为微生物大量分泌多糖的阈值.也有研究报道, 蛋白质随着盐度升高而降低[20], 本实验中蛋白质含量明显升高, 该差异可能是由于污泥特性和最终的盐度不同所造成.
![]() |
图 7 不同提盐速率下EPS的变化 Fig. 7 Variation in EPS concentration in different rates of salinity increase |
Shannon指数常用来评价微生物多样性, Shannon指数越大, 说明微生物多样性越高[21].如表 1所示, 随着盐度提升, SBR3活性污泥Shannon指数由8.06降至6.91(盐度15‰)和6.17(盐度30‰).而SBR1盐度为30‰, 活性污泥Shannon指数为4.34.表明快速提盐驯化活性污泥会显著降低微生物多样性.
![]() |
表 1 活性污泥多样性指数 Table 1 Diversity of activated sludge samples |
根据测序结果, 绘制Venn图(图 8).样品T-3与T-2共有物种同T-1与T-2共有物种对比, 明显减少, 表明部分微生物难以适应高盐环境而被淘汰.当盐度为30‰, 相比SBR1, SBR3的OTUs数目更多, 说明较长的驯化时间能够使微生物更好适应高盐环境[22].
![]() |
图 8 OTUs分布维恩图 Fig. 8 Venn diagrams showing the distribution of OTUs |
对门水平上相对丰度排名前10的菌门(图 9)进行分析, 样品中主要包括: Proteobacteria、Actinobacteria、Bacteroidota、Chloroflexi和Planctomycetes菌门.据报道, 前4个菌门在很多环境样品中占比较大[21]; Proteobacteria和Bacteroidota存在与脱氮除磷相关的功能菌[23]; Planctomycetes存在脱氮菌属, 且在海水微生物群落构成中含量较多[24].当SBR3盐度由0提升至30‰, Proteobacteria由20.74%(T-1)增加至40.26%(T-3), 相应SBR1盐度为30‰时, Proteobacteria占比为34.18%(F-3).快速提盐后, Actinobacteria在SBR1占比为35.42%, 高于SBR3的17.43%, 表明Actinobacteria能够抵御快速提盐的选择压力, 并成为高盐环境下的优势菌门.
![]() |
图 9 门水平细菌群落结构及分布 Fig. 9 Bacterial community structure and distribution of samples at the phylum level |
本实验还从属水平上对4个样品中前35位的微生物菌属进行分析, 绘制相对丰度柱状图(图 10).随着盐度增加, Candidatus_Competibacter和Ferruginibacter相对丰度由2.22%和1.69%均降至为0; 而Micropruina受盐度影响较小, 经快速提盐和缓慢提盐, 相对丰度分别为34.1%和11.4%, 具有良好的耐盐性.Huang等[25]的研究发现, 当盐度为12‰, 在缺氧/好氧交替运行模式下, Candidatus_Competibacter在反硝化过程中起主要作用; 据报道, 污水处理厂的活性污泥样品中普遍含有Ferruginibacter, 能够水解有机物, 在高COD浓度的环境中相对丰度较高[26].Wang等[27]的研究也发现Micropruina具有很强的耐盐特性, 盐度为0~80‰, Micropruina在生物膜中相对丰度较高.
![]() |
1表示Vitellibacter, 2表示Candidatus_Competibacter, 3表示Ferruginibacter, 4表示Defluviimonas, 5表示Lewinella, 6表示Maribacter, 7表示Pseudomonas, 8表示Sva0081_sediment_group, 9表示Denitromonas, 10表示MND1, 11表示TM7a, 12表示SM1A02, 13表示Anaeromyxobacter, 14表示Marinicella, 15表示Defluviicoccus, 16表示Oceanicaulis, 17表示Pseudolabrys, 18表示Denitratisoma, 19表示Mariprofundus, 20表示Flavihumibacter, 21表示Arenimonas, 22表示Alcanivorax, 23表示Bradyrhizobium, 24表示Terrimonas, 25表示IheB3-7, 26表示Micropruina, 27表示9M32, 28表示Ignavibacterium, 29表示Arenibacter, 30表示Oleiagrimonas, 31表示Paracoccus, 32表示Propioniciclava, 33表示Nitrosomonas, 34表示unidentified_MBNT15, 35表示Truepera 图 10 属水平细菌群落相对丰度柱状图 Fig. 10 Bacterial community relative abundance of samples at the genus level |
盐度为30‰, 优势菌属发生变化, Denitromonas、TM7a和Marinicella的相对丰度明显升高, 快速提盐后占比为3.91%、13.3%和14.5%, 缓慢提盐后占比为7.22%、4.12%和11.6%.推测高盐条件造成菌群间的竞争压力减小, 有利于Denitromonas、TM7a和Marinicella的生长.属于红环菌科的Denitromonas是一种反硝化菌[28], 同时Marinicella可将NO3--N还原为N2[29], 与该系统较强的反硝化性能相一致.提盐速率对Defluviimonas、Maribacter、Denitratisoma和Arenimonas影响较大.快速提盐至30‰, 占比接近于0; 缓慢提盐至30‰, 占比分别为0.712%、0.629%、1.09%和2.13%.据报道, Denitratisoma、Defluviimonas和Arenimonas均具有反硝化脱氮特性[30~32].上述表明, 随着盐度增加, 污泥中反硝化菌群结构发生明显变化; 对比缓慢提盐, 快速提盐后反硝化菌的类别明显减少.
2.7 盐度对氨氧化菌和亚硝酸盐氧化菌的影响为更深入了解盐度对硝化菌的影响, 从属层面对氨氧化菌(Nitrosomonas)和亚硝酸盐氧化菌(Nitrotoga)进行分析(图 11).随着盐度升高, SBR3污泥样品Nitrosomonas相对丰度先降低后升高, 维持在0.3%~0.5%; 然而, Nitrotoga随盐度升高明显减少, 由最初0.948‰降至0.327‰(盐度15‰)及0.052‰(盐度30‰).SBR1污泥样品Nitrotoga相对丰度为0.086‰, 而Nitrosomonas相较于SBR3明显减少.上述表明盐度为15‰, NOB还存在一定的活性, 出水仍以NO3--N为主; 盐度提升至30‰, NOB无法适应高盐环境, 相对丰度急剧减少, 造成NO2--N积累.推测当盐度提升至20‰, 由于NOB减少, 形成短程硝化.
![]() |
图 11 不同盐度下Nitrotoga和Nitrosomonas相对丰度变化 Fig. 11 Variations in Nitrotoga and Nitrosomonas abundance under different salinity levels |
综上所述, 采用逐步提升盐度的方式来驯化活性污泥时, 提盐速率对NH4+-N去除效果影响较小; 对比缓慢提盐(90 d), 污泥经快速提盐驯化(30 d)后, 微生物菌群结构多样性明显降低, 多种反硝化细菌的相对丰度明显降低, 反硝化菌属比较单一.实际污水处理系统运行条件复杂, 且一般需在缺氧段外加大量碳源实现深度脱氮, 而快速提盐的驯化方式使得反硝化细菌相对丰度显著降低, 进而降低碳源的利用率.在实际工程中, 应尽量采用缓慢的提盐速率来驯化活性污泥.
3 结论(1) 快速提盐驯化污泥, COD和氨氮的去除率明显下降; 缓慢提盐驯化污泥, 各盐度梯度下, COD和氨氮的去除率均较高.经过120 d驯化, 3个反应器对污染物的去除效果没有明显差异.
(2) 盐度是实现短程硝化的决定因素, 随着盐度增加, Nitrosomonas(AOB)所受影响较小, 而Nitrotoga(NOB)明显减少.由SBR3推测盐度20‰是实现短程硝化的阈值.
(3) 随着驯化时间增加, 污泥沉降性能更好, 且SVI与盐度没有明显的相关性; EPS中蛋白质受盐度影响较低, 当盐度升高至15‰, 多糖明显增加.
(4) Micropruina、Denitromonas、TM7a、和Marinicella具有良好的耐盐特性, 盐度为30‰, 相对丰度较高; 缓慢提盐有利于Denitratisoma、Defluviimonas、Arenimonas和Denitromonas等反硝化菌属的生长.
[1] |
高忠文, 蔺智泉, 王铎, 等. 我国海水利用现状及其对环境的影响[J]. 海洋环境科学, 2008, 27(6): 671-676. Gao Z W, Lin Z Q, Wang D, et al. Seawater utilization and impact on environment in China[J]. Marine Environmental Science, 2008, 27(6): 671-676. DOI:10.3969/j.issn.1007-6336.2008.06.026 |
[2] | Liu X M, Dai J, Wu D, et al. Sustainable application of a novel water cycle using seawater for toilet flushing[J]. Engineering, 2016, 2(4): 460-469. DOI:10.1016/J.ENG.2016.04.013 |
[3] | Ahmadi M, Jorfi S, Kujlu R, et al. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater[J]. Journal of Environmental Management, 2017, 191: 198-208. |
[4] | Hong J M, Li W B, Lin B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013, 316: 23-30. DOI:10.1016/j.desal.2013.01.015 |
[5] | Ferreira C I A, Calisto V, Otero M, et al. Removal of tricaine methanesulfonate from aquaculture wastewater by adsorption onto pyrolysed paper mill sludge[J]. Chemosphere, 2017, 168: 139-146. DOI:10.1016/j.chemosphere.2016.10.045 |
[6] |
万一平, 马丙瑞, 董俊伟, 等. 盐度对序批式生物膜反应器性能及微生物活性的影响[J]. 中国海洋大学学报, 2019, 49(7): 94-101. Wan Y P, Ma B R, Dong J W, et al. Effects of salinity on performance and microbial activity of sequencing biofilm batch reactor[J]. Periodical of Ocean University of China, 2019, 49(7): 94-101. |
[7] | Wang X G, Yang T Y, Lin B, et al. Effects of salinity on the performance, microbial community, and functional proteins in an aerobic granular sludge system[J]. Chemosphere, 2017, 184: 1241-1249. DOI:10.1016/j.chemosphere.2017.06.047 |
[8] | Wan C L, Yang X, Lee D J, et al. Partial nitrification of wastewaters with high NaCl concentrations by aerobic granules in continuous-flow reactor[J]. Bioresource Technology, 2014, 152: 1-6. DOI:10.1016/j.biortech.2013.10.112 |
[9] |
许睿骁, 李冰, 张勇, 等. 压力环境下活性污泥的耐盐驯化过程[J]. 环境工程学报, 2017, 11(7): 3952-3956. Xu R X, Li B, Zhang Y, et al. Acclimation process of salt-tolerant activated sludge under pressurized condition[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 3952-3956. |
[10] | Naufal M, Wu J H. Stability of microbial functionality in anammox sludge adaptation to various salt concentrations and different salt-adding steps[J]. Environmental Pollution, 2020, 264. DOI:10.1016/j.envpol.2020.114713 |
[11] | Bassin J P, Kleerebezem R, Muyzer G, et al. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors[J]. Applied Microbiology and Biotechnology, 2012, 93(3): 1281-1294. DOI:10.1007/s00253-011-3428-7 |
[12] | Wang Z C, Gao M C, Wang S, et al. Effects of salinity on performance and microbial community structure of an anoxic-aerobic sequencing batch reactor[J]. Environmental Technology, 2015, 36(16): 2043-2051. DOI:10.1080/09593330.2015.1019932 |
[13] |
李新利, 吴迪, 张晶晶, 等. MBBR处理皮革废水中试研究[J]. 中国给水排水, 2017, 33(13): 30-34. Li X L, Wu D, Zhang J J, et al. Comparison between MBBR and activated sludge process for treatment of leather wastewater[J]. China Water & Wastewater, 2017, 33(13): 30-34. |
[14] | Navada S, Vadstein O, Tveten A K, et al. Influence of rate of salinity increase on nitrifying biofilms[J]. Journal of Cleaner Production, 2019, 238. DOI:10.1016/j.jclepro.2019.117835 |
[15] | She Z L, Zhao L T, Zhang X L, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288: 207-215. DOI:10.1016/j.cej.2015.11.102 |
[16] | Isanta E, Reino C, Carrera J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80: 149-158. DOI:10.1016/j.watres.2015.04.028 |
[17] | Jia Y T, Zhou M M, Chen Y C, et al. Insight into short-cut of simultaneous nitrification and denitrification process in moving bed biofilm reactor: Effects of carbon to nitrogen ratio[J]. Chemical Engineering Journal, 2020, 400. DOI:10.1016/j.cej.2020.125905 |
[18] | He H J, Chen Y J, Li X, et al. Influence of salinity on microorganisms in activated sludge processes: a review[J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527. |
[19] | Corsino S F, Capodici M, Torregrossa M, et al. Physical properties and extracellular polymeric substances pattern of aerobic granular sludge treating hypersaline wastewater[J]. Bioresource Technology, 2017, 229: 152-159. DOI:10.1016/j.biortech.2017.01.024 |
[20] | Chen Y J, He H J, Liu H Y, et al. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresource Technology, 2018, 249: 890-899. DOI:10.1016/j.biortech.2017.10.092 |
[21] |
赵婷婷, 乔凯, 王蕾, 等. 淀粉废水处理系统中活性污泥的微生物群落结构及多样性分析[J]. 环境科学, 2020, 41(1): 321-329. Zhao T T, Qiao K, Wang L, et al. Measurements of bacterial community and biodiversity from activated sludge for a wastewater treatment containing starch[J]. Environmental Science, 2020, 41(1): 321-329. |
[22] | Trapani D, Bella G, Mannina G, et al. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation[J]. Bioresource Technology, 2014, 162: 60-69. DOI:10.1016/j.biortech.2014.03.126 |
[23] |
张冰, 吴林蔚, 文湘华. 全国城市污水处理厂中微生物群落的溯源分析[J]. 环境科学, 2019, 40(8): 3699-3705. Zhang B, Wu L W, Wen X H. Potential source environments for microbial communities in wastewater treatment plants (WWTPs) in China[J]. Environmental Science, 2019, 40(8): 3699-3705. |
[24] | Yoon D N, Park S J, Kim S J, et al. Isolation, characterization, and abundance of filamentous members of Caldilineae in activated sludge[J]. The Journal of Microbiology, 2010, 48(3): 275-283. DOI:10.1007/s12275-010-9366-8 |
[25] | Huang W Y, She Z L, Gao M C, et al. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity[J]. Science of the Total Environment, 2019, 651: 859-870. DOI:10.1016/j.scitotenv.2018.09.218 |
[26] | Han X M, Wang Z W, Ma J X, et al. Membrane bioreactors fed with different COD/N ratio wastewater: Impacts on microbial community, microbial products, and membrane fouling[J]. Environmental Science and Pollution Research, 2015, 22(15): 11436-11445. DOI:10.1007/s11356-015-4376-z |
[27] | Wang Z Z, Gao M C, Wei J F, et al. Long-term effects of salinity on extracellular polymeric substances, microbial activity and microbial community from biofilm and suspended sludge in an anoxic-aerobic sequencing batch biofilm reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 275-280. DOI:10.1016/j.jtice.2016.09.005 |
[28] | Zhang Y, Li B, Xu R X, et al. Effects of pressurized aeration on organic degradation efficiency and bacterial community structure of activated sludge treating saline wastewater[J]. Bioresource Technology, 2016, 222: 182-189. DOI:10.1016/j.biortech.2016.10.005 |
[29] | van Duc L, Song B, Ito H, et al. High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment[J]. Chemosphere, 2018, 196: 69-77. DOI:10.1016/j.chemosphere.2017.12.159 |
[30] |
许晓毅, 尤晓露, 吕晨培, 等. 包埋固定化活性污泥脱氮特性与微生物群落分析[J]. 环境科学, 2017, 38(5): 2052-2058. Xu X Y, You X L, Lü C P, et al. Nitrogen removal performance and microbial community analysis of activated sludge immobilization[J]. Environmental Science, 2017, 38(5): 2052-2058. |
[31] |
王思宇, 李军, 王秀杰, 等. 添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学, 2017, 37(12): 4649-4656. Wang S Y, Li J, Wang X J, et al. Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure[J]. China Environmental Science, 2017, 37(12): 4649-4656. DOI:10.3969/j.issn.1000-6923.2017.12.030 |
[32] | Foesel B U, Drake H L, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture[J]. Systematic and Applied Microbiology, 2011, 34(7): 498-502. DOI:10.1016/j.syapm.2011.08.006 |