2. 中国矿业大学低碳研究院, 徐州 221000
2. Low Carbon Energy Institute, China University of Ming and Technology, Xuzhou 221000, China
抗生素抗性基因(antibiotic resistance genes, ARGs)是一种新型环境污染物[1], 广泛存在于不同环境中, 如地表水[2]、沉积物[3]、土壤[4]和地下水[5]等.ARGs致使细菌普遍产生耐药性, 并可通过水平基因转移在细菌间传播[6], 对人体健康和生态系统构成威胁[7].抗生素长期使用和滥用是ARGs产生的根本原因, 且促进ARGs的水平基因转移[8].水产养殖行业抗生素滥用现象严重, 导致养殖区域水体中的细菌长期暴露于抗生素的选择压力下, 加剧了养殖区及周变环境的ARGs污染[9].世界范围内, 多数研究表明水产养殖区各类ARGs丰度显著高于非养殖水体, 如芬兰海水养殖场[10]、日本海水养殖区[11]、波兰淡水养殖区[12]、越南淡水产养殖区[13]、我国海南、浙江、江苏和天津等地[14~17].
我国东部矿区地下水埋藏浅, 采煤塌陷地的复垦较为广泛地采取了渔业利用模式[18].然而, 尚不明确煤矿渔业复垦塌陷地ARGs的污染特征.ARGs在环境中可通过径流、入渗等途径迁移[19, 20], 复垦区域积水与地下水水力联系紧密[21]、重金属含量较高[22]和土壤性质改变[23]等特性对ARGs的迁移具有推动作用, 增加了复垦区域ARGs的污染风险.
为此, 本研究选取我国东部渔业复垦塌陷地为研究对象, 采用宏基因组学检测方法, 首次对矿区塌陷地沉积物和井水中ARGs和微生物群落进行检测分析, 以丰富ARGs环境研究, 以期为遏制耐药性传播和环境综合治理提供重要参考.
1 材料与方法 1.1 研究区概况研究区位于我国东部复垦塌陷地(如图 1), 曾是我国重要煤炭基地, 近年来煤矿已经关闭.该地区20世纪90年代开始塌陷, 采取了以渔业复垦为主, 畜禽养殖和农业为辅的综合治理模式.鱼塘整齐排列, 集中分布, 总面积达0.6 km2以上, 水深在2.5~5 m之间, 多数水深3 m左右.鱼塘区域内有少数居民看守, 以井水为生活用水, 周围有河流环绕, 用于鱼塘补水排水.
![]() |
图 1 采煤塌陷地渔业复垦区域 Fig. 1 Fishery reclamation areas in the coal mining subsidence |
共采集了4个沉积物样品和1个井水样品.在渔业复垦塌陷地, 采集了5 a清淤鱼塘沉积物(H1样品)、10 a清淤鱼塘沉积物(H2样品)、河流沉积物(H3样品)和埋深20 m的井水(H5样品).在位于渔业复垦塌陷地东南方约10 km处, 采集了湖泊沉积物(H4样品).该湖泊是由采煤塌陷地改造而成的大型生态湿地公园, 主题湖面为3.5 km2, 由此探究渔业养殖对塌陷地环境的影响.
沉积物样品采于3个不同位点, 等份均匀混合, 置于无菌密封袋中, 放于采样箱中运至实验室.利用水泵抽取井水15 L, 置于无菌聚乙烯塑料桶中, 运回实验室预处理.根据测序要求, 每个沉积物样品混合均匀后, 剔除大颗粒沙砾、碎石和生物残体后称取10 g, 置于密封袋中, 于-80℃冰箱保持. 10 L井水样品经0.22 μm已灭菌的滤膜后, 将滤膜折叠放于离心管中, 于-80℃冰箱保存.预处理后的沉积物和滤膜样品送至上海美吉生物吉医药科技有限公司进行测序.
1.3 样品测序使用FastDNA® Spin Kit for Soil (MP Biomedicals, CA, USA)试剂盒提取样品基因组DNA.采用1%琼脂凝胶电泳检测DNA样品的质量和完整性.用NanoDropTM 2000分光光度计(Thermo Fisher Scientific, MA, USA)和Qubit®2.0荧光光谱仪(Thermo FisherScientific, MA, USA)检测DNA的产量和纯度.
采用宏基因组学技术进行样品测序.运用Illumina HiSeq进行多个样品平行混合测序, 提取出的reads数据以fastq格式保存.使用软件fastp(https://github.com/OpenGene/fastp)进行质量控制, 去除测序接头序列、低质量碱基、N碱基及长度过短reads, 获得高质量的质控数据.
质控后的reads利用IDBA-UD(https://i.cs.hku.hk/~alse/hkubrg/projrcts/idba_ud/)进行拼接组装.拼接组装结果利用MetaGene (http://metagene.cb.k.u-tokyo.ac.jp/) 进行基因预测.将所有样品预测出来的基因序列, 用CD-HIT软件(http://www.bioinformatics.org/cd-hit/)进行聚类, 每个类取最长的基因作为代表序列, 构建非冗余基因集.使用SOAPaligner软件(http://soap.genomics.org.cn/), 分别将每个样品的高质量reads与非冗余基因集进行比对(默认参数为:95% 置信度), 统计基因在对应样品中的丰度信息.使用BLASTP(BLAST Version 2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.cgi)将非冗余基因集与NR数据库(非冗余蛋白质的氨基酸序列数据库)进行比对, 并通过NR库对应的分类学信息数据库获得物种注释结果, 使用物种对应的基因丰度总和计算该物种的丰度.再将非冗余基因集与ARDB数据库(antibiotic resistance genes database)进行比对, 比对参数设置为“严格(strict)”比对, 获得ARGs注释结果.
2 结果与分析 2.1 煤矿渔业复垦塌陷地ARGs分布特征5个样品总共检测出29种ARGs, H1、H2、H3、H4和H5样品分别检测出9、6、18、3和25种ARGs.如图 2所示, bacA在所有样品中占比最高(42.45%~99.57%).渔业复垦塌陷地不同清淤年限鱼塘检测出的ARGs相近, 除bacA之外磺胺类和四环素类ARGs丰度较高, 主要包括sul1、sul2、tet36和tetC等.河流沉积物和井水样品检测出的ARGs种类显著多于其他样品, 而两者的ARGs在种类上存在较大差别.河流沉积物中磺胺类和四环素类ARGs丰度较高, 如sul1、sul2、tet36、tetM和tetC等; 井水中多药类ARGs丰度较高, 如mexW、oprN、mexF和mexE等.非渔业复垦塌陷地沉积物中仅检测出3种ARGs, 分别为bacA、ereA和tetC.
![]() |
图 2 样品ARGs组成 Fig. 2 Composition of sample ARGs |
使用Illumina HiSeq测序, 各样品reads数如下:H1(41 732 918)、H2(40 757 446)、H3(52 732 182)、H4(52 958 728)和H5(51 872 372).ARGs相对丰度为样品中ARGs的reads数与样品总reads数的比值.其中bacA的相对丰度分别为H1(1.96×10-5)、H2(2.25×10-5)、H3(2.56×10-5)、H4(3.55×10-5)和H5(1.19×10-4).其余ARGs的相对丰度较低, 分别为:H1(4.79×10-8~5.75×10-7)、H2(4.98×10-8~1.47×10-7)、H3(3.79×10-8~2.01×10-6)、H4(3.78×10-8~1.13×10-7)和H5(3.86×10-8~4.40×10-5).渔业复垦塌陷地两种鱼塘沉积物样品ARGs相对丰度相近, 河流沉积物中的ARGs相对丰度略高于鱼塘沉积物.井水中ARGs相对丰度远高于沉积物, 多数ARGs相对丰度高于1.0×10-6.
磺胺类和四环素类ARGs是水产养殖行业研究重点, 煤矿渔业复垦塌陷地中检测到的磺胺类ARGs有sul1和sul2, 四环素类有tet39、tet36、tetC、tetM、tetPa和tetG.如图 3所示, 两种鱼塘沉积物中四环素类ARGs各不相同, 而河流沉积物中8种磺胺类和四环素类ARGs均检测到, 且相对丰度高于鱼塘沉积物.井水中tet39、sul1和sul2相对丰度较高, 多种沉积物中的四环素类ARGs未检测到.
![]() |
图 3 磺胺类和四环素类ARGs相对丰度 Fig. 3 Relative abundance of sulfonamides and tetracyclines ARGs |
5个样品中共检测出129个门, 2 731个属.在门分类学水平上(如图 4), 变形菌门(Proteobacteria)在所有样品中均最为优势, 其次较为优势的有绿弯菌门(Chloroflexi)、广古菌门(Euryarchaeota)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和放线菌门(Actinobacteria)等.渔业复垦塌陷地沉积物中, 两种鱼塘沉积物细菌门分布差异较小, 河流沉积物中绿弯菌门(Chloroflexi)和广古菌门(Euryarchaeota)丰度明显较高.井水中几乎全为变形菌门(Proteobacteria).
![]() |
图 4 门水平微生物组成 Fig. 4 Composition of microorganisms at the phylum level |
在属分类学水平上, H1、H2、H3、H4和H5样品分别检测出2 417、2 305、2 388、2 337和1 791个属.如图 5所示, 不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)、水小杆菌属(Aquabacterium)、硫杆菌属(Thiobacillus)、甲烷丝菌属(Methanosaeta)等丰度较高.沉积物样品中微生物在属分类学水平上分布较为均匀, 各菌属占比较低, 硫杆菌属(Thiobacillus)均为最优势细菌属, 在各样品中分别占比3.91%、5.92%、2.76%和6.89%.其次, 渔业复垦塌陷地鱼塘和河流沉积物中甲烷丝菌属(Methanosaeta)和史密斯氏菌属(Smithella)丰度较高, 而非渔业复垦塌陷地湖泊沉积物中丰度较低.井水中的菌属分布与沉积物样品具有明显差异, 优势菌属主要为不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)和水小杆菌属(Aquabacterium), 分别占比55.32%、19.03%和12.55%.
![]() |
图 5 属水平微生物组成 Fig. 5 Composition of microorganisms at the genus level |
选取丰度前30的菌属与ARGs进行Spearman相关性分析, 相关性热图如图 6所示. 30种菌属与29种ARGs间共870个对应关系, 其中菌属与ARGs间主要(526/870)呈中度相关(相关系数绝对值大于0.5), 少数(75/870)高度相关(相关系数绝对值大于0.8).显著性分析得出菌属与ARGs间部分(60/870)相关性显著(P<0.05), 而30种菌属中有多种菌属与ARGs显著正相关(14/30).不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)和水小杆菌属(Aquabacterium)与绝大多数ARGs呈正相关, 不动杆菌属(Acinetobacter)与多种ARGs相关性显著, 假单胞菌属(Pseudomonas)和水小杆菌属(Aquabacterium)与bacA相关性显著.硫杆菌属(Thiobacillus)与ARGs主要呈负相关, 与cml_e3、aph6id相关性显著.此外, 与ARGs呈显著负相关的菌属有类固醇杆菌属(Steroidobacter)、荚硫菌属(Thiocapsa)、Candidatus_Accumulibacter、Ignavibacterium等; 与ARGs呈显著正相关的菌属有甲烷丝菌属(Methanosaeta)、史密斯氏菌属(Smithella)、长绳菌属(Longilinea)和厌氧绳菌属(Bellilinea)等.其中, 磺胺类ARGs与部分菌属显著负相关; 四环素类ARGs与部分菌属显著正相关; 多药类ARGs与菌属的相关性较不显著.
![]() |
*表示相关性显著(P<0.05) , **表示相关性极显著(P<0.01 ) 图 6 ARGs与微生物相关性分析 Fig. 6 Correlation analysis of ARGs and microorganisms |
宏基因组学技术已应用于水、土壤、大气、沉积物和活性污泥等多种环境的ARGs检测.如表 1所示, 目前应用于ARGs检测分析的数据库主要有ARDB、CARD(comprehensive antibiotic resistance database)和SARG(structured ARG reference database)等.ARDB是第一个被建立的ARGs数据库, 已于2009年停止更新, 并将数据整合入CARD数据库中.然而, ARDB数据库仍然受到一些研究者的青睐, 水产养殖区域的ARGs检测分析较为广泛地应用了该数据库.相比于其他数据库, 多数基于ARDB数据库的检测结果中, bacA相对丰度最高, 并占据全部ARGs的较大比例.Gupta等[24]提出不同测序平台和不同ARGs数据库, 其检测结果或存在较大的差异, 针对不同环境应选择较为适用的数据库, 以保障检测结果的准确可靠.本研究为较好地对比分析渔业复垦塌陷地ARGs的污染特征, 采用ARDB数据库进行ARGs注释.
![]() |
表 1 宏基因组学技术ARGs检测信息 Table 1 ARGs information detected by metagenomics technology |
与先前研究相比, 渔业复垦塌陷地中检测出的ARGs种类较少.样品类型、环境条件和DNA提取方法等对测序过程均有影响[35], 塌陷地沉积物中含有较多的碎石、沙砾等杂质, 可能限制了检测出的ARGs种类和相对丰度.此外, 不同数据库中ARGs信息存在差异, 对ARGs的检测结果也有一定影响[24, 30].沉积物中除bacA外其余ARGs相对丰度处于较低水平, 井水中多数ARGs处于较高水平, 研究区域地下水存在安全隐患.Zhao等[27]的研究结果显示同一养殖区域水体中的ARGs相对丰度同样高于沉积物.渔业复垦塌陷地沉积物中检测出一定相对丰度的sul1和sul2, 水体中其相对丰度或更高, 结合塌陷地地质环境的推动作用以致井水中呈现较高的丰度.井水中的多种ARGs未在沉积物中检测到, 除渔业养殖污染外还包括其他污染源, 如养殖区内的鸡、鸭、羊等或养殖区之外的其他污染源.鱼塘沉积物中磺胺类和四环素类均在河流沉积物中检测到, 水产养殖废水是该区域河流ARGs污染的重要来源.
3.2 微生物群落结构分析不同区域微生物群落结构存在差异, 环境因素发挥着重要作用[36].变形菌门(Proteobacteria)基本在所有相关研究中均最为优势[25, 26].绿弯菌门(Chloroflexi)和广古菌门(Euryarchaeota)可以在热泉和高盐等极端环境中生存[37, 38].厚壁菌门(Firmicutes)特殊的细胞结构能适应复杂环境, 环境污染程度较高时呈现出较高的丰度[39].河流沉积物中绿弯菌门(Chloroflexi)、广古菌门(Euryarchaeota)和厚壁菌门(Firmicutes)的丰度较高, 污染或最为严重.由于矿区环境、养殖废水和生活污水的综合作用, 研究区域存在环境污染现象, 进而对微生物群落结构造成了影响.井水中主要为变形菌门(Proteobacteria), 推测研究区域地下环境受煤矿污染的程度较轻.属分类学水平上, 硫杆菌属(Thiobacillus)所属变形菌门, 为自养型革兰氏阴性菌, 以元素硫、硫代硫酸盐等物质为能源, 可氧化硫类化合物为单质硫和硫酸盐, 在水污染治理方面具有脱氮除硫的作用[40].沉积物中硫杆菌属(Thiobacillus)最为优势, 与王龙飞等[41]对江苏省水源地的调查结果相同.甲烷丝菌属(Methanosaeta)为革兰氏阴性菌, 极端严格厌氧.水产养殖区污染严重的水体呈现出高浊度、高色度及富营养化现象, 降低了水体氧气含量, 从而可能导致了鱼塘和河流沉积物中甲烷丝菌属(Methanosaeta)占比较高.鱼塘中具有定期曝气设施以保障鱼类生长生存, 降低了甲烷丝菌属(Methanosaeta)的丰度.井水中较为优势的不动杆菌属(Acinetobacter)和假单胞菌属(Pseudomonas)为致病菌, 可引起呼吸道、泌尿道等感染和败血症, 且具有耐药性[42], 以井水为饮用水水源存在潜在的健康威胁.
3.3 微生物群落结构对ARGs分布的影响分析微生物群落结构会影响ARGs的产生和丰度[43].Wang等[44]对洪湖中微生物群落和ARGs的研究表明, 厚壁菌门、变形菌门和芽单胞菌门等与ARGs呈显著正相关; 罗晓等[45]对河流中的微生物群落和ARGs相关性分析表明, 少数菌属与ARGs存在相关性.本研究中, 多数菌属与ARGs间的相关性较强, 而少数菌属与ARGs间相关性显著.不同环境中微生物群落结构不同, ARGs的分布和诱导的潜在机制可能有所不同[46], 进而微生物与ARGs的相关性存在差异.
不动杆菌属(Acinetobacter)和假单胞菌属(Pseudomonas)与多种ARGs呈显著正相关, 致病菌或是多种ARGs的共同宿主, 与先前研究相符[41].多种菌属与四环素类ARGs显著正相关, 其中甲烷丝菌属(Methanosaeta)、甲烷蝇菌属(Methanolinea)、长绳菌属(Longilinea)和厌氧绳菌属(Bellilinea)等属于绿弯菌门(Chloroflexi)和广古菌门(Euryarchaeota), 这些门的微生物可能是沉积物中四环素类ARGs的重要宿主.硫杆菌属(Thiobacillus)与ARGs呈负相关, Chen等[47]的研究表明, 硫杆菌属(Thiobacillus)对土霉素具有一定的生物降解作用, 从而可能间接抑制ARGs的水平基因转移, 降低ARGs的相对丰度.多数研究表明微生物群落对ARGs分布的影响较大, 而环境因素对微生物群落的影响较大[44, 48, 49].煤矿渔业复垦塌陷地中, 井水和不同沉积物间的环境条件存在差异, 呈现出不同的微生物群落结构, 进而呈现出不同的ARGs种类和相对丰度.不动杆菌属(Acinetobacter)和假单胞菌属(Pseudomonas)占比较高的井水中ARGs相对丰度较高, 而硫杆菌属(Thiobacillus)占比较高的沉积物中ARGs相对丰度较低, 绿弯菌门(Chloroflexi)和广古菌门(Euryarchaeota)占比较高的河流沉积物中四环素类ARGs相对丰度较高, 这表明微生物群落结构对ARGs的分布具有重要影响.
4 结论(1) 渔业复垦塌陷地共检测出29种ARGs, bacA在所有样品中相对丰度最高.沉积物中四环素和磺胺类ARGs相对丰度较高, 井水多药类ARGs相对丰度较高.煤矿渔业复垦塌陷地沉积物和井水中均受到ARGs的污染, 相应的管理和控制措施有待加强.
(2) 微生物群落结构上, 变形菌门(Proteobacteria)在所有样品中最为优势; 沉积物中优势菌属为硫杆菌属, 井水中优势菌属为不动杆菌属(Acinetobacter)和假单胞菌属(Pseudomonas).
(3) 致病菌属和所属绿弯菌门(Chloroflexi)和广古菌门(Euryarchaeota)的菌属或是ARGs的潜在宿主, 微生物群落结构影响着ARGs的分布.
[1] |
罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008, 28(8): 1499-1505. Luo Y, Zhou Q X. Antibiotic resistance genes (ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae, 2008, 28(8): 1499-1505. DOI:10.3321/j.issn:0253-2468.2008.08.002 |
[2] | Liang X M, Guan F L, Chen B W, et al. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China[J]. Ecotoxicology and Environmental Safety, 2020, 196. DOI:10.1016/j.ecoenv.2020.110543 |
[3] | Zhu Y G, Zhao Y, Li B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2. DOI:10.1038/nmicrobiol.2016.270 |
[4] | Wang L J, Wang J H, Wang J, et al. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application[J]. Journal of Hazardous Materials, 2020, 392. DOI:10.1016/j.jhazmat.2020.122334 |
[5] | Zhang Y, Zhang Y Z, Kuang Z M, et al. Comparison of microbiomes and resistomes in two karst groundwater sites in Chongqing, China[J]. Groundwater, 2019, 57(5): 807-818. DOI:10.1111/gwat.12924 |
[6] | Jutkina J, Marathe N P, Flach C F, et al. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations[J]. The Science of the Total Environment,, 2018, 616-617: 172-178. DOI:10.1016/j.scitotenv.2017.10.312 |
[7] | Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments: a review of lakes, China[J]. Science of the Total Environment, 2018, 627: 1195-1208. DOI:10.1016/j.scitotenv.2018.01.271 |
[8] |
阮晓慧, 钱雅洁, 薛罡, 等. 四环素抗生素对污泥中四环素抗性基因丰度和表达水平的作用影响[J]. 环境科学, 2020, 41(2): 823-830. Ruan X H, Qian Y J, Xue G, et al. Effect of tetracycline antibiotic on abundance and transcriptional expression level of tetracycline resistance genes in activated sludge[J]. Environmental Science, 2020, 41(2): 823-830. |
[9] |
袁开, 吴佳佳, 朱诚. 养殖鱼塘底泥微生物抗生素耐药基因分布分析[J]. 环境科学学报, 2017, 37(10): 3649-3655. Yuan K, Wu J J, Zhu C. Analysis of microbial antibiotic resistance genes in sediment of aquaculture pond[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3649-3655. |
[10] | Muziasari W I, Pärnänen K, Johnson T A, et al. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments[J]. FEMS Microbiology Ecology, 2016, 92(4). DOI:10.1093/femsec/fiw052 |
[11] | Suzuki S, Nakanishi S, Tamminen M, et al. Occurrence of sul and tet(M) genes in bacterial community in Japanese marine aquaculture environment throughout the year: profile comparison with Taiwanese and Finnish aquaculture waters[J]. Science of the Total Environment, 2019, 669: 649-656. DOI:10.1016/j.scitotenv.2019.03.111 |
[12] | Harnisz M, Korzeniewska E, Goła Ds' I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water[J]. Chemosphere, 2015, 128: 134-141. DOI:10.1016/j.chemosphere.2015.01.035 |
[13] | Nakayama T, Hoa T T T, Harada K, et al. Water metagenomic analysis reveals low bacterial diversity and the presence of antimicrobial residues and resistance genes in a river containing wastewater from backyard aquacultures in the Mekong Delta, Vietnam[J]. Environmental Pollution, 2017, 222: 294-306. DOI:10.1016/j.envpol.2016.12.041 |
[14] | Wu J J, Su Y L, Deng Y Q, et al. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China[J]. Science of the Total Environment, 2019, 653: 605-611. DOI:10.1016/j.scitotenv.2018.10.251 |
[15] | Gao P P, Mao D Q, Luo Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Research, 2012, 46(7): 2355-2364. DOI:10.1016/j.watres.2012.02.004 |
[16] | Yuan J L, Ni M, Liu M, et al. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China[J]. Marine Pollution Bulletin, 2019, 138: 376-384. DOI:10.1016/j.marpolbul.2018.11.037 |
[17] |
梁惜梅, 聂湘平, 施震. 珠江口典型水产养殖区抗生素抗性基因污染的初步研究[J]. 环境科学, 2013, 34(10): 4073-4080. Liang X M, Nie X P, Shi Z. Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the Pearl River Estuary[J]. Environmental Science, 2013, 34(10): 4073-4080. |
[18] | Lu P, Zhou L, Cheng S, et al. Main challenges of closed/abandoned coal mine resource utilization in china[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(22): 2822-2830. DOI:10.1080/15567036.2019.1618992 |
[19] | Barrios R E, Khuntia H K, Bartelt-Hunt S L, et al. Fate and transport of antibiotics and antibiotic resistance genes in runoff and soil as affected by the timing of swine manure slurry application[J]. Science of the Total Environment, 2020, 712. DOI:10.1016/j.scitotenv.2020.136505 |
[20] | Huang L, Xu Y B, Xu J X, et al. Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm[J]. International Biodeterioration & Biodegradation, 2019, 138: 114-121. |
[21] |
姬红英, 韩涤清, 辛亚军, 等. 煤矿沉陷区砾石粘土层水体溶质迁移特征[J]. 煤炭学报, 2020, 45(S1): 293-404. Ji H Y, Han D Q, Xin Y J, et al. The characteristics on water-body solute migration of gravel clay in mine subsidence area[J]. Journal of China Coal Society, 2020, 45(S1): 293-404. |
[22] |
范廷玉, 余乐, 王顺, 等. 采煤沉陷区土壤中重金属的2种特征趋势研究[J]. 环境科学与技术, 2019, 42(10): 134-141. Fan T Y, Yu L, Wang S, et al. Two types of characteristics and trends of heavy metals in soil of coal mining subsidence area[J]. Environmental Science & Technology, 2019, 42(10): 134-141. |
[23] |
雷少刚, 肖浩宇, 郄晨龙, 等. 开采沉陷对关键土壤物理性质影响的相似模拟实验研究[J]. 煤炭学报, 2017, 42(2): 300-307. Lei S G, Xiao H Y, Qie C L, et al. Similar simulation experiment on the influence of mining subsidence on the key physical properties of soil[J]. Journal of China Coal Society, 2017, 42(2): 300-307. |
[24] | Gupta C L, Tiwari R K, Cytryn E. Platforms for elucidating antibiotic resistance in single genomes and complex metagenomes[J]. Environment International, 2020, 138. DOI:10.1016/j.envint.2020.105667 |
[25] | Wang J H, Lu J, Zhang Y X, et al. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems[J]. Bioresource Technology, 2018, 253: 235-243. DOI:10.1016/j.biortech.2018.01.035 |
[26] | Fang H, Huang K L, Yu J N, et al. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment[J]. Chemosphere, 2019, 224: 202-211. DOI:10.1016/j.chemosphere.2019.02.068 |
[27] | Zhao Y T, Zhang X X, Zhao Z H, et al. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp[J]. Journal of Hazardous Materials, 2018, 350: 10-18. DOI:10.1016/j.jhazmat.2018.02.004 |
[28] | Zhang S H, Yang G L, Hou S G, et al. Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis[J]. Environmental Pollution, 2018, 234: 339-346. DOI:10.1016/j.envpol.2017.11.031 |
[29] | Yuan K, Yu K, Yang R Q, et al. Metagenomic characterization of antibiotic resistance genes in Antarctic soils[J]. Ecotoxicology and Environmental Safety, 2019, 176: 300-308. DOI:10.1016/j.ecoenv.2019.03.099 |
[30] | Ma L P, Li B, Zhang T. Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 5195-5204. DOI:10.1007/s00253-014-5511-3 |
[31] |
陈红玲, 张兴桃, 王晴, 等. 宏基因组方法分析医药化工废水厂中抗生素耐药菌及耐性基因[J]. 环境科学, 2020, 41(1): 313-320. Chen H L, Zhang X T, Wang Q, et al. Metagenomic analysis of antibiotic resistant bacteria and resistance genes in a pharmaceutical and chemical wastewater treatment plant[J]. Environmental Science, 2020, 41(1): 313-320. |
[32] | Huang K, Xia H, Zhang Y Y, et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis[J]. Bioresource Technology, 2020, 297. DOI:10.1016/j.biortech.2019.122451 |
[33] | Han I, Yoo K. Metagenomic profiles of antibiotic resistance genes in activated sludge, dewatered sludge and bioaerosols[J]. Water, 2020, 12(6). DOI:10.3390/w12061516 |
[34] | He P, Wu Y, Huang W Z, et al. Characteristics of and variation in airborne ARGs among urban hospitals and adjacent urban and suburban communities: a metagenomic approach[J]. Environment International, 2020, 139. DOI:10.1016/j.envint.2020.105625 |
[35] |
黄峰, 王玮韧, 饶鑫, 等. 热带珊瑚岛植物种植对土壤改良及其微生物群落形成的影响[J]. 生态学报, 2019, 39(17): 6227-6237. Huang F, Wang W R, Rao X, et al. Soil improvements and microbial community development following establishment of plant communities in a tropical coral island[J]. Acta Ecologica Sinica, 2019, 39(17): 6227-6237. |
[36] |
刘晓丹, 黄毅, 王永花, 等. 西藏尼洋河沉积物中微生物群落结构特征分析[J]. 环境科学, 2020, 41(7): 3249-3256. Liu X D, Huang Y, Wang Y H, et al. Structural characteristics of microbial communities in the sediments of the Niyang River in Tibet[J]. Environmental Science, 2020, 41(7): 3249-3256. |
[37] | Lavrentyeva E V, Radnagurueva A A, Barkhutova D D, et al. Bacterial diversity and functional activity of microbial communities in hot springs of the Baikal Rift Zone[J]. Microbiology, 2018, 87(2): 272-281. DOI:10.1134/S0026261718020078 |
[38] | Nunoura T, Nishizawa M, Hirai M, et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench[J]. Microbes and Environments, 2018, 33(2): 186-194. DOI:10.1264/jsme2.ME17194 |
[39] | Sun W M, Xiao T F, Sun M, et al. Diversity of the sediment microbial community in the Aha watershed (southwest China) in response to acid mine drainage pollution gradients[J]. Applied and Environmental Microbiology, 2015, 81(15): 4874-4884. DOI:10.1128/AEM.00935-15 |
[40] |
徐金兰, 陈紫薇, 张少枫, 等. 信号分子联合脱氮硫杆菌对同步脱氮除硫的影响[J]. 环境科学, 2019, 40(9): 4177-4184. Xu J L, Chen Z W, Zhang S F, et al. Effect of signal molecule combined with Thiobacillus denitrificans on simultaneous removal of nitrogen and sulfur[J]. Environmental Science, 2019, 40(9): 4177-4184. |
[41] |
王龙飞, 程逸群, 胡晓东, 等. 江苏省代表性水源地抗生素及抗性基因赋存现状[J]. 环境科学, 2021, 41(2): 749-760. Wang L F, Cheng Y Q, Hu X D, et al. Occurrence of antibiotics and antibiotic resistance genes in representative drinking water resources in Jiangsu Province[J]. Environmental Science, 2021, 41(2): 749-760. |
[42] |
姜肖玉, 黄志卓. 亚胺培南耐药鲍曼不动杆菌和铜绿假单胞菌的耐药性和耐药机制研究[J]. 现代预防医学, 2015, 42(17): 3200-3203. Jiang X Y, Huang Z Z. Drug resistance and resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa[J]. Modern Preventive Medicine, 2015, 42(17): 3200-3203. |
[43] | Zhang H H, He H Y, Chen S N, et al. Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis[J]. Journal of Environmental Science, 2019, 82: 24-38. DOI:10.1016/j.jes.2019.02.023 |
[44] | Wang Z, Han M Z, Li E H, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: their links with microbial communities, antibiotics, and water quality[J]. Journal of Hazardous Materials, 2020, 393. DOI:10.1016/j.jhazmat.2020.122426 |
[45] |
罗晓, 张文丽, 袁立霞, 等. 纳污河流抗性基因和微生物群落相关性[J]. 中国环境科学, 2019, 39(6): 2606-2613. Luo X, Zhang W L, Yuan L X, et al. Correlation between resistance genes and microbial community in polluted rivers[J]. China Environmental Science, 2019, 39(6): 2606-2613. DOI:10.3969/j.issn.1000-6923.2019.06.044 |
[46] | Shen X X, Jin G Q, Zhao Y J, et al. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment[J]. Science of the Total Environment, 2020, 711. DOI:10.1016/j.scitotenv.2019.134626 |
[47] | Chen J F, Yang Y W, Liu Y Y, et al. Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell[J]. Bioresource Technology, 2019, 276: 236-243. DOI:10.1016/j.biortech.2019.01.006 |
[48] | Zheng J, Gao R X, Wei Y Y, et al. High-throughput profiling and analysis of antibiotic resistance genes in East Tiaoxi River, China[J]. Environmental Pollution, 2017, 230: 648-654. DOI:10.1016/j.envpol.2017.07.025 |
[49] | Jia S Y, Bian K Q, Shi P, et al. Metagenomic profiling of antibiotic resistance genes and their associations with bacterial community during multiple disinfection regimes in a full-scale drinking water treatment plant[J]. Water Research, 2020, 176. DOI:10.1016/j.watres.2020.115721 |