2. 广西师范大学环境与资源学院, 桂林 541004
2. School of Environment and Resources, Guangxi Normal University, Guilin 541004, China
酚类化合物是工业废水中的有机污染物之一, 特别是氯酚由于其致癌性和诱变性, 这类化合物若得不到有效处理将对环境造成严重危害[1]. 2, 4-二氯苯酚(2, 4-dichlorophenol, 2, 4-DCP)作为代表性的氯酚之一, 广泛存在于石化废水、炼油废水、农药制造废水和塑料制造废水中.由于2, 4-DCP不易自然降解, 且易通过食物链累积对生物体造成急性与慢性毒性作用, 因此已被美国环保署(EPA)列为优先污染物控制清单[2, 3].废水中2, 4-DCP处理的研究引起了人们的广泛关注.微塑料是一种直径小于5mm的塑料颗粒[4].日常生活中的塑料制品无处不在, 其会随着生活污水进入污水处理厂, 因此污水处理厂中存在大量的微塑料; 有研究报道表明, 虽经过多级处理工段, 污水处理厂仍会排放微塑料进入自然水体中[5].微塑料体积小, 就意味着更大的比表面积, 这将增加其吸附能力.微塑料可吸附环境污染物, 包括持久性有机污染物和内分泌干扰物等[6].而持久性有机污染物一旦与微塑料结合, 可能会对生态系统造成更高的风险[7, 8].聚醚砜(polyether sulfone, PES)是一种高性能, 无定形的特种工程塑料, 由于其具有的优良特性使得PES在诸多领域得到广泛应用.有学者在北极地区发现了PES微塑料的痕迹, 造成微塑料转移的原因是由于建筑、制造等行业意外和不可避免地排放[9, 10].
对于含2, 4-DCP及微塑料废水的生物处理而言, 有研究发现2, 4-DCP在缺氧/好氧活性污泥系统中会明显积累脱氯中间产物的浓度, 从而增加了其对污泥的生物毒性[1].Wei等[11]指出在污泥消化过程中, 微塑料会影响微生物群落并抑制污染物水解, 从而影响氢生成和甲烷生成.污泥胞外聚合物(extracellular polymeric substances, EPS)是由微生物分泌的生物化学物质, 通过细胞裂解或介质中的有机物释放细胞物质或产物而形成[12].多糖与蛋白是EPS的主要成分, 由于EPS的特殊成分, 其具有吸附能力和生物降解性[13, 14].同时确定关键酶的活性是定量评估微生物细胞活性的一种方法, 乙酸激酶(AK)是负责生产乙酸的关键酶, 辅酶F420是甲烷产生的关键酶[15~17].微塑料吸附持久性有机物后可能会对微生物产生复合效应, 但目前缺乏微塑料与持久性有机物复合污染对厌氧颗粒污泥理化特性和微生物菌群协同机制等的探究, 而这对于厌氧生物反应器处理含有毒废水的高效与稳定运行具有重要意义.
鉴于此, 本文探究了2, 4-DCP和PES复合污染对厌氧颗粒污泥COD去除、污泥EPS含量和组分的影响, 同时利用高通量测序研究了2, 4-DCP和PES对厌氧颗粒污泥中微生物群落的影响并基于测序数据进行了基因功能预测分析(PICRUSt).
1 材料与方法 1.1 实验材料与方法利用4个500 mL锥形瓶(A、B、C和D)进行厌氧生物处理序批实验(如图 1), 废水量为150 mL, 厌氧颗粒污泥为100 mL, 每天进行配换水1次且充氮气10 min, 锥形瓶放在水浴振荡器中, 温度为35℃, 微振荡(105 r·min-1).每天投加的PES微塑料为白色圆球粉末, 尺寸为0.25 mm, 购自东莞市某塑化有限公司; 2, 4-DCP为99%分析纯, 购自中国国药化学药剂有限公司.PES浓度设置参考文献[18], 考虑到微塑料会在水体中累积, 同时为了在短期内考察PES对厌氧颗粒污泥的影响, 将PES的投加量设置较高; 2, 4-DCP浓度则参考文献[19]进行确定.具体的实验组如下, A:空白; B:0.5 g·L-1 PES; C:40 mg·L-1 2, 4-DCP; D:0.5 g·L-1 PES+40 mg·L-1 2, 4-DCP.
![]() |
图 1 厌氧生物序批实验装置示意 Fig. 1 Anaerobic biological sequencing batch experiment device |
厌氧颗粒污泥取自桂林某啤酒厂厌氧发酵罐.污泥取回后置于实验室厌氧装置中, 利用人工配制的废水进行驯化与实验.废水具体成分为:3 000 mg·L-1葡萄糖、2 000 mg·L-1 NaHCO3、200 mg·L-1 NH4Cl、44 mg·L-1 KH2PO4和1 mL·L-1的微量元素混合液[20].
1.2 分析方法进水与出水COD浓度采用消解-分光光度法分析[21].根据Liang等[22]的方法, 取第20 d与第40 d泥水混合物, 存于离心管中, 在4 000 r·min-1的条件下离心10 min后弃去上清液, 剩下污泥用0.05% NaCl溶液补满, 在20 kHz的条件下超声2 min, 之后在150 r·min-1的条件下振荡10 min, 最后置于8 000 r·min-1的离心机内离心10 min, 取上清液用0.45 μm微孔滤膜过滤保存, 即得到松散型胞外聚合物(LB-EPS); 继而在离心管中加入0.9%NaCl溶液, 在80℃条件下水浴30 min后取出, 冷却至室温, 置于8 000 r·min-1的离心机内离心10 min, 取上清液用0.45 μm微孔滤膜过滤, 即为紧密型胞外聚合物(TB-EPS).采用蒽酮-硫酸比色法在620 nm处测定EPS中的多糖含量, 利用考马斯亮蓝法在595 nm处测定EPS中的蛋白含量[23].LB-EPS和TB-EPS的三维荧光光谱(EEM)使用荧光光谱仪(F-7000, Hitachi, Japan)在室温下以700V氙灯在扫描模式下进行, 所使用的激发波长(Ex)以5 nm的增量在220~500 nm范围内, 而发射波长(Em)以5 nm的增量在220~550 nm范围内, 扫描速度为2 400 nm·min-1. 40 d时取污泥进行酶活性测定, 分别采用乙酸钾分光光度法和紫外可见分光光度法测定厌氧颗粒污泥中的乙酸激酶(AK)和辅酶F420活性[24].
第40 d时分别从实验装置A、B、C和D中收集污泥样品用于高通量测序分析, 使用Mag-Bind Soil DNA Kit提取厌氧颗粒污泥中的DNA(E.Z.N.ATM, OMEGA, USA), 利用Qubit 3.0 DNA检测试剂盒对基因组DNA精确定量, 以确定PCR反应加入的DNA量, 而后进行两轮的PCR扩增.第一轮PCR扩增所用引物融合了MiSeq测序平台的V3-V4通用引物[25], 341F引物:[CCCTACACGACGCTCTTC CGATCTG (barcode) CCTACGGGNGGCWGCAG]; 805R引物:GACTGGAGTTCCTTGGCACCCGAGAATT CCAGACTACHVGGGTATCTAATCC.第二轮扩增, 引入Illumina桥式PCR兼容引物, 为Illuimna TruSeq系列的接头.并基于16S rRNA扩增测序结果运用PICRUSt对微生物群落进行系统地功能和代谢途径分析研究.
2 结果与讨论 2.1 PES及2, 4-DCP对COD去除的影响PES和2, 4-DCP对COD去除率的影响如图 2所示.其中对照组A的COD平均去除率为(93±4.27)%, 实验组B、C和D的平均去除率分别是(90±5.75)%、(35±17.59)%和(38±15.95)%.表明投加了单一污染物PES的实验组B对COD的去除并未有太大影响, 在实验周期的前30 d COD的平均去除率为88%, 随着实验的进行, PES对厌氧颗粒污泥的抑制减弱, COD平均去除率略有提高.在实验组C与D中, COD的去除率大幅度降低, 由于2, 4-DCP属于难降解有机物, 2, 4-DCP对厌氧颗粒污泥出现了明显抑制.投加了PES+2, 4-DCP污染物的实验组D中, 由于受到2, 4-DCP的影响, 其COD去除率较低, 但实验组D的COD平均去除率比实验组C略高, 可能是PES吸附了2, 4-DCP, 从而减轻了厌氧颗粒污泥处理难降解有机污染物的负担.
![]() |
图 2 PES和2, 4-DCP对COD去除率的影响 Fig. 2 Effect of PES and 2, 4-DCP on COD removal rate |
本文分析了PES和2, 4-DCP对厌氧颗粒污泥EPS组分的影响, 结果如图 3所示.
![]() |
图 3 PES和2, 4-DCP对EPS中蛋白和多糖含量的影响 Fig. 3 Effect of PES and 2, 4-DCP on the content of protein and polysaccharide in EPS |
由图 3可知, 20 d时对照组A中LB-EPS的蛋白含量为(0.65±0.006)mg·g-1, 实验组B、C和D蛋白含量分别为(0.24±0.002)、(0.09±0.005)和(0.23±0.001)mg·g-1, 可见PES或2, 4-DCP均会减少LB-EPS中蛋白含量; 40 d时对照组A及实验组B、C和D蛋白质含量分别为(0.24±0.024)、(0.21±0.008)、(0.04±0.007)和(0.07±0.006)mg·g-1, 表明随着实验的进行2, 4-DCP会较为强烈地抑制LB-EPS中蛋白的生成.同时由图 3可知, 对照组与实验组中的多糖含量也随着实验的进行不断减少.20 d时A、B、C和D组中多糖含量分别是(0.70±0.017)、(0.43±0.004)、(0.68±0.030)和(0.67±0.026)mg·g-1; 实验结束时A、B、C和D组中多糖含量分别为(0.49±0.001)、(0.25±0.002)、(0.49±0.020)和(0.35±0.027)mg·g-1.对于TB-EPS而言, 随着实验进行投加了2, 4-DCP的实验组蛋白含量大幅减少, 与LB-EPS中蛋白含量变化一致.投加PES的实验组B减少了16.67%, 而投加了2, 4-DCP的实验组C则减少了52.17%.PES微塑料会减缓TB-EPS中蛋白的消耗, 而有毒的2, 4-DCP会使得蛋白的含量下降更明显.与蛋白含量减少相反, TB-EPS中多糖的含量随着实验进行不断增加.对照组A的多糖含量增加了68.9%, 实验组B、C和D的多糖含量分别增加了65.5%、61.2%和33.5%, 可以发现投加了PES+2, 4-DCP的实验组D多糖含量增加最少.增加的多糖被认为是对条件变化的一种调节机制, 以维持厌氧颗粒污泥的稳定性[26].同时由于LB-EPS包裹着TB-EPS, 使得LB-EPS与外加污染物结合能力强于TB-EPS, 因此LB-EPS中的蛋白和多糖随着实验进行被不断分解[27, 28].
为了更为全面地探讨EPS中组分的变化情况, 利用EEM光谱对LB-EPS与TB-EPS进行了分析, 结果如图 4与图 5所示.
![]() |
图 4 LB-EPS在第40 d时的EEM谱图 Fig. 4 EEM spectra of the LB-EPS at day 40 |
![]() |
图 5 TB-EPS在第40 d时的EEM谱图 Fig. 5 EEM spectra of the TB-EPS at day 40 |
图 4和图 5分别显示了第40 d时污泥LB-EPS和TB-EPS的EEM结果, 图谱中可确定3个荧光峰:峰1为色氨酸蛋白物质(Ex/Em=270~280/320~350 nm); 峰2类为芳香蛋白物质(Ex/Em=225~240/320~350 nm); 峰3为辅酶F420物质(Ex/Em=410~430/460~470 nm)[29].LB-EPS在第40 d实验结束时, 对照组A和实验组B、C和D表现出两个相同的荧光峰, 即峰1和峰2.表明无论是否投加PES微塑料或2, 4-DCP, 类芳香蛋白物质和色氨酸蛋白物质均是EPS的主要成分, 表明这两类蛋白类物质有利于厌氧颗粒污泥的形成和结构稳定性, 这与Zhu等[30]的研究结果一致.在第40 d时峰1在对照组A和实验组B、C和D的荧光峰强度分别是63.2、108.5.、19.9和35.8 a.u.; 峰2的强度分别是47.4、67.81、9.95和13.43 a.u..对比发现只含有PES微塑料的实验组B色氨酸蛋白与类芳香蛋白物质的荧光峰强度是增强的, 实验组D中也含有PES微塑料但由于2, 4-DCP的影响其荧光峰强度有所减弱.这说明PES微塑料在实验过程中影响了污泥的结构, 使厌氧颗粒污泥更加稳定, 这在COD去除率中也可以得到验证.同时由污泥TB-EPS的EEM图谱可知, 在第40 d时, 对照组和实验组均出现了色氨酸蛋白物质的荧光峰.实验组D还出现了类芳香蛋白物质荧光峰, 但对照组A及实验组B、C的类芳香蛋白物质荧光峰消失, 显现辅酶F420荧光峰, Qu等[31]的研究发现荧光峰的变化与某些细菌的生长以及死亡细胞和大分子有机物的分解有关.
2.3 PES及2, 4-DCP对关键酶活性的影响40 d实验周期结束后污泥中乙酸激酶(AK)和辅酶F420的关键酶相对活性如图 6所示.
![]() |
图 6 PES和2, 4-DCP对关键酶相对活性的影响 Fig. 6 Effects of PES and 2, 4-DCP on the relative activities of key enzymes |
如图 6所示, 实验组B乙酸激酶的相对活性降低了(21.42±0.69)%, 而实验组C和D的乙酸激酶相对活性增加了(125.16±12.37)%和(334.64±12.54)%.含有2, 4-DCP的实验组C和D中乙酸激酶相对活性皆有不同程度的提高, 在乙酸生成过程中, 乙酸激酶是关键酶, 它控制着乙酸的最终生成, 因此, 在实验组C和D中乙酸大量产生, 从而会影响反应器中微生物的发酵类型, 会抑制某些产甲烷菌的生长[16, 32].对于辅酶F420, 实验组B、C和D的相对活性分别为(47.61±2.987)%, (80.42±4.529)%和(19.90±0.748)%.该结果表明, 无论投加PES还是2, 4-DCP实验组, 辅酶F420的活性均受到抑制, 这可以反映厌氧颗粒污泥的产甲烷活性也受到一定程度的抑制.
2.4 PES及2, 4-DCP对厌氧颗粒污泥微生物群落的影响 2.4.1 微生物群落的丰度和多样性为考察PES微塑料和2, 4-DCP对厌氧颗粒污泥中微生物群落的影响, 根据16S rRNA的高通量测序数据, 首先评估了不同实验组微生物群落的丰度和多样性.将所有样本序列按照序列间的距离进行聚类, 后根据序列之间的相似性将序列分成不同的操作分类单元(OTU)[33], 结果如表 1所示.与对照组相比, 厌氧颗粒污泥暴露于PES微塑料或2, 4-DCP时, 样品的OTU值出现减少.ACE指数和Chao1指数用于评估微生物丰富度, 而Shannon指数则反映微生物多样性[34].与对照组A相比, 实验组B、C和D的ACE指数和Chao1指数降低, 表明暴露在PES微塑料或2, 4-DCP会抑制微生物的丰富性.Shannon值越大, 说明群落多样性越高; Coverage数值越高, 则样本中序列未被测出的概率越低.与对照组相比, 实验组的Shannon指数有所降低, 尤其是投加了复合污染物的实验组D变化最大.从表 1中数据可以推断单一污染物PES微塑料对厌氧颗粒污泥中微生物多样性的影响小于单一污染物2, 4-DCP, 而污泥同时暴露在PES微塑料和2, 4-DCP的情况下对微生物群落多样性的影响最大.
![]() |
表 1 厌氧颗粒污泥中微生物多样性的序列信息和多样性指数 Table 1 Sequence information and alpha index of microbial diversity in the anaerobic granular sludge |
2.4.2 微生物群落结构变化
厌氧生物处理技术是由多种微生物共同作用下的复杂生化过程, 其中特定的微生物种群在物质转化中起重要作用.由此在门、纲水平上分析了不同厌氧颗粒污泥样品的细菌群落结构(图 7与图 8), 旨在从微生物群落结构角度分析PES与2, 4-DCP对厌氧颗粒污泥的影响机制.
![]() |
图 7 门水平的微生物群落丰度 Fig. 7 Abundances of the microbial community at the phylum level |
![]() |
图 8 纲水平的微生物群落丰度 Fig. 8 Abundances of the microbial community at the class level |
图 7为对照组和实验组门水平下的细菌群落结构.在对照组A中, 3个优势菌为Proteobacteria(31.67%)、Bacteroidetes(12.98%)和Firmicutes(12.09%).在实验组B、C和D中优势菌群变化明显, 其中实验组B的优势菌为Proteobacteria(18.53%)、Candidatus Saccharibacteria(10.76%)和Actinobacteria(10.6%); C的优势菌为Firmicutes(21.67%)、Actinobacteria(16.90%)和Proteobacteria(13.45%); D的优势菌为Proteobacteria(44.47%)、Actinobacteria(18.11%)和Firmicutes(11.71%).Proteobacteria是4个样品中的优势菌, 因为Proteobacteria对于厌氧污泥颗粒化非常重要, 其会分泌EPS并促进絮状污泥的附着[35].Firmicutes在实验组C中为优势菌群, 其作用是可产生内生孢子以抵抗极端环境威胁[36], 可见2, 4-DCP对颗粒污泥的生长环境造成了影响, 因此刺激了Firmicutes的大量生长.Actinobacteria具有降解环境污染物的能力[37], 在实验组B、C和D中成为占比前三的优势菌, 且在PES微塑料和2, 4-DCP共同存在的情况下Actinobacteria的丰度更大; 同时Actinobacteria在厌氧生物处理的水解过程中起着关键作用, 这也可解释图 3中实验组EPS中蛋白和多糖含量较低的原因[37].通过图 7还发现, 对照组中Bacteroidetes丰度高于实验组, Bacteroidetes可降解高分子化合物, 并倾向于附着在污泥颗粒上, 以增强有机底物的生物利用度, 从而支持代谢细菌的生长[38].这也体现在了实验组中的COD去除率低于对照组.
如图 8所示, 对照组和实验组的细菌群落分布在纲水平下也有明显差异, 占比前5的细菌分别是γ-Proteobacteria(3.65%~37.42%)、Actinobacteria(3.16%~18.11%)、β-Proteobacteria(2.87%~18.15%)、Clostridia(3.53%~12.54%)和Bacteroidia(3.65%~10.27%).投加了PES微塑料或2, 4-DCP的实验组B、C和D中Actinobacteria含量相比于对照组分别增加了7.44%、13.74%和14.95%, 这表明不利环境的条件下会促进Actinobacteria的生长, 而有学者研究表明Actinobacteria在物质再循环中起着重要作用, 其能够代谢复杂的有机物, 所以在投加了PES+2, 4-DCP的实验组D中Actinobacteria增加更为明显[39].与对照组A相比, 实验组B、C和D的β-Proteobacteria含量分别减少了7.47%、14.60%和15.28%, 可见PES微塑料和2, 4-DCP均会抑制β-Proteobacteria的生长, 且2, 4-DCP对β-Proteobacteria的抑制更为明显.β-Proteobacteria和γ-Proteobacteria属于Proteobacteria的两个主要类别, 是有机物降解的主要参与者[40].
2.4.3 PICRUSt分析细菌群落的基因功能图 9显示了基于PICRUSt的预测功能.细菌结构域中注释的序列主要分为4个功能组, 分别为代谢(57.92%~59.62%)、遗传信息处理(19.79%~20.93%)、环境信息处理(15.35%~17.44%)和细胞过程(4.44%~4.95%).代谢功能组中对照组的丰度为59.62%, 实验组B、C和D的丰度分别为58.21%、57.98%和57.91%.在代谢组中最为丰富的功能类型是氨基酸代谢(A:12.23%; B:12.06%; C:11.72%; D:12.39%)、碳水化合物代谢(A:12.03%; B:12.52%; C:12.51%; D:11.96%)和能量代谢(A:7.08%; B:7.33%; C:7.80%; D:7.47%).丰富的氨基酸转运和代谢, 碳水化合物转运和代谢以及能量产生和转化与细菌的生长和繁殖相关[36].由于Proteobacteria和Bacteroidetes具有养分利用和能量产生的能力, 因此其在门水平下的丰度较高[41].通常在代谢组中, 单个功能类别占比数量彼此接近时, 这意味着有机污染物分解过程中微生物群落功能的相对稳定性.遗传信息处理组中最为丰富的功能类型是复制与修复(A:8.59%; B:8.54%; C:8.98%; D:8.80%).环境信息处理组中最为丰富的功能类型是膜运输(A:14.26%; B:14.89%; C:13.73%; D:12.78%), 膜运输功能基因的丰度在实验组C、D中明显减少.
![]() |
图 9 PICRUSt预测细菌群落中功能基团的相对丰度 Fig. 9 Relative abundance of the functional groups in the bacterial community predicted by PICRUSt |
(1) 2, 4-DCP对厌氧颗粒污泥去除COD造成较大影响, 而PES微塑料对厌氧颗粒污泥去除COD未造成明显抑制; 投加PES+2, 4-DCP后, 厌氧颗粒污泥LB-EPS中蛋白及多糖含量同对照组相比出现了降低; 2, 4-DCP对污泥中乙酸激酶活性影响较大, PES微塑料与2, 4-DCP均会抑制污泥中辅酶F420的活性.
(2) 投加PES微塑料和2, 4-DCP的实验组, 厌氧颗粒污泥中微生物群落多样性与丰度均出现了降低.投加了PES微塑料或2, 4-DCP的实验组Actinobacteria所占比例增加, 同时Firmicutes在2, 4-DCP实验组中为优势菌群.在基因结构功能分析中, 代谢组中最为丰富的功能类型为氨基酸代谢、碳水化合物代谢与能量代谢, 其与细菌的生长和繁殖相关.
(3) 总体而言, 在本研究中PES微塑料对厌氧颗粒污泥特性未造成明显影响; 而2, 4-DCP作为代表性的酚类化合物, 对厌氧颗粒污泥特性与微生物群落造成了较大影响, 因此后续可对厌氧生物系统进行强化, 减缓2, 4-DCP的不利影响, 提高含难生物降解废水的处理效能.
[1] | Zhang Z W, Xi H B, Yu Y, et al. Performance and prediction model of a HA+A/O process in the lab-scale under the load shock of 2, 4-dichlorophenol[J]. Process Safety and Environmental Protection, 2019, 130: 31-38. DOI:10.1016/j.psep.2019.07.005 |
[2] | Zhao J G, Li Y H, Chen X R, et al. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors[J]. Bioresource Technology, 2018, 255: 22-28. DOI:10.1016/j.biortech.2018.01.106 |
[3] | Ge T T, Han J Y, Qi Y M, et al. The toxic effects of chlorophenols and associated mechanisms in fish[J]. Aquatic Toxicology, 2017, 184: 78-93. DOI:10.1016/j.aquatox.2017.01.005 |
[4] | Wang F, Wong C S, Chen D, et al. Interaction of toxic chemicals with microplastics: a critical review[J]. Water Research, 2018, 139: 208-219. DOI:10.1016/j.watres.2018.04.003 |
[5] |
贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9): 4105-4112. Jia Q L, Chen H, Zhao X, et al. Removal of microplastics by different treatment processes in Shanghai large municipal wastewater treatment plants[J]. Environmental Science, 2019, 40(9): 4105-4112. |
[6] | Wang G Q, Li J W, Sun W C, et al. Non-point source pollution risks in a drinking water protection zone based on remote sensing data embedded within a nutrient budget model[J]. Water Research, 2019, 157: 238-246. DOI:10.1016/j.watres.2019.03.070 |
[7] | Qu H, Ma R X, Wang B, et al. Enantiospecific toxicity, distribution and bioaccumulation of chiral antidepressant venlafaxine and its metabolite in loach (Misgurnus anguillicaudatus) co-exposed to microplastic and the drugs[J]. Journal of Hazardous Materials, 2019, 370: 203-211. DOI:10.1016/j.jhazmat.2018.04.041 |
[8] | Zhang H B, Zhou Q, Xie Z Y, et al. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in North China[J]. Science of the Total Environment, 2018, 616-617: 1505-1512. DOI:10.1016/j.scitotenv.2017.10.163 |
[9] | Kanhai L D K, Johansson C, Frias J P G L, et al. Deep sea sediments of the Arctic Central Basin: a potential sink for microplastics[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2019, 145: 137-142. DOI:10.1016/j.dsr.2019.03.003 |
[10] | Peng L C, Fu D D, Qi H Y, et al. Micro-and nano-plastics in marine environment: source, distribution and threats-a review[J]. Science of the Total Environment, 2020, 698. DOI:10.1016/j.scitotenv.2019.134254 |
[11] | Wei W, Zhang Y T, Huang Q S, et al. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms[J]. Water Research, 2019, 163. DOI:10.1016/j.watres.2019.114881 |
[12] | Feng Q, Tai X R, Sun Y Q, et al. Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge[J]. Chemical Engineering Journal, 2019, 378. DOI:10.1016/j.cej.2019.122123 |
[13] | Shao Y X, Zhang H X, Buchanan I, et al. Comparison of extracellular polymeric substance (EPS) in nitrification and nitritation bioreactors[J]. International Biodeterioration & Biodegradation, 2019, 143. DOI:10.1016/j.ibiod.2019.06.001 |
[14] | More T T, Yadav J S S, Yan S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144: 1-25. |
[15] | Feng L Y, Chen Y G, Zheng X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH[J]. Environmental Science & Technology, 2009, 43(12): 4373-4380. |
[16] | Yang W W, Huang J, Pan F K. Polychlorinated biphenyls affects anaerobic methane production from waste activated sludge through suppressing hydrolysis-acidification and methanation processes[J]. Journal of Environmental Management, 2019, 251. DOI:10.1016/j.jenvman.2019.109616 |
[17] | Zhao J W, Zhang C, Wang D B, et al. Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the cofermentation of waste activated sludge and food waste[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4675-4684. |
[18] | Fu S F, Ding J N, Zhang Y, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science of the Total Environment, 2018, 625: 64-70. DOI:10.1016/j.scitotenv.2017.12.158 |
[19] |
潘煜, 孙力平, 陈星宇, 等. CMC改性纳米Fe/Cu双金属模拟PRB去除地下水中2, 4-二氯苯酚[J]. 中国环境科学, 2019, 39(9): 3789-3796. Pan Y, Sun L P, Chen X Y, et al. Removal of 2, 4-dichlorophenol from groundwater by PRB simulated by CMC modified nanoscale Fe/Cu bimetal[J]. China Environmental Science, 2019, 39(9): 3789-3796. |
[20] | Collado N, Buttiglieri G, Marti E, et al. Effects on activated sludge bacterial community exposed to sulfamethoxazole[J]. Chemosphere, 2013, 93(1): 99-106. DOI:10.1016/j.chemosphere.2013.04.094 |
[21] |
程诚, 朱琳, 郭凯成, 等. 不同HRT下污水中有机物在ABR中的转化过程及污泥形态特征[J]. 环境科学, 2020, 41(4): 1808-1815. Cheng C, Zhu L, Guo K C, et al. Characteristics of organics transformation and sludge morphology in an ABR for sewage treatment with different HRTs[J]. Environmental Science, 2020, 41(4): 1808-1815. |
[22] | Liang Z W, Li W H, Yang S Y, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626-632. DOI:10.1016/j.chemosphere.2010.03.043 |
[23] |
杨明明, 刘子涵, 周杨, 等. 厌氧氨氧化颗粒污泥EPS及其对污泥表面特性的影响[J]. 环境科学, 2019, 40(5): 2341-2348. Yang M M, Liu Z H, Zhou Y, et al. Extracellular polymeric substances of ANAMMOX granular sludge and its effects on sludge surface characteristics[J]. Environmental Science, 2019, 40(5): 2341-2348. |
[24] | Chen H B, Zeng X N, Zhou Y Y, et al. Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 394. DOI:10.1016/j.jhazmat.2020.122570 |
[25] |
邢崇阳, 范禹辰, 陈璇, 等. 羟胺对厌氧氨氧化污泥群落的影响[J]. 环境科学, 2020, 41(7): 3365-3372. Xing C Y, Fan Y C, Chen X, et al. Effect of hydroxylamine on community of ANAMMOX sludge[J]. Environmental Science, 2020, 41(7): 3365-3372. |
[26] | Yin Y J, Sun J, Liu F Y, et al. Effect of nitrogen deficiency on the stability of aerobic granular sludge[J]. Bioresource Technology, 2019, 275: 307-313. DOI:10.1016/j.biortech.2018.12.069 |
[27] | Wang B B, Shi X, Liu X T, et al. Insight into the Fenton-induced degradation process of extracellular polymeric substances (EPS) extracted from activated sludge[J]. Chemosphere, 2019, 234: 318-327. DOI:10.1016/j.chemosphere.2019.06.078 |
[28] | Yan Z R, Meng H S, Yang X Y, et al. Insights into the interactions between triclosan (TCS) and extracellular polymeric substance (EPS) of activated sludge[J]. Journal of Environmental Management, 2019, 232: 219-225. |
[29] | Li D Z, Zhou Y, Tan Y M, et al. Alkali-solubilized organic matter from sludge and its degradability in the anaerobic process[J]. Bioresource Technology, 2016, 200: 579-586. DOI:10.1016/j.biortech.2015.10.083 |
[30] | Zhu L, Zhou J H, Lv M L, et al. Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE[J]. Chemosphere, 2015, 121: 26-32. DOI:10.1016/j.chemosphere.2014.10.053 |
[31] | Qu F S, Liang H, He J G, et al. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling[J]. Water Research, 2012, 46(9): 2881-2890. DOI:10.1016/j.watres.2012.02.045 |
[32] | Xu Q X, Li X M, Ding R R, et al. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge[J]. Water Research, 2017, 124: 269-279. DOI:10.1016/j.watres.2017.07.067 |
[33] | Zeng T T, Zhang S Q, Gao X, et al. Assessment of bacterial community composition of anaerobic granular sludge in response to short-term uranium exposure[J]. Microbial Ecology, 2018, 76(3): 648-659. DOI:10.1007/s00248-018-1152-x |
[34] | Yan X, Luo X G, Zhao M. Metagenomic analysis of microbial community in uranium-contaminated soil[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 299-310. DOI:10.1007/s00253-015-7003-5 |
[35] | Liu J, Li J, Wang X D, et al. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP[J]. Journal of Environmental Sciences, 2017, 51: 332-341. DOI:10.1016/j.jes.2016.06.012 |
[36] | Liu Y R, Wei D, Xu W Y, et al. Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: System evaluation and community structure[J]. Bioresource Technology, 2019, 288. DOI:10.1016/j.biortech.2019.121504 |
[37] | Kim Y H, Cha C J, Engesser K H, et al. Degradation of various alkyl ethers by alkyl ether-degrading Actinobacteria isolated from activated sludge of a mixed wastewater treatment[J]. Chemosphere, 2008, 73(9): 1442-1447. DOI:10.1016/j.chemosphere.2008.07.074 |
[38] | Biswal B K, Wang W, Tang C J, et al. Elucidating the effect of mixing technologies on dynamics of microbial communities and their correlations with granular sludge properties in a high-rate sulfidogenic anaerobic bioreactor for saline wastewater treatment[J]. Bioresource Technology, 2020, 297. DOI:10.1016/j.biortech.2019.122397 |
[39] | Alvarez A, Saez J M, Dávila Costa J S, et al. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals[J]. Chemosphere, 2017, 166: 41-62. DOI:10.1016/j.chemosphere.2016.09.070 |
[40] | Miao Y, Liao R H, Zhang X X, et al. Metagenomic insights into Cr(Ⅵ) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. DOI:10.1016/j.watres.2015.02.042 |
[41] | Zhou L J, Gao Y, Yu K, et al. Microbial community in in-situ waste sludge anaerobic digestion with alkalization for enhancement of nutrient recovery and energy generation[J]. Bioresource Technology, 2020, 295. DOI:10.1016/j.biortech.2019.122277 |