环境科学  2021, Vol. 42 Issue (4): 1660-1667   PDF    
燃煤电厂和垃圾焚烧电厂燃烧产物中卤代多环芳烃的赋存特征和毒性风险
倪秀峰1, 王儒威2,3, 蔡飞旋2, 蔡家伟2     
1. 浙江大学环境与资源工程学院, 杭州 310058;
2. 暨南大学环境学院, 广州 511443;
3. 中国矿业大学煤炭加工与高效洁净利用教育部重点实验室, 徐州 221116
摘要: 研究了燃煤电厂和垃圾焚烧电厂燃烧产物中卤代多环芳烃(HPAHs)的赋存特征、生成机制和毒性效应.结果表明,燃煤电厂和垃圾电厂飞灰中氯代PAHs(Cl-PAHs)的含量为1.06~1.67 ng·g-1和2.76 ng·g-1,溴代PAHs(Br-PAHs)的含量为26.4~44.2 ng·g-1和6.31 ng·g-1;垃圾电厂飞灰中Cl-PAHs的含量明显高于燃煤电厂,主要是因为生活垃圾中含有大量的聚氯乙烯为代表的塑料.来自煤粉炉的飞灰中Br-PAHs和Cl-PAHs的含量明显低于循环流化床燃煤飞灰,主要是因为煤粉炉具有更高的燃烧温度和燃烧效率.燃煤电厂飞灰中主要为7-BrBaA和9-ClPhe;垃圾电厂除尘器飞灰中Br-PAHs主要为9-BrPhe和2-ClAnt.7-BrBaA和9,10-Br2Ant在燃煤电厂除尘器飞灰的含量远高于其在底灰和脱硫石膏的含量,但摩尔质量相对较小的2-BrFle在飞灰、底灰和脱硫石膏中的含量相近.垃圾电厂除尘器飞灰经过半干法脱酸后Br-PAHs的含量减少50%以上,但是经过螯合剂稳固化作用之后飞灰中Br-PAHs的含量明显升高.Pearson相关分析结果表明,燃煤电厂不同燃烧产物的HPAHs生成机制相同,而垃圾焚烧电厂不同产物中HPAHs具有不同的生成机制,飞灰螯合化过程导致HPAHs的二次生成.垃圾电厂除尘器飞灰中HPAHs的TEQs值(10.0×10-3 ng·g-1)与燃煤电厂相近(8.87×10-3~15.0×10-3 ng·g-1).对于垃圾电厂不同燃烧产物,脱酸工艺能够显著去除7-BrBaA从而降低飞灰的TEQ值,而飞灰螯合化后TEQ值达到螯合前的5.4倍.燃煤电厂的飞灰因年产量较大,且总HPAHs的TEQs值相对较高,对其处理和资源化利用应考虑HPAHs带来的生态风险.
关键词: 燃煤电厂(CFPP)      垃圾焚烧电厂(WIPP)      燃烧产物      脱酸工艺      卤代多环芳烃(HPAHs)     
Emission Characteristics and Toxicity Effects of Halogenated Polycyclic Aromatic Hydrocarbons from Coal-Fired and Waste Incineration Power Plants
NI Xiu-feng1 , WANG Ru-wei2,3 , CAI Fei-xuan2 , CAI Jia-wei2     
1. College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China;
2. School of Environment, Jinan University, Guangzhou 511443, China;
3. Key Laboratory of Coal Processing & Efficient Utilization, Ministry of Education, University of Mining and Technology, Xuzhou 221116, China
Abstract: Coal-fired power plants (CFPPs) and waste incineration power plants (WIPPs) represent a large portion of polycyclic aromatic hydrocarbons (PAHs) sources in the environment, among which halogenated PAHs (HPAHs) are more toxic to the human body compared with their corresponding parent PAHs. In the current work, we investigated the occurrence, formation mechanism, and toxicity effects of HPAHs in the coal and waste combustion products from three CFPPs and one WIPP. The results indicate that the contents of chlorinated PAHs (Cl-PAHs) in the fly ash from the CFPPs and WIPP were 1.06-1.67 ng·g-1 and 2.76 ng·g-1, respectively, and the contents of brominated PAHs (Br-PAHs) in the fly ash from the CFPPs and WIPP were 26.4-44.2 ng·g-1 and 6.31 ng·g-1, respectively. The HPAH contents in the fly ash from the WIPP were significantly higher than those from the CFPPs primarily due to the abundant plastics in the domestic waste, represented by polyvinyl chloride, resulting in the formation of Cl-PAHs during combustion. The HPAH contents in the fly ash from the pulverized coal-fired (PC) boiler were significantly higher than those from the circulating fluidized bed (CFB) boiler mostly due to the higher combustion temperature operated in the PC boiler. The HPAHs in the fly ash from coal combustion were predominantly 7-BrBaA and 9-ClPhe, and those from domestic combustion were predominantly 9-BrPhe and 2-ClAnt. In addition, the contents of 7-BrBaA and 9, 10-Br2 Ant in the coal combustion fly ash were significantly higher than those in domestic waste combustion fly ash, whereas 2-BrFle exhibited a contrasting profile. The content of Br-PAHs in the fly ash treated by semi-dry deacidification was twice that in dust removal fly ash but significantly increased in the chelating agent stabilization fly ash. The Pearson correlation analysis indicated the the formation mechanism of Cl-PAHs and Br-PAHs were the same but a secondary formation of HPAHs during the chelating agent stabilization of the fly ash was deduced. The TEQ values of the HPAHs in the fly ash (8.87×10-3-15.0×10-3 ng·g-1) from the WIPP were similar to those in the fly ash from the CFPPs (10.0×10-3 ng·g-1), which were significantly reduced in the fly ash treated by semi-dry deacidification due to the removal of 7-BrBaA. Moreover, the TEQ values of the HPAHs in the fly ash increased 5.4 times after the chelating agent stabilization. The ecological risk should be considered for the CFPP fly ash due to their massive amount of discharge and high TEQ values.
Key words: coal-fired power plant(CFPP)      waste incineration power plant(WIPP)      combustion products      de-acidification process      halogenated polycyclic aromatic hydrocarbons(HPAHs)     

多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一类环境中普遍存在的有机污染物, 其主要来源是以垃圾焚烧和燃煤为代表的能源和化工生产过程中有机物质不完全燃烧所排放[1~3].近年来, 欧洲、日本和美国等发达国家或地区的PAHs排放量在逐渐下降[4~6].但是, 自20世纪90年代初, 全球PAHs排放总趋势保持恒定, 原因之一是以中国和印度为代表的发展中国家PAHs排放量不断增加[7, 8].中国卫生统计数据已经证实, 我国大气PAHs污染日趋加重的近30年间, 肺癌的发生率也呈倍数增长[9].有学者曾对大气PAHs污染带来的肺癌风险进行评估, 结果表明我国因室外大气PAHs污染造成的增量终生肺癌风险平均值为1.6%, 在极端高风险地区该值高达44%[10].

卤代多环芳烃(halogenated polycyclic aromatic hydrocarbons, HPAHs)是一个或多个氢原子被氯或溴原子取代的PAHs衍生物.HPAHs与剧毒有机氯化物(如二苯并呋喃、联苯和多氯二苯并对二英)的结构相似, 且具有类似二英的生物毒性[11].环境中HPAHs主要来自于垃圾焚烧、汽车尾气排放和电子垃圾拆解[12].HPAHs的辛醇-水分配系数比对应的母体PAHs更大, 因而比对应的母体PAHs更亲脂, 也更容易在生物体内蓄积, 可能具有更大的生物放大作用.因此, HPAHs的人体暴露带来的癌症风险可能会比对应的母体PAHs更高.虽然前人针对环境中HPAHs的赋存状态、源解析和健康风险等方面进行过研究[13~15], 但与母体PAHs、二英和多氯联苯等致癌性半挥发有机污染物相比, HPAHs的排放特征的研究非常有限.

前人研究表明, 垃圾焚烧电厂燃烧产物中HPAHs的赋存特征受到炉温和锅炉类型等因素的影响, 飞灰中以1-ClPyr和6-ClBaP为主, 且小于在底灰中的含量; 不同类型锅炉燃烧产物中Cl-PAHs的含量也不同, 且与母体PAHs之间相关性显著[16~19], 但燃烧产物中Br-PAHs的含量与母体PAHs之间无显著相关, 这表明垃圾焚烧过程中Cl-PAHs可能来自于母体PAHs的氯化作用.有研究发现, 垃圾焚烧电厂排放烟气中Cl-PAHs的含量远高于其在大气中的含量, 并且HPAHs的组成与城市母体大气中PAHs的组成特征相似, 主要来自于垃圾焚烧.鉴于未来很长时期内我国仍将以煤炭作为主要能源, 以及城市垃圾用来燃烧发电的快速发展[20~22], 针对电厂燃煤和垃圾焚烧过程排放PAHs及其衍生物的研究具有重要的科学和现实意义.本文对采自安徽省不同类型燃煤电厂和垃圾焚烧电厂的燃烧产物中HPAHs的含量、组成、生成机制和毒性效应进行研究, 以期为工业锅炉燃煤和生活垃圾焚烧过程排放毒害有机污染物的预测和控制提供科学依据.

1 材料与方法 1.1 研究电厂概况

2018年安徽省发电量为2726亿kW ·h, 其中火力发电占比约92%(即2519亿kW ·h).平均每日消耗原煤48.63万t. 2017年安徽省工业废气和烟尘的总排放量分别为31 440亿m3和222 100 t, 其中合肥占比为6.6%(2 070亿m3)和8.6%(13 600 t), 淮南占比为8.4%(2 640亿m3)和6.4%(15 000 t)[23].因此, 选取研究对象为合肥和淮南的3家燃煤电厂及1家垃圾焚烧电厂.相关信息见表 1.

表 1 本实验采样的电厂信息1) Table 1 Basic information of sampling power plants

1.2 样品采集

样品采自配有湿法脱硫和静电除尘装置的燃煤锅炉.燃煤锅炉机组见图 1:原煤采自炉前传送带; 底灰采自锅炉底部出灰口; 飞灰采自静电除尘器粗灰出口(A)和细灰出口(B); 石灰浆及脱硫产物(废渣、石膏和废液)采自湿法脱硫塔.采样时间为每次2 h左右, 固体样品每次采集量为1 kg左右, 于聚氯乙烯袋中密封保存, 液体样品每次采集量约5 kg, 于聚乙烯瓶中储存.

图 1 燃煤锅炉机组采样点示意 Fig. 1 Schematic diagram of boiler generator set

1.3 样品前处理

称取固体样品5 g, 使用30 mL正己烷和二氯甲烷的混合液(3 ∶1, 体积比)超声萃取3次(萃取时间分别为30、20和10 min).将3次超声萃取液共90 mL倒入鸡心瓶, 再经旋转蒸发将萃取液浓缩至2 mL.然后将浓缩后的萃取液转移至已经用10 mL正己烷活化后的纯化柱(Mega BE-C18, Agilent Technologies Inc), 并用20 mL正己烷和二氯甲烷(7 ∶3, 体积比)的混合液冲洗纯化柱.最后将收集到的洗脱液再次旋转蒸发, 并转移到细胞瓶, 用氮吹将洗脱液定容至1 mL.定容后贴标签并封口.将内标(p-terphenyl-d14和2-fluoro-1, 1-biphenyl)在仪器分析前加入细胞瓶.

1.4 仪器分析

采用气相色谱-质谱联用仪(Shimadzu GC-MS-QP 2010)测定8种HPAHs.每10个样品需进行加标空白和实验室空白样品.目标物在空白样品中的平均浓度小于5 ng ·mL-1的最低校准浓度.样品的替代标准回收率分别为phenanthrene-d10: (91±28)%; naphthalene-d8: (65±22)%; chrysene-d12: (67±27)%; acenaphthene-d10: (82±31)%; perylene-d12: (93±30)%.本文所有测量相关结果均未替代标准回收率或校正程序空白.本研究的8种HPAHs的相关信息见表 1.

1.5 燃烧产物中HPAHs的毒性当量(TEQ)

目前关于HPAHs毒性当量因子的数据较缺乏, 仅有受到HPAHs影响后YCM3酵母细胞中芳香烃受体(AhR)的活性数据.而相对于YCM3细胞, BaP的效应值是2, 3, 7, 8-tetrachlorodibenzo-p-dioxin的1/60, 因此, 本研究各类燃烧产物中HPAHs的TEQs用下式计算:

式中, ci表示HPAHs单体的平均浓度, REPBaP表示HPAHs单体相对于Benzo[a]pyrene的相对效应值(relative potency values, 表 2)[24, 25].由于目前部分HPAHs值的数据不全, 故燃烧产物实际毒性应大于计算值.

表 2 本研究的8种HPAHs的信息 Table 2 Information of eight HPAHs in this study

1.6 数据处理与分析

本研究使用SPSS 25.0进行Pearson相关分析检验HPAHs之间的关系.使用主成分分析(PCA)分析比较燃烧产物中的HPAHs和不同种类HPAHs的来源.本文中的图表在Sigmaplot 12.5和Excel 2017中制作完成.

2 结果与讨论 2.1 燃煤产物中HPAHs的含量和组成特征

图 2所示为煤电厂和垃圾电厂除尘器飞灰中HPAHs的含量和组成.飞灰中Cl-PAHs的含量分别为煤电厂1: 1.06 ng ·g-1, 煤电厂2: 1.67 ng ·g-1, 煤电厂3: 1.56 ng ·g-1, 垃圾电厂: 2.76 ng ·g-1; 飞灰中Br-PAHs的含量分别为煤电厂1: 43.1 ng ·g-1, 煤电厂2: 44.2 ng ·g-1, 煤电厂3: 26.4 ng ·g-1, 垃圾电厂: 6.31 ng ·g-1.垃圾电厂除尘器飞灰中Cl-PAHs的含量明显高于燃煤电厂飞灰中的含量(P < 0.05), 该情况与Br-PAHs相反, 主要是因为生活垃圾中含有大量的聚氯乙烯为代表的塑料, 其燃烧过程会生成Cl-PAHs[26].不同燃煤电厂飞灰中Cl-PAHs含量差异不显著(P > 0.05), 但煤电厂1飞灰中Br-PAHs和Cl-PAHs的含量明显低于其余2个燃煤电厂, 这主要是因为煤电厂1的锅炉为煤粉炉, 该类型锅炉燃烧温度约为1 400~1 600℃; 而煤电厂2和煤电厂3为循环流化床炉, 该类型锅炉燃烧温度约为800~1 000℃.较高的燃烧温度导致燃煤产物中HPAHs的含量相对较低[27, 28].

图 2 不同飞灰中HPAHs单体的含量 Fig. 2 Contents of individual HPAHs in different fly ash samples

燃煤电厂飞灰中HPAHs的组成特征相似, 其中Br-PAHs均主要为9-BrAnt, 占总Br-PAHs总含量比值(质量分数)为45.2% ~96.5%, 其次为9-BrPhe(0.6% ~34.6%)、9, 10-Br2Ant(0.2% ~21.7%)、2-BrFle(1.9% ~13.0%)和7-BrBaA(0.2% ~9.7%); 燃煤飞灰中Cl-PAHs均主要为9-ClPhe, 占总Cl-PAHs总含量比值为49.19% ~66.48%, 其次为2-ClAnt(22.3% ~47.0%)和9, 10-Cl2Ant(2.5% ~11.2%).与燃煤电厂飞灰中HPAHs的组成特征不同, 垃圾电厂除尘器飞灰中Br-PAHs主要为9-BrAnt(47.8%), 其次为9, 10-Br2Ant(29.1%)、2-BrFle(14.7%)、9-BrPhe(4.7%)和7-BrBaA(3.8%); 另外, 垃圾电厂除尘器飞灰中Cl-PAHs主要为2-ClAnt(51.39%), 其次为9, 10-Cl2Ant(34.60%)和9-ClPhe(14.01%).

图 3所示, 燃煤电厂底灰和脱硫石膏中Br-PAHs的组成与飞灰中明显不同: 9-BrPhe虽然在飞灰中占比较大, 但在燃煤底灰和脱硫石膏中的含量相对较低(分别为: 0.11~0.81 ng ·g-1和1.1 ng ·g-1); 与9-BrPhe的分布特征相似, 9, 10-Br2Ant在燃煤电厂除尘器飞灰中的含量约为其在底灰和脱硫石膏中含量的7.4~26.4倍, 但摩尔质量相对较小的2-BrFle却在飞灰、底灰和脱硫石膏中的含量相近.此二者的差异可能源于高分子量Br-PAHs更容易在静电除尘过程受到高压电场作用发生电离并吸附于飞灰中[29, 30].燃煤电厂底灰和脱硫石膏中Cl-PAHs均以9-ClPhe为主要化合物, 其相对比例为底灰: 22.9% ~44.2%, 脱硫石膏: 56.6%, 这一点与其在燃煤飞灰中的分布特征相似, 但燃煤底灰和脱硫石膏中的9, 10-Cl2Phe的相对含量占比均明显小于其在飞灰中的相对含量(图 2图 3).

图 3 燃煤电厂各燃烧产物中HPAHs单体的含量 Fig. 3 Contents of individual HPAHs in combustion products of coal fired power plants

图 4所示, 垃圾电厂底灰中Br-PAHs的含量(25.9 ng ·g-1)明显高于其在除尘器飞灰中的含量(6.31 ng ·g-1), 其原因可能是循环流化床锅炉反复回炉的燃烧方式导致Br-PAHs向底灰富集[28].飞灰经过半干法脱酸, Br-PAHs的含量减少50%以上, 主要是因为Br-PAHs在物质交换作用过程中迁移至脱硫石膏中(17.6 ng ·g-1).但是飞灰经过螯合剂稳固化作用之后, Br-PAHs的含量加倍, 且9, 10-Br2Ant含量明显升高; 此外, 飞灰和螯合化飞灰中9-BrPhe和2-BrFle的总占比在脱酸后较高, 分别达到43.1%和59.1%.飞灰经过活性炭吸附之后, 其含量水平与脱硫石膏相当(19.9 ng ·g-1).

图 4 垃圾焚烧电厂各燃烧产物中HPAHs单体的含量 Fig. 4 Contents of individual HPAHs in combustion products of waste incineration power plants

垃圾电厂不同燃烧产物中Cl-PAHs的分布特征表明, 活性炭飞灰中Cl-PAHs的含量(6.01 ng ·g-1)是除尘器飞灰(2.76 ng ·g-1)的2.2倍, 且活性炭飞灰中Cl-PAHs的含量远大于脱酸飞灰和脱硫石膏(图 4), 这说明活性炭吸附作用是导致脱酸后Cl-PAHs含量下降的重要因素.垃圾电厂不同燃烧产物中Cl-PAHs的组成特征表明, 除尘器飞灰Cl-PAHs以2-ClAnt为主, 9-ClPhe则在脱酸飞灰和底灰中的含量更高; 此外, 9, 10-Cl2Ant在各燃烧产物中的相对含量占比均较低(5.8% ~39.0%).

2.2 燃烧产物中HPAHs的生成机制

利用Pearson相关分析对垃圾电厂飞灰中HPAHs的相关性进行分析, 发现Cl-PAHs单体之间和Br-PAHs单体之间相关性显著, 但Cl-PAHs和Br-PAHs之间的相关性不显著, 这表明垃圾电厂Cl-PAHs和Br-PAHs的生成机制可能不一致.垃圾电厂飞灰相关矩阵的3个特征值为λ1=3.520、λ2=1.673和λ3=1.213, 3个成分对方差的贡献分别为44.0%、20.9%和15.2%, 其中PC1的特点是因子变量于2-BrFle、7-BrBaA和9-BrPhe等母体PAHs不为Ant的HPAHs浓度出现较高的正载荷;PC2在7-BrBaA、9-BrPhe、9-ClPhe和2-ClAnt等载荷较高, 这与螯合后飞灰增加HPAHs的类别相对应, 所以PC2表征以螯合剂为主的添加物对垃圾电厂的贡献;PC3在9-BrAnt和9, 10-Cl2Ant等对光化学敏感的卤化蒽浓度上存在较高的载荷[31].所以PC1可以被解释为非光化学过程产生HPAHs, 这再次证明垃圾电厂燃烧产物中HPAHs具有不同的生成机制.

图 5所示为煤电厂3除尘器飞灰中HPAHs的PCA源解析结果.燃煤飞灰相关矩阵特征值λ=6.752, 该成分对方差的贡献为84.4%, 矩阵特征值其特征化合物为全部8种HPAHs(其中2-BrFle、7-BrBaA、9, 10-Br2Ant、9, 10-Cl2Ant、9-BrPhe和9-ClPhe), 这证明燃煤电厂飞灰中Cl-PAHs和Br-PAHs生成机制一致.

图 5 煤电厂3的三维因子载荷 Fig. 5 PCA results of coal power plant 3

对燃煤产物的HPAHs的相关性分析表明, 不同燃煤产物中HPAHs单体间的相关性显著.特征值λ1=5.865的PC1主成分对方差的贡献为97.8%, 各燃烧产物在PC1上载荷都很高, 表明各燃煤电厂不同燃烧产物中HPAHs的生成机制一致.对垃圾电厂各燃烧产物进行主成分分析, 通过计算公因子方差, 提取主成分, 降维数据, 得到特征值λ1=5.465和λ2=0.835.提取PC1和PC2, 解释超过90%的主成分.选取相关系数大于0.1的数据进行主成分分析, 发现PC1对所有燃烧产物解读较好, 但PC2对飞灰中HPAHs有更好的解释.结合2.1节的结论, 认为垃圾电厂不同燃烧产物的HPAHs生成机制相同, 而飞灰螯合化过程导致HPAHs的二次生成.

2.3 燃烧产物中HPAHs的TEQs

图 6所示为电厂燃烧产物中HPAHs的TEQs, 虽然不同燃煤电厂飞灰中HPAHs的含量相似, 但是其TEQs值具有明显的差异性(P < 0.05), 分别为煤电厂1: 8.87×10-3ng ·g-1, 煤电厂2: 10.9×10-3ng ·g-1, 煤电厂3: 15.0×10-3ng ·g-1(表 3).垃圾电厂除尘器飞灰中HPAHs含量虽然明显低于燃煤电厂, 但其TEQs值(10.0×10-3ng ·g-1)与燃煤电厂相近, 主要原因是具有较大相对效应值的7-BrBaA(0.84)对燃煤电厂和垃圾电厂的TEQs值贡献较大, 其在燃煤电厂和垃圾电厂飞灰TEQs值的占比为13.2% ~56.7%和33.7%.此外, 9-BrAnt对燃煤电厂飞灰TEQs值贡献较大, 9, 10-Cl2Ant贡献较小, 这一情况与垃圾电厂除尘器飞灰相反.对于垃圾电厂不同燃烧产物, 脱酸工艺能够显著去除7-BrBaA从而降低飞灰的TEQs值, 而飞灰螯合化后虽然9, 10-Cl2Ant的含量显著降低, 但7-BrBaA的含量显著升高, TEQs值达到螯合前的5.4倍.活性炭吸附和氢氧化钙脱硫作用显著去除飞灰中的7-BrBaA和9-BrBaA, 从而降低TEQs值(图 7).

图 6 电厂飞灰的HPAHs毒性当量值 Fig. 6 TEQ values of individual HPAHs in fly ash from different power plants

图 7 垃圾焚烧电厂燃烧产物中HPAHs毒性当量 Fig. 7 TEQ values of individual HPAHs in combustion products from waste incineration power plants

2.4 不同燃煤产物HPAHs的排放量

表 3为燃煤电厂和垃圾电厂燃烧产物的年生产量、HPAHs的含量和HPAHs的年排放量.从中可知, 垃圾电厂飞灰脱酸后和螯合化后HPAHs的总含量与脱硫石膏中HPAHs的含量相当, 活性炭对Br-PAHs吸附作用不强, 因而其处理的飞灰中HPAHs的含量水平不高.燃煤电厂的飞灰因年产量较大, 且总HPAHs的TEQs值相对较高, 对其处理和资源化利用应考虑HPAHs带来的生态风险.

表 3 燃烧产物中HPAHs的含量、TEQs和年排放量 Table 3 HPAHs concentrations in combustion products and their annual discharge amounts

3 结论

(1) 垃圾电厂除尘器飞灰中Cl-PAHs的含量明显高于燃煤电厂飞灰中的含量(P < 0.05), 主要是因为生活垃圾中含有大量的聚氯乙烯为代表的塑料燃烧过程生成Cl-PAHs; 煤电厂1飞灰中Br-PAHs和Cl-PAHs的含量明显低于其余2个燃煤电厂, 主要是因为煤粉炉燃烧温度和燃烧效率更高.

(2) 燃煤电厂飞灰中HPAHs的组成主要为7-BrBaA和9-ClPhe, 垃圾电厂除尘器飞灰中Br-PAHs主要为9-BrPhe和2-ClAnt; 燃煤电厂底灰和脱硫石膏中Br-PAHs的组成与飞灰中明显不同, 燃煤电厂底灰和脱硫石膏中Cl-PAHs均以9-ClPhe为主要化合物, 这一点与其在燃煤飞灰中的分布特征相似, 但燃煤底灰和脱硫石膏中的9, 10-Cl2Phe的相对含量占比均明显小于其在飞灰中的相对含量.

(3) 垃圾电厂底灰中Br-PAHs的含量明显高于除尘器飞灰, 但是经过螯合剂稳固化作用之后, Br-PAHs的含量加倍; 飞灰经过活性炭吸附之后, 其含量水平与脱硫石膏相当; 活性炭飞灰中Cl-PAHs的含量是除尘器飞灰的约2倍, 且活性炭飞灰中Cl-PAHs的含量远大于脱酸飞灰和脱硫石膏.

(4) 垃圾电厂飞灰中HPAHs的相关性分析表明, Cl-PAHs单体之间和Br-PAHs单体之间相关性显著, 但Cl-PAHs和Br-PAHs之间的相关性不显著.主成分分析结果显示PC1载荷较高的PAHs为2-BrFle、7-BrBaA和9-BrPhe等母体PAHs不为Ant的HPAHs, 它们被解释为非光化学过程产生HPAHs, 证明垃圾电厂燃烧产物中HPAHs具有不同的生成机制.

(5) 垃圾电厂除尘器飞灰中HPAHs的TEQs值与燃煤电厂相近, 主要源于7-BrBaA的贡献; 9-BrAnt对燃煤电厂飞灰TEQs值贡献较大, 9, 10-Cl2Ant贡献较小, 这一情况与垃圾电厂除尘器飞灰相反.脱酸工艺能够显著降低飞灰的TEQs值, 而飞灰螯合化后TEQs值达到螯合前的5.4倍; 活性炭吸附和氢氧化钙脱硫作用能够显著降低其TEQs值.

致谢: 感谢北京大学深圳研究生院和中国科技大学地球和空间科学学院对本研究的支持.倪宏刚研究小组在卤代多环芳烃测试方面提供帮助, 魏勇、王继忠和袁晶晶等在采样和实验方面提供帮助, 在此一并致谢!

参考文献
[1] Tang T G, Cheng Z N, Xu B Q, et al. Triple isotopes (δ13C, δ2H, and Δ14C) compositions and source apportionment of atmospheric naphthalene: a key surrogate of intermediate-volatility organic compounds (IVOCs)[J]. Environmental Science & Technology, 2020, 54(9): 5409-5418.
[2] Wang S Q, Wang W J, Wu C C, et al. Low tar level does not reduce human exposure to polycyclic aromatic hydrocarbons in environmental tobacco smoke[J]. Environmental Science & Technology, 2020, 54(2): 1075-1081.
[3] 薛国艳, 王格慧, 吴灿, 等. 长三角背景点夏季大气PM2.5中正构烷烃和多环芳烃的污染特征和来源解析[J]. 环境科学, 2020, 41(2): 554-563.
Xue G Y, Wang G H, Wu C, et al. Pollution characteristics and source apportionment of n-alkanes and PAHs in summertime PM2.5 at background site of Yangtze River Delta[J]. Environmental Science, 2020, 41(2): 554-563. DOI:10.3969/j.issn.1000-6923.2020.02.011
[4] Boitsov S, Klungsøyr J, Jensen H K B. Background concentrations of polycyclic aromatic hydrocarbons (PAHs) in deep core sediments from the Norwegian Sea and the Barents Sea: a proposed update of the OSPAR Commission background values for these sea areas[J]. Chemosphere, 2020, 251. DOI:10.1016/j.chemosphere.2020.126344
[5] Herzig R, Lohmann N, Meier R. Temporal change of the accumulation of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in lichens in Switzerland between 1995 and 2014[J]. Environmental Science and Pollution Research, 2019, 26(11): 10562-10575. DOI:10.1007/s11356-019-04236-9
[6] Martinez-Swatson K, Mihály E, Lange C, et al. Biomonitoring of polycyclic aromatic hydrocarbon deposition in Greenland using historical moss herbarium specimens shows a decrease in pollution during the 20th century[J]. Frontiers in Plant Science, 2020, 11. DOI:10.3389/fpls.2020.01085
[7] Zhao Y, Wang L, Luo J M, et al. Deep learning prediction of polycyclic aromatic hydrocarbons in the high Arctic[J]. Environmental Science & Technology, 2020, 53(22): 13228-13245.
[8] Shen H Z, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47(12): 6415-6424.
[9] Lelieveld J, Evans J S, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569): 367-371. DOI:10.1038/nature15371
[10] Zhang Y X, Tao S, Shen H Z, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21063-21067. DOI:10.1073/pnas.0905756106
[11] Vuong Q T, Thang P Q, Nguyen T N T, et al. Seasonal variation and gas/particle partitioning of atmospheric halogenated polycyclic aromatic hydrocarbons and the effects of meteorological conditions in Ulsan, South Korea[J]. Environmental Pollution, 2020, 263. DOI:10.1016/j.envpol.2020.114592
[12] Romanak K A, Wang S R, Stubbings W A, et al. Analysis of brominated and chlorinated flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons in silicone wristbands used as personal passive samplers[J]. Journal of Chromatography A, 2019, 1588: 41-47. DOI:10.1016/j.chroma.2018.12.041
[13] Jin R, Bu D, Liu G R, et al. New classes of organic pollutants in the remote continental environment-Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau[J]. Environment International, 2020, 137. DOI:10.1016/j.envint.2020.105574
[14] 孙建林, 常文静, 陈正侠, 等. 深圳大气颗粒物中卤代多环芳烃污染研究[J]. 环境科学, 2015, 36(5): 1513-1522.
Sun J L, Chang W J, Chen Z X, et al. Pollution of halogenated polycyclic aromatic hydrocarbons in atmospheric particulate matters of Shenzhen[J]. Environmental Science, 2015, 36(5): 1513-1522.
[15] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展[J]. 生态毒理学报, 2017, 12(3): 120-134.
Luo Y, Zhang B Q, Ren X Q, et al. Advances in the researches on the occurrence and toxicity of chlorinated polycyclic aromatic hydrocarbons[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 120-134.
[16] 吴海霞, 岳波, 孟棒棒, 等. 温度和含水率对村镇垃圾焚烧烟气中有机物排放的影响[J]. 中国环境科学, 2020, 40(1): 305-311.
Wu H X, Yue B, Meng B B, et al. The influence of temperature and moisture content on the release of organic pollutants in flue gas of rural solid waste (RSW) incineration[J]. China Environmental Science, 2020, 40(1): 305-311. DOI:10.3969/j.issn.1000-6923.2020.01.034
[17] Xu Y, Yang L L, Zheng M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants[J]. Environmental Science & Technology, 2018, 52(13): 7334-7342.
[18] Saber A N, Zhang H F, Cervantes-Avilés P, et al. Emerging concerns of VOCs and SVOCs in coking wastewater treatment processes: distribution profile, emission characteristics, and health risk assessment[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.114960
[19] Yang L L, Zheng M H, Zhao Y Y, et al. Unintentional persistent organic pollutants in cement kilns co-processing solid wastes[J]. Ecotoxicology and Environmental Safety, 2019, 182. DOI:10.1016/j.ecoenv.2019.109373
[20] 阮仁晖, 谭厚章, 段钰锋, 等. 超低排放燃煤电厂颗粒物脱除特性[J]. 环境科学, 2019, 40(1): 126-134.
Ruan R H, Tan H Z, Duan Y F, et al. Particle removal characteristics of an ultra-low emission coal-fired power plant[J]. Environmental Science, 2019, 40(1): 126-134. DOI:10.3969/j.issn.1000-6923.2019.01.013
[21] 马仕君, 周传斌, 杨光, 等. 城市生活垃圾填埋场的物质存量特征及其环境影响: 以粤港澳大湾区为例[J]. 环境科学, 2019, 40(12): 5593-5603.
Ma S J, Zhou C B, Yang G, et al. Characteristics and environmental impacts of materials stored in municipal solid waste landfills: a case study of the Guangdong-Hong Kong-Macao greater bay area[J]. Environmental Science, 2019, 40(12): 5593-5603.
[22] 袁晶晶, 笪春年, 王儒威, 等. 淮南燃煤电厂烟气中颗粒相和气相中多环芳烃的赋存特征[J]. 环境化学, 2018, 37(6): 1382-1390.
Yuan J J, Da C N, Wang R W, et al. Occurence of polycyclic aromatic hydrocarbons in PM10-and gaseous phases of flue gases emitted from Huainan coal-fired power plant[J]. Environmental Chemistry, 2018, 37(6): 1382-1390.
[23] 安徽省统计局. 安徽统计年鉴2019[M]. 北京: 中国统计出版社, 2019.
[24] Ohura T, Sawada K I, Amagai T, et al. Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and AhR activity[J]. Environmental Science & Technology, 2009, 43(7): 2269-2275.
[25] Horii Y, Ok G, Ohura T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators[J]. Environmental Science & Technology, 2008, 42(6): 1904-1909.
[26] Jin R, Zheng M H, Lammel G, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: sources, formation mechanisms, and occurrence in the environment[J]. Progress in Energy and Combustion Science, 2020, 76. DOI:10.1016/j.pecs.2019.100803
[27] Wang R W, Yousaf B, Sun R Y, et al. Emission characterization and δ13 C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants[J]. Journal of Hazardous Materials, 2016, 318: 487-496. DOI:10.1016/j.jhazmat.2016.07.030
[28] Wang R W, Liu G J, Sun R Y, et al. Emission characteristics for gaseous-and size-segregated particulate PAHs in coal combustion flue gas from circulating fluidized bed (CFB) boiler[J]. Environmental Pollution, 2018, 238: 581-589. DOI:10.1016/j.envpol.2018.03.051
[29] Wang R W, Liu G J, Zhang J M. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs[J]. Science of the Total Environment, 2015, 538: 180-190. DOI:10.1016/j.scitotenv.2015.08.043
[30] Wu B B, Bai X X, Liu W, et al. Variation characteristics of final size-segregated PM emissions from ultralow emission coal-fired power plants in China[J]. Environmental Pollution, 2020, 259. DOI:10.1016/j.envpol.2019.113886
[31] Jin R, Liu G R, Zheng M H, et al. Secondary copper smelters as sources of chlorinated and brominated polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2017, 51(14): 7945-7953.