2. 中国科学院大学, 北京 100049
2. University of Chinese Academy of Sciences, Beijing 100049, China
溶解性有机质(dissolved organic matter, DOM)作为水环境中有机质的主要形式, 在全球碳循环中具有重要作用[1]. DOM的化学组成决定其在环境中的行为方式, 如DOM库作为生物可利用有机质的来源, 支持水生食物网, 减弱水体光场, 影响污染物的迁移和转化[2].于人体健康而言, DOM是一种值得关注的水质成分, 已被证明对致癌和诱变消毒的过程具有重要影响, 且与有毒物质(如:汞)的运移有关[3]. DOM的组分和来源特征对流域水体污染源的识别和评价具有重要意义.
紫外-可见吸收光谱(ultraviolet-visible absorption spectra, UV-Vis)和三维荧光光谱(three-dimensional fluorescence spectroscopy)技术因其灵敏度高、选择性强、可操作性和连续性好, 近年来常被用于水体、土壤和沉积物等介质中DOM的特征及来源分析.江韬等[4]运用紫外-可见吸收光谱表征分析了三峡库区长寿湖DOM的季节变化, 表明周边生态系统和土地利用类型对DOM影响明显; 吕伟伟等[5]运用三维荧光表征太湖北部春、冬季有机质特征及环境意义, 表明DOM均以自生源为主且河口区受陆源贡献较大; 范诗雨等[6]研究了岷江上游水体DOM的吸收光谱及荧光光谱特征, 发现枯水期末DOM的腐殖化程度、芳香性及陆源贡献高于丰水期末.
城镇化作为人类干扰地表过程最强烈的方式, 显著改变着土地利用/覆盖组成、水生态系统物质循环及生物多样性, 对流域环境及生物地球化学循环产生了巨大影响.城镇化进程直接影响河流陆源输入, 改变流域水环境状况, 进而影响河流DOM特征[7~14].初步研究表明, 城镇化过程中的废水排放[8, 15]、流域不透水表面覆盖率和景观格局[11]的改变对河流DOM的结构和性质产生了显著的影响, 进而引起河流碳生物地球化学循环的改变.目前关于城镇化河流DOM的量和质量的研究取得了一定进展[7~9, 11], 但城镇河流DOM特征的时空变化规律的综合研究仍十分欠缺.本文选取三峡库区城镇化进程中典型河流桃花溪和普里河, 运用吸收和荧光光谱技术, 研究城镇化程度对库区典型河流DOM光谱特征及化学多样性季节差异的影响, 阐明DOM组分及来源的时间、空间变化规律对城镇化的响应, 对探究三峡库区河流DOM分布特征及地球化学过程具有重要意义, 以期为长江上游流域水环境保护提供理论支撑.
1 材料与方法 1.1 研究区域概况三峡库区属亚热带季风性湿润气候, 降水充沛且季节分配不均, 受峡谷地形影响显著, 库区植被以亚热带常绿阔叶林为主.桃花溪(107°04′~107°10′E, 29°49′~30°8′N)为长江左岸一级支流, 源头位于长寿区义和乡开丰村, 流域面积376.8 km2, 全长63.1 km, 流经长寿区10余个乡镇和街道, 河流下游受长寿工业园区排水、长寿城区生活污水排放影响, 流域城镇化水平较高.普里河(107°46′~108°29′E, 30°43′~31°8′N)为小江右岸支流, 流域面积为1 150.8 km2, 河长116 km, 发源于梁平区梁山街道七里峡, 流经万州区、开州区, 地处四川盆地东部平行岭谷区的宽谷之中, 流域城镇化水平低.
运用Arcgis 10.3对DEM高程模型进行流域提取, 结合国家卫星中心生态5 a遥感监测数据2015年重庆市1:50 000土地利用, 得到流域土地利用/覆盖组成.桃花溪:林地26.24%、草地4.96%、耕地46.80%、水域1.75%和人工表面20.35%;普里河:林地58.33%、草地4.94%、耕地32.86%、水域1.98%和人工表面1.89%.本文用流域人工表面占比表征城镇化水平, 桃花溪(流域人工表面占比>20%)流域城镇化水平远高于普里河(流域人工表面占比 < 2%), 两河流沿水流方向城镇化水平升高(见图 1).
![]() |
图 1 采样点分布及采样河流土地利用示意 Fig. 1 Distribution of the sampling points and land use for sampled rivers |
对桃花溪和普里河于2018年4月(春季)和8月(夏季)自上游至下游进行水样采集, 每条河流设6个采样点, 采样点间距离大于10 km (图 1).运用EUTECH水质多参数测定仪现场测定水温、pH值、溶解氧(DO)、电导率(EC)和氧化还原电位(ORP)等.
预处理过程为采样当天用0.7 μm Whatman GF/F玻璃纤维膜过滤水样, 用于测定有机质及养分的滤液滴加浓H2SO4酸化密封后送至实验室于4℃保存.
1.3 水质参数测定实验室内对过滤水样进行测定分析.碱性过硫酸钾消解紫外分光光度法(GB 11894-89)测定DTN; 钼酸铵分光光度法(GB 11893-89)测定DTP; 水杨酸分光光度法(HJ 536-2009)测定NH4+-N; 紫外分光光度法(HJ/T 34622007)测定NO3--N. DOC浓度采用Multi N/C 2100s碳氮分析仪测定.
1.4 光谱指标测定分析采用UV-5100B紫外/可见分光光度计测定过滤水样的紫外-可见吸收光谱. 10 mm光程石英比色皿在Ex为200~700 nm范围内扫描吸收光谱, 扫描间隔为1 nm, 以Millipore®超纯水(电阻率18.2 MΩ·cm)作为空白.
运用日立F-7000荧光分光光度计进行过滤水样三维荧光光谱扫描.扫描速度:12 000 nm·min-1, 扫描范围:Ex为220.0~450.0 nm, Em为250.0~550.0 nm, 激发和发射狭缝为5 nm, 扫描光谱由仪器自动校正.以Millipore®超纯水(电阻率18.2 MΩ·cm)作为空白, 扣除瑞利散射和拉曼散射.紫外-可见吸收光谱及三维荧光光谱特征参数的计算方法及表征含义见表 1.
![]() |
表 1 紫外-可见吸收光谱和三维荧光光谱的特征参数 Table 1 Characteristics of ultraviolet-visible absorption and three-dimensional fluorescence spectra |
2 结果与分析 2.1 河流基本理化性质的时空分布特征
桃花溪和普里河在春季(4月)和夏季(8月)水质参数浓度见表 2.高城镇化河流桃花溪的DO(P < 0.01)、EC(P < 0.01)、ORP(P < 0.01)、TDP(P < 0.05)和NO3--N(P>0.05)在夏季浓度均值大于春季, pH(P>0.05)、TDN(P>0.05)和NH4+-N(P < 0.05)在春季浓度高于夏季.低城镇化的普里河水质参数pH(P>0.05)、DO(P < 0.01)、EC(P < 0.01)、ORP(P < 0.05)和TDP(P < 0.01)在夏季浓度均值高于春季, 而TDN(P < 0.05)、NH4+-N(P < 0.01)和NO3--N(P>0.05)在春季浓度高于夏季.桃花溪的EC、TDN、TDP、NH4+-N和NO3--N在春夏两季均值均高于普里河.两河流N、P等营养元素浓度均为城镇化程度高的下游样点大于城镇化低的上游样点.
![]() |
表 2 河流水体基本性质参数均值及范围 Table 2 Mean values and ranges of the basic water parameters of the rivers |
2.2 DOM紫外-可见吸收光谱特征的春夏变化
如表 3和图 2所示, 桃花溪和普里河DOC浓度均值夏季(8月)高于春季(4月)(P>0.05), CDOM浓度、CDOM/DOC春季显著高于夏季(P < 0.01).两河流春季和夏季DOC、CDOM浓度均沿水流方向逐渐上升, CDOM/DOC春季沿水流方向呈下降趋势, 夏季趋势不明显.春、夏两季桃花溪的DOM浓度、CDOM浓度和CDOM/DOC均值大于普里河.
![]() |
表 3 河流DOM光谱特征参数均值 Table 3 Mean values of the DOM spectrum characteristics in the rivers |
![]() |
“→”表示水流方向 图 2 春季(4月)和夏季(8月)各采样点吸收光谱特征 Fig. 2 Absorption spectral characteristics in spring (April) and summer (August) |
高城镇化桃花溪SUVA254(P < 0.01)、SUVA260(P < 0.01)、E2/E4(P < 0.05)和E3/E4(P < 0.01)的均值为春季显著高于夏季, 即DOM的芳香性结构和疏水性组分为春季高于夏季, 且相较于夏季, 春季DOM有机质来源的内源性更强, 富里酸比例更高.普里河DOM的芳构化程度(SUVA254, P < 0.01)、疏水性结构(SUVA260, P < 0.01)、内源性(E2/E4, P < 0.01)和富里酸比例(E3/E4, P < 0.01)均值也为春季高于夏季.在春季, 桃花溪和普里河DOM的芳香性结构和疏水性组分均呈现沿水流方向减少的趋势, 夏季趋势不明显, 可能与夏季强降雨引起的大量陆源输入有关.桃花溪和普里河春季E3/E4均值>3.5, 夏季E3/E4均值< 3.5, 春夏平均E3/E4>3.5, DOM以富里酸为主.不同城镇化水平的桃花溪和普里河S275-295均值春季小于夏季(P < 0.01), S350-400均值春季大于夏季(P < 0.01), 不同波段光谱斜率的变化情况不同.桃花溪(P < 0.01)和普里河(P < 0.01)SR均值为春季小于夏季, 即两河流DOM的分子量为春季大于夏季, 推测与夏季河流新陈代谢作用强及季节的人为源有关[25].
2.3 DOM荧光光谱特征的春夏变化桃花溪和普里河春、夏季DOM的荧光光谱特征见表 3和图 3.高城镇化桃花溪的腐殖化程度(HIX)为春季高于夏季(P < 0.01), 而DOM的类蛋白物质相对浓度水平[Fn(280)](P>0.05)、新近自生源贡献(BIX)(P < 0.05)和腐殖质的内源性(FI)(P>0.05)为夏季较春季强.普里河HIX (P>0.05)、FI(P>0.05)为春季高于夏季, 而Fn(280) (P>0.05)和BIX(P>0.05)则为夏季高于春季.在春、夏两季, 桃花溪和普里河DOM的Fn(280)均沿水流方向逐渐增加, 与沿岸城镇化增强趋势一致.空间上, 桃花溪Fn(280)均值大于普里河, 高BIX值集中在较高城镇化的下游样点.
![]() |
“→”表示水流方向 图 3 春季(4月)和夏季(8月)各采样点荧光光谱特征 Fig. 3 Fluorescence spectral characteristics in spring(April) and summer(August) |
春、夏两季, DOC与a(355)显著正相关(P < 0.01), DOM的空间变化与CDOM密切相关. SUVA254和SUVA260极显著正相关(P < 0.01), 表明DOM的芳香性组分大多存在于疏水性结构中. E2/E4和E3/E4极显著正相关(P < 0.01), 表明河流内源生成的有机质中富里酸比例较高. Fn(280)与a(355)显著正相关(P < 0.05), 表明类蛋白物质为CDOM的重要组分. Fn(280)与S275-295、SR在春季极显著正相关(P < 0.01), 在夏季无显著相关性, 表明春季桃花溪和普里河DOM的类蛋白物质以小分子结构居多. E2/E4与光谱斜率S275-295、S350-400春季极显著正相关(P < 0.01), 夏季E2/E4与S275-295无显著相关性.波段光谱斜率S350-400与E2/E4、E3/E4极显著正相关(P < 0.01), 春季CDOM/DOC与SUVA254、SUVA260极显著正相关(P < 0.01), 夏季无显著相关性, 表明春季桃花溪和普里河DOM的芳香性结构与疏水性结构中有色DOM占比较高(表 4).
![]() |
表 4 河流DOM各光谱特征参数的相关性1) Table 4 Correlation results of the of spectral characteristic parameters of DOM in the rivers |
3 讨论 3.1 DOM来源的季节变化及影响因素
水体DOM的来源主要分为外源(陆源)和内源(生物源), 陆源主要来自流域土壤和植被、动植物残体分解及人为源; 生物源主要来自沉水植物、藻类和微生物的分解及分泌物, 以类蛋白物质居多[26].桃花溪和普里河FI均值为1.7~1.8, 即三峡库区不同城镇化水平河流春、夏季DOM腐殖质的来源均为陆源输入与内源(浮游生物、藻类)产生两种方式混合, 且以内源产生居多, 结果与陈雪霜等[27]对三峡库区长寿湖CDOM的研究结果类似.高城镇化桃花溪和低城镇化普里河DOM内源性(FI)的季节变化规律相反, 主要原因是桃花溪高的养分水平及夏季的高温促进水体的新陈代谢, 导致夏季的DOM内源性强于春季; 而普里河则主要归因于夏季季风性降水引起DOM的陆源输入及稀释作用.春、夏两季桃花溪和普里河BIX均值都为0.83~0.92, 即两河流DOM均具有中度新近自生源特征, 且两河流BIX为夏季高于春季, 即两河流DOM的新近自生源贡献和生物有效性为夏季高于春季, 主要归因于夏季的强光照和高的水温促进浮游生物的生长及增强微生物的活性.桃花溪春季HIX>4, DOM具有中度腐殖质特征, 夏季HIX < 4, DOM为弱腐殖质特征.普里河春、夏季HIX均小于4, DOM具有弱腐殖质特征(图 4).两河流春季DOM腐殖质特征(HIX)强于夏季, 与紫外-可见吸收光谱特征SUVA254的变化一致, 通常陆源DOM较自生源DOM含有更多芳香性结构[28].总体而言, 三峡库区不同城镇化水平的桃花溪和普里河DOM腐殖质特征较弱. SR>1时, 表征DOM以生物源为主; SR<1时, 表征DOM主要为外源[29].春、夏两季流域高城镇化的桃花溪SR均大于普里河, 表明流域城镇化程度高的河流其DOM的内源性较强.两河流SR和BIX的季节变化一致, 均为春季小于夏季, 表明夏季DOM的生物源贡献较大.研究证实了夏季高的水生生物活性对内源DOM的重要贡献, 且城镇化引起的高养分水平能促进内源有机质的产生.
![]() |
图 4 FI-HIX和BIX-HIX分布 Fig. 4 FI-HIX and BIX-HIX distributions |
桃花溪和普里河DOM光谱特征的空间格局如表 3、图 2和图 3.桃花溪DOM(P>0.05)和CDOM浓度(P < 0.05)大于普里河, 且DOC和CDOM浓度均沿水流方向随沿岸城镇化程度增大而增加.桃花溪DOM中CDOM占比小于普里河(P>0.05), 无色组分更多.桃花溪和普里河春、夏季CDOM/DOC沿水流方向逐渐降低.春、夏两季桃花溪和普里河DOM的芳香性结构主要存在于疏水性组分中, 普里河DOM的芳香性(SUVA254) (P>0.05)和疏水性结构(SUVA260) (P>0.05)较桃花溪高, 与梁梦琦等[9]对芦江和樟溪的研究结果一致.春夏两季河流DOM的芳香性结构和疏水性结构均沿水流方向随沿岸城镇化程度增大而减少, 可能与沿岸陆源输入和DOM沿程消耗有关.人为扰动强烈的桃花溪DOM的内源性(E2/E4) (P>0.05)更强, 小分子富里酸比例(E3/E4) (P>0.05)较高, 且S275-295(P>0.05)、S350-400 (P>0.05)和SR (P>0.05)稍大于普里河, 也表明高城镇化桃花溪DOM的分子量较小.整体上, 高城镇化桃花溪的Fn(280) (P < 0.05)、BIX (P>0.05)和FI (P>0.05)稍高于普里河, 低城镇化普里河HIX (P>0.05)稍高于桃花溪.已有研究表明, 以陆源输入为主的水体, DOM的腐殖化程度更高[24].河流内部, 桃花溪和普里河春、夏两季DOM的内源性(SR)及新近自生源特征(BIX值)均为城镇化较高的下游样点高于城镇化较低的上游样点, 且类蛋白物质的相对含量[Fn(280)]沿水流方向大致呈增高的趋势, Meng等[30]的研究也表明DOM的类蛋白成分(如色氨酸和酪氨酸等)通常与污水输入或水体微生物的活性有关.
4 结论(1) 三峡库区不同城镇化水平的桃花溪和普里河的DOC在夏季(8月)大于春季(4月), CDOM和CDOM/DOC为春季大于夏季, DOC和CDOM浓度在春、夏季均沿水流方向逐渐增加, CDOM/DOC沿水流方向降低.高城镇化桃花溪的DOC、CDOM浓度在春、夏季均高于低城镇化普里河, 而DOM有色组分占比低于普里河.
(2) 两河流DOM相对分子质量、SUVA254(芳香性结构)、SUVA260(疏水性组分)、E2/E4(内源性)、E3/E4(富里酸比例)和S350-400(较长波段光谱斜率)为春季>夏季, S275-295(短波段光谱斜率)和SR(光谱斜率比)为夏季>春季.低城镇化普里河DOM的芳香性、疏水性组分、分子量及腐殖化程度大于桃花溪, 两河流沿流向DOM的芳香性及疏水性组分逐渐减少.
(3) 桃花溪和普里河DOM的腐殖化程度(HIX)为春季>夏季, DOM的类蛋白物质相对浓度[Fn(280)]、新近自生源特征(BIX)为夏季>春季.高城镇化桃花溪DOM的类蛋白物质相对浓度、新近自生源特征和腐殖质的内源贡献大于普里河, 两河流Fn(280)沿流向增大.
(4) 两河流春、夏季FI均值为1.7~1.8, DOM腐殖质来源均为陆源输入与浮游生物、藻类产生两种方式混合, 且以内源居多.春、夏季桃花溪和普里河BIX均值为0.83~0.92, DOM具有中度新近自生源特征.
[1] | Yamashita Y, Jaffé R, Maie N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Limnology and Oceanography, 2008, 53(5): 1900-1908. |
[2] | Hansen A M, Kraus T E C, Pellerin B A, et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation[J]. Limnology and Oceanography, 2016, 61(3): 1015-1032. |
[3] | Spencer R G M, Butler K D, Aiken G R. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G3). DOI:10.1029/2011JG001928 |
[4] |
江韬, 卢松, 王齐磊, 等. 三峡库区内陆腹地典型水库型湖泊中DOM吸收光谱特征[J]. 环境科学, 2016, 37(6): 2073-2081. Jiang T, Lu S, Wang Q L, et al. Absorption spectral characteristic dynamics of dissolved organic matter (DOM) from a typical reservoir lake in inland of three gorges reservoir areas: implications for Hg species in waters[J]. Environmental Science, 2016, 37(6): 2073-2081. |
[5] |
吕伟伟, 姚昕, 张保华, 等. 太湖北部湖区春、冬季节天然有机质的荧光特征及环境意义[J]. 环境科学, 2018, 39(8): 3601-3613. Lü W W, Yao X, Zhang B H, et al. Fluorescence characteristics and environmental significance of organic matter in the northern part of Lake Taihu in spring and winter[J]. Environmental Science, 2018, 39(8): 3601-3613. |
[6] |
范诗雨, 秦纪洪, 刘堰杨, 等. 岷江上游水体中DOM光谱特征的季节变化[J]. 环境科学, 2018, 39(10): 4530-4538. Fan S Y, Qin J H, Liu Y Y, et al. Seasonal variations of DOM spectral characteristics in the surface water of the upstream Minjiang river[J]. Environmental Science, 2018, 39(10): 4530-4538. |
[7] |
于会彬, 高红杰, 宋永会, 等. 城镇化河流DOM组成结构及与水质相关性研究[J]. 环境科学学报, 2016, 36(2): 435-441. Yu H B, Gao H J, Song Y H, et al. Study on composition structure of DOM and its correlation with water quality in an urbanized river[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 435-441. |
[8] |
曹昌丽, 梁梦琦, 何桂英, 等. 城镇化河流溶解性有机质的荧光特性与水质相关性:以宁波市北仑区芦江为例[J]. 环境科学, 2018, 39(4): 1560-1567. Cao C L, Liang M Q, He G Y, et al. Fluorescent dissolved organic matter and its correlation with water quality in a urban river: a case study of the Lujiang River in Beilun, Ningbo[J]. Environmental Science, 2018, 39(4): 1560-1567. |
[9] |
梁梦琦, 邵美玲, 曹昌丽, 等. 城郊与城镇河流中溶解性有机质与重金属的相关性[J]. 环境科学, 2018, 39(5): 2095-2103. Liang M Q, Shao M L, Cao C L, et al. Characteristics of dissolved organic matter (DOM) and relationship with dissolved heavy metals in a Peri-urban and an urban river[J]. Environmental Science, 2018, 39(5): 2095-2103. |
[10] | Hong H S, Wu J Y, Shang S L, et al. Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China[J]. Marine Chemistry, 2005, 97(1-2): 78-89. |
[11] | Hosen J D, McDonough O T, Febria C M, et al. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams[J]. Environmental Science & Technology, 2014, 48(14): 7817-7824. |
[12] |
高凤, 邵美玲, 唐剑锋, 等. 城镇流域水体-沉积物中溶解性有机质的荧光特性及影响因素:以宁波市小浃江为例[J]. 环境科学, 2019, 40(9): 4009-4017. Gao F, Shao M L, Tang J F, et al. Fluorescence characteristics and influencing factors of dissolved organic matter (DOM) in water and sediment of urban watershed: a case study of Xiaojia River in Ningbo City[J]. Environmental Science, 2019, 40(9): 4009-4017. |
[13] | Liu Q, Jiang Y, Tian Y L, et al. Impact of land use on the DOM composition in different seasons in a subtropical river flowing through a region undergoing rapid urbanization[J]. Journal of Cleaner Production, 2019, 212: 1224-1231. |
[14] |
陈昭宇, 李思悦. 三峡库区城镇化背景下河流DOM的吸收及荧光光谱特征[J]. 环境科学, 2019, 40(12): 5309-5317. Chen Z Y, Li S Y. Absorption and fluorescence spectra of dissolved organic matter in rivers of the Three Gorges Reservoir area under the background of urbanization[J]. Environmental Science, 2019, 40(12): 5309-5317. |
[15] | Kamjunke N, Hertkorn N, Harir M, et al. Molecular change of dissolved organic matter and patterns of bacterial activity in a stream along a land-use gradient[J]. Water Research, 2019, 164. DOI:10.1016/j.watres.2019.114919 |
[16] |
何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. He W, Bai Z L, Li Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372. |
[17] | Wang L Y, Wu F C, Zhang R Y, et al. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau[J]. Journal of Environmental Sciences, 2009, 21(5): 581-588. |
[18] | Dilling J, Kaiser K. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry[J]. Water Research, 2002, 36(20): 5037-5044. |
[19] | Jaffé R, Boyer J N, Lu X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry, 2004, 84(3-4): 195-210. |
[20] | Artinger R, Buckau G, Geyer S, et al. Characterization of groundwater humic substances: influence of sedimentary organic carbon[J]. Applied Geochemistry, 2000, 15(1): 97-116. |
[21] |
梁俭, 江韬, 魏世强, 等. 夏、冬季降雨中溶解性有机质(DOM)光谱特征及来源辨析[J]. 环境科学, 2015, 36(3): 888-897. Liang J, Jiang T, Wei S Q, et al. Absorption and fluorescence characteristics of dissolved organic matter (DOM) in rainwater and sources analysis in summer and winter Season[J]. Environmental Science, 2015, 36(3): 888-897. |
[22] |
卢松, 江韬, 张进忠, 等. 两个水库型湖泊中溶解性有机质三维荧光特征差异[J]. 中国环境科学, 2015, 35(2): 516-523. Lu S, Jiang T, Zhang J Z, et al. Three-dimensional fluorescence characteristic differences of dissolved organic matter (DOM) from two typical reservoirs[J]. China Environmental Science, 2015, 35(2): 516-523. |
[23] | McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. |
[24] | Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. |
[25] |
刘兆冰, 梁文健, 秦礼萍, 等. 渤海和北黄海有色溶解有机物(CDOM)的分布特征和季节变化[J]. 环境科学, 2019, 40(3): 1198-1208. Liu Z B, Liang W J, Qin L P, et al. Distribution and seasonal variations of chromophoric dissolved organic matter (CDOM) in the Bohai Sea and the North Yellow Sea[J]. Environmental Science, 2019, 40(3): 1198-1208. |
[26] | Zhang Y L, Yin Y, Feng L Q, et al. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis[J]. Water Research, 2011, 45(16): 5110-5122. |
[27] |
陈雪霜, 江韬, 卢松, 等. 典型水库型湖泊中CDOM吸收及荧光光谱变化特征:基于沿岸生态系统分析[J]. 环境科学, 2016, 37(11): 4168-4178. Chen X S, Jiang T, Lu S, et al. Spectral characteristics of chromophoric dissolved organic matter (DOM) from a typical reservoir lake from inland of three gorges reservoir areas: in the view of riparian ecosystem analysis[J]. Environmental Science, 2016, 37(11): 4168-4178. |
[28] | Del Castillo C E, Coble P G, Morell J M, et al. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy[J]. Marine Chemistry, 1999, 66(1-2): 35-51. |
[29] |
周石磊, 张艺冉, 黄廷林, 等. 周村水库主库区水体热分层形成过程中沉积物间隙水DOM的光谱演变特征[J]. 环境科学, 2018, 39(12): 5451-5463. Zhou S L, Zhang Y R, Huang T L, et al. Spectral evolution characteristics of DOM in sediment interstitial water during the formation stage of thermal stratification in the main reservoir area of the Zhoucun Reservoir[J]. Environmental Science, 2018, 39(12): 5451-5463. |
[30] | Meng F G, Huang G C, Yang X, et al. Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers[J]. Water Research, 2013, 47(14): 5027-5039. |