2. 西藏农牧学院水利土木工程学院, 林芝 860000;
3. 河南省水文水资源局, 郑州 450004

2. Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China;
3. Hydrology and Water Resources Bureau of Henan Province, Zhengzhou 450004, China
药物及个人护理品(pharmaceuticals and personal care products, PPCPs)包括用于个人健康或美容的产品, 以及用于促进牲畜生长或健康的产品(抗生素、激素类药物、滤光剂和香料等)[1].PPCPs在使用过后可通过未能有效处理的污废水尾水、地表径流以及垃圾填埋渗滤液渗流等流入自然水体[2, 3].虽然PPCPs在水环境中以痕量浓度存在[4], 一般不会引起急性毒性, 但在非靶生物体内累积后, 可能会引起内分泌干扰效应、氧化应激、生长及生殖毒性和行为改变等[5, 6], 所以长期暴露对生态环境和人类健康的潜在毒性效应值得关注[7~9].
目前, 全球范围内对安全饮用水的需求越来越迫切, 饮用水水源地作为人类给水来源, 其水质对用水安全至关重要[10].有研究表明传统的给水处理过程对PPCPs的去除效率较低[11], 因此需要关注PPCPs在饮用水水源中引起的风险.对水环境中有机污染物风险评价时, 量化其风险值十分重要.
河南是我国的人口和经济大省, 对安全饮用水的需求很大, 但目前仍缺少PPCPs在河南省饮用水水源中分布及风险评价研究.本文通过对河南省五大代表性水源地水体中PPCPs类污染物的采样测定, 分析其污染水平, 并利用风险熵法(risk quotient, RQ)评价其生态风险.
1 材料与方法 1.1 试剂药物:磺胺甲
![]() |
表 1 20种PPCPs基本信息1) Table 1 Basic information of 20 PPCPs |
1.2 采样点布设及样品采集
根据河南省内水源地分布特点, 设置了5个水源地为研究对象, 如图 1所示.在所选取的水源地设置采样点, 于2017年4月中旬分别在尖岗水库J(J1、J2和J3)、白龟山水库B(B1、B2和B3)、南湾水库N(N1、N2、N3和N4)、黑岗口水源地H(H1和H2)和沙河饮用水水源地S(S1、S2和S3)采样, 采样点坐标见表 2.采样时, 500 mL水样用水质采样器分别从采样点水面下0.5和2.5 m处采集, 装入干净的、用待测水样润洗过的聚乙烯塑料瓶中, 并加入适量甲醇(1%)以抑制细菌生长, 低温保存, 运回实验室于24 h内处理.现场采用便携式水质检测仪测定采样点的pH值、溶解氧(DO)和温度等参数, 见表 2.
![]() |
图 1 河南省饮用水水源调查地分布示意 Fig. 1 Distribution of drinking water sources investigated in Henan province |
![]() |
表 2 采样点环境参数 Table 2 Parameters of the sampling point |
1.3 样品分析及质量控制
水样预处理时, 先将采集的500 mL待测水样经过0.45 μm的玻璃纤维滤膜(上海兴亚净化材料厂)过滤去除杂质.对于药物类化合物的处理, 采用Waters Oasis HLB(200 mg, 美国Waters公司)的固相萃取小柱富集, 然后用6 mL甲醇对目标物进行洗脱, 洗脱液在水浴条件下用EFAA-D12型氮吹仪(上海安谱科学仪器有限公司)吹至近干, 用甲醇定容1 mL后测定分析.对于有机滤光剂类化合物, 过滤后样品以5 mL ·min-1的流速通过Oasis HLB SPE萃取柱, 然后用10 mL超纯水清洗萃取柱并真空下干燥0.5 h, 再用2×5 mL甲醇/二氯甲烷(1 :1, 体积比)对目标物洗脱, 最后通过氮吹用甲醇定容至1 mL后测定.
PPCPs分析采用Waters Acquity UPLC-MS/MS高效液相色谱-质谱联用系统(美国Waters公司), 电喷雾电离源(ESI)为正、负电离模式.Acquity UPLC BEH-C18柱(100 mm×1.7 μm×2.1 mm; 美国Waters公司)使用时保持在40℃, 进样量为5 μL.药物分析流动相由洗脱液A(含有0.1%甲酸的超纯水, 体积比)和洗脱液B(乙腈)组成.梯度程序是: 80%A保持0.5 min, 在5.5 min内线性下降到10%A, 保持2 min, 然后在1.5 min增加到80%A, 流量为0.3 mL ·min-1.有机滤光剂分析的流动相是洗脱液A[含有0.1%(体积分数)甲酸的超纯水、甲醇混合物(98 :2,体积比)]和洗脱液B[含有0.1%(体积分数)甲酸的甲醇].梯度程序是:90%A保持0.25 min, 在4.75 min中降到2%A, 然后1.5 min内增加到90%A, 流速为0.4 mL ·min-1.
为了检测背景污染, 对程序空白、溶液空白和现场空白做了检测, 并未在空白组检出目标污染物.做空白样品加标回收实验, 回收率为78.2% ~103.1%, 检出限为0.05~1.15 ng ·L-1.
1.4 生态风险评价方法根据欧洲关于风险评价的技术指导文件, 风险商(RQ)法常被用于评价水中PPCPs的生态风险, 计算公式如下[12~14]:
![]() |
(1) |
![]() |
(2) |
式中, MEC为目标污染物在水中检测浓度(ng ·L-1); PNEC为预测无效应浓度(ng ·L-1); EC50、LC50和NOEC分别表示半数效应浓度、半数致死浓度和无观测效应浓度(mg ·L-1); AF为评价因子, 一般取1 000, 当3个营养级受试生物毒性数据中存在1、2和3个营养级生物的NOEC值已知时, 此NOEC值计算PNEC值时, AF取值分别为100、50和10, EC50、LC50和NOEC来源于已报道研究[6, 15], 如表 3所示.RQ值小于0.1, 低风险; 0.1~1, 中等风险; 大于1, 高风险[16].
![]() |
表 3 PPCPs的EC50、LC50、NOEC和PNEC值1) Table 3 Values of EC50, LC50, NOEC, and PNEC of PPCPs |
2 结果与讨论 2.1 PPCPs在水源水中分布状况
本研究共选取了20种PPCPs, 样品检出浓度见图 2.在所选取的20种PPCPs中, 所有目标污染物都至少检出一次, 其中, 11种目标物检出率超过50%, 这表明PPCPs在选取的水源地地区被大量使用且广泛存在.在所检测的PPCPs中, CFI、SMX、OFC、PABA和BP3共5种目标物的检出率为100%, 而BZB、GFB和BP4均仅在黑岗口水源地有检出, 检出率较低. 20种PPCPs在不同采样点的累积浓度在24.2~317.6 ng ·L-1之间, 不同PPCPs的检出浓度也存在明显差异.其中, CFI的检出浓度均明显高于其他PPCPs, 采样点检出浓度范围为8.2~186.4 ng ·L-1.PABA尽管检出率为100%, 但检出浓度较低, 为0.2~2.0 ng ·L-1.
![]() |
J1-1表示J1采样点水面下0.5 m处水样, J1-2表示J1采样点水面下2.5 m处水样, 以此类推, 下同 图 2 水源地水中PPCPs浓度 Fig. 2 Concentrations of PPCPs in the water of the drinking water sources |
根据检测结果, 5个水源水体中的PPCPs污染情况存在差异.黑岗口水源地的PPCPs污染水平高于其他4个饮用水水源地, 其采样点PPCPs的平均累积浓度达308.7 ng ·L-1.尖岗水库、白龟山水库、南湾水库和沙河饮用水水源地的PPCPs检出浓度相差不大, 采样点平均累积浓度范围为45.6~89.8 ng ·L-1.
图 3描述了5个水源水体中PPCPs主要组成, 展示了各水源地平均浓度占比前5的PPCPs.尖岗水库、白龟山水库和南湾水库的PPCPs组成特征相似, CFI、SMX、OFC、CA和BP3为主要赋存的PPCPs, 尤其是尖岗水库和白龟山水库, 无论是检出浓度还是浓度比例都更为相近.黑岗口水源地中IPF取代BP3成为浓度占比较高的有机污染物, 而在沙河饮用水水源地中, TMT和CBZ代替BP3和CA作为浓度占比更高的污染物.
![]() |
图 3 水源地PPCPs(平均浓度)组成 Fig. 3 Composition of PPCPs (average concentration) in the drinking water sources |
尽管CFI在5个饮用水水源中的浓度占比存在差异, 但其均为5个饮用水水源中检出的最主要的PPCPs类污染物, CFI在各水源地平均浓度占PPCPs平均累积浓度比例分布在46.55% ~82.07%之间, 其检出浓度与青草沙水库中检出浓度相当[17], 但高于松花江中检出浓度[18].CFI广泛存在于日常消费产品中, 比如, 咖啡、茶和止痛药等[19], CFI的正辛醇水分配系数比较小(lg Kow=0.16), 广泛地使用及易分配于水中的性质可能是在水源地检出浓度高的原因.除此之外, SMX和OFC也是5个饮用水水源地共有的主要污染物.SMX是在水产养殖中使用最为广泛的一种磺胺类抗生素[12], 各水源地平均浓度范围为1.8~68.1 ng ·L-1, 远低于其他河流及湖泊中检出浓度[12, 14, 20].而OFC是一种广谱抗生素, 各水源地平均浓度范围为2.1~15.2 ng ·L-1, 与松花江[18]和丹江口水库[21]中赋存浓度处于同一水平.CA是尖岗水库、白龟山水库、南湾水库和沙河饮用水水源地的主要污染物之一, 检出浓度与OFC处于同一水平.IPF只在黑岗口水源地中占比较高, 平均检出浓度为10.9 ng ·L-1.TMT和CBZ仅在沙河饮用水水源地中检出浓度比例较高.BP3是个人护理品含量最大的一种有机滤光剂[22], 被发现是尖岗水库、南湾水库和白龟山水库的主要污染物, 但检出浓度并不高, 每个水源地平均检出浓度范围为1.7~4.0 ng ·L-1, 远低于文献[23]报道的自来水中检出约290 ng ·L-1.而E1、GFB和BP1检出浓度均不高于1 ng ·L-1, 所以浓度占比也很低.
饮用水源地中PPCPs的溯源分析对于了解污染物的环境行为和管理控制具有重要意义.目前, 根据两种典型PPCPs指示物浓度比在废水中的特殊性, 分析水体PPCPs中不稳定化合物与稳定化合物比值差异是识别PPCPs来源的有效方法[24~26].通常, 稳定性PPCPs在污水处理厂处理效率相对较低, 并且在污水厂进水和水环境介质中长期赋存; 而不稳定性PPCPs在污水处理厂处理效率高,但在污水厂进水和实际水体检出率也均较高.因此, 在本研究, 根据污染物的特性[27], 选择了CFI和CBZ分别作为典型不稳定PPCPs和稳定性PPCPs, 进行了河南省地表水源中PPCPs污染来源分析.当不稳定化合物和稳定化合物的浓度比值大于10, 表明污水处理效率低或较大比例含污水体被直接排放; 当比值大于50, 表明生活污水被直接排放, 或者存在未知的污染源[28].如图 4所示, 沙河水源地CFI/CBZ比值均小于10, 说明污水处理厂尾水排入可能是该水源地PPCPs主要污染源.尖岗水库、黑岗口水源地和白龟山水库CFI/CBZ比值均大于10, 其中白龟山水库B3-2采样点CFI/CBZ比值大于50, 南湾水库检出较高浓度的CFI而未检出CBZ, 说明这些地区污水处理效率较低.此外, 通过现场调查和资料查阅, 所研究的几个水源地均无直接的污水排污口, 但周边有分散的村庄, 存在生活污水未经处理分散汇入的可能性.因此, 水源地上游河道内水体受污水排污污染以及水源地周边分散式生活污水面源污染可能是目前河南省地表水源中PPCPs污染的主要原因.
![]() |
图 4 水源地CFI/CBZ比值 Fig. 4 CFI/CBZ ratios in various drinking water sources |
水体中PPCPs会影响水生生物已有很多研究报道[21, 29~31].因此, 对河南饮用水水源中PPCPs对水生生态环境的风险从3个营养级的非靶生物进行了评价, 具体包括藻类、无脊椎动物和鱼类[16].根据已经检测的PPCPs浓度, 计算出累积RQ值的分布如图 5所示.
![]() |
图 5 水源地PPCPs累积RQ值 Fig. 5 Cumulative values of RQ of the PPCPs in the drinking water sources |
由图 5可以看出, PPCPs对3个营养级非靶生物呈现出不同的风险.总体而言, 对藻类呈现出的生态风险高于无脊椎动物和鱼类.对于藻类, PPCPs在不同采样点的累积RQ值在0.3~5.5之间.其中黑岗口水源地和沙河饮用水水源地的采样点PPCPs累积RQ值均大于1, 说明呈现出高风险, SMX和OFC是这两个水源地生态风险最主要的贡献者, 这两种物质在水源地采样点的RQ值均大于0.1, 特别是SMX在黑岗口水源地RQ值均大于1.尖岗水库和白龟山水库中PPCPs主要呈现中等风险, 部分采样点呈现出高风险.南湾水库PPCPs整体呈现出中等风险.对于无脊椎动物, PPCPs在5个水源地主要呈现出低风险, 部分采样点呈现出中等风险, SMX是构成各水源地生态风险最重要的物质.而PPCPs对鱼类的生态风险呈现出低风险到中等风险, 其中只有黑岗口水源地中PPCPs在采样点累积RQ值均在0.1~1之间, IPF在黑岗口水源地的风险明显高于其他污染物.根据研究, PPCPs会在鱼体内累积, 不仅会引起不良反应[5], 人长期食用这类鱼还可能对人类健康造成潜在危害[32].
3 结论(1) 河南省地表水源中存在着PPCPs的污染, 在5个典型水源水体中, 所检测的20种PPCPs均有检出.不同采样点的PPCPs检出总浓度范围在24.2~317.6 ng ·L-1之间, 黑岗口水源地中PPCPs检出浓度高于其他饮用水水源地, CFI、OFC和SMX等物质的污染水平相对较高, 需要引起关注.
(2) 沙河饮用水水源地PPCPs污染可能主要来源于汇入其中的上游河道水体中污水处理厂正常尾水排放, 而尖岗水库、黑岗口水源地、白龟山水库和南湾水库水体中PPCPs污染可能是因为汇入的上游水体受纳了未经有效处理的污水以及水源地周边分散式的生活污水面源污染.
(3) 水源水体中赋存的PPCPs对藻类呈现的生态风险明显高于无脊椎动物和鱼类.与污染物检出浓度高相应, 黑岗口水源地的RQ值相对其他饮用水水源地更高.需要指出的是, 水环境中的污染物受到季节性温度、水量、化合物使用量等因素影响, 对区域性饮用水源中的PPCPs污染综合评价尚需结合不同季节的研究加以分析.
[1] | Liu N, Jin X W, Feng C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters:a proposed multiple-level system[J]. Environment International, 2020, 136. DOI:10.1016/j.envint.2019.105454 |
[2] | Hossain A, Nakamichi S, Habibullah-Al-Mamun M, et al. Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh[J]. Environmental Research, 2018, 165: 258-266. |
[3] | Pai C W, Leong D, Chen C Y, et al. Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes[J]. Chemosphere, 2020, 256. DOI:10.1016/j.chemosphere.2020.127002 |
[4] |
陈贤, 张彩杰, 杨桂朋, 等. 典型药物及个人护理品在黄东海海域水体中的检测、分布规律及其风险评估[J]. 环境科学, 2020, 41(1): 194-204. Chen X, Zhang C J, Yang G P, et al. Detection method, distribution, and risk assessment of pharmaceuticals and personal care products in the Yellow Sea and the East China Sea[J]. Environmental Science, 2020, 41(1): 194-204. |
[5] | de Jesus Silva Chaves M, Barbosa S C, de Melo Malinowski M, et al. Pharmaceuticals and personal care products in a Brazilian wetland of international importance:Occurrence and environmental risk assessment[J]. Science of the Total Environment, 2020, 734. DOI:10.1016/j.scitotenv.2020.139374 |
[6] | Yang H B, Lu G H, Yan Z H, et al. Occurrence, spatial-temporal distribution and ecological risks of pharmaceuticals and personal care products response to water diversion across the rivers in Nanjing, China[J]. Environmental Pollution, 2019, 255. DOI:10.1016/j.envpol.2019.113132 |
[7] |
周程, 吴南翔, 范宏亮. 药物及个人护理品对鱼类毒性的研究进展[J]. 环境与职业医学, 2017, 34(12): 1123-1129. Zhou C, Wu N X, Fan H L. Research advance on toxicity of pharmaceuticals and personal care products on fish[J]. Journal of Environmental & Occupational Medicine, 2017, 34(12): 1123-1129. |
[8] |
张盼伟, 周怀东, 赵高峰, 等. 北京城区水体中PPCPs的分布特征及潜在风险[J]. 环境科学, 2017, 38(5): 1852-1862. Zhang P W, Zhou H D, Zhao G F, et al. Potential risk and distribution characteristics of PPCPs in surface water and sediment from rivers and lakes in Beijing, China[J]. Environmental Science, 2017, 38(5): 1852-1862. |
[9] |
封梦娟, 张芹, 宋宁慧, 等. 长江南京段水源水中抗生素的赋存特征与风险评估[J]. 环境科学, 2019, 40(12): 5286-5293. Feng M J, Zhang Q, Song N H, et al. Occurrence characteristics and risk assessment of antibiotics in source water of the Nanjing Reach of the Yangtze River[J]. Environmental Science, 2019, 40(12): 5286-5293. |
[10] | Palansooriya K N, Yang Y, Tsang Y F, et al. Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement:a review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(6): 549-611. |
[11] | Nasir F A M, Praveena S M, Aris A Z. Public awareness level and occurrence of pharmaceutical residues in drinking water with potential health risk:a study from Kajang (Malaysia)[J]. Ecotoxicology and Environmental Safety, 2019, 185. DOI:10.1016/j.ecoenv.2019.109681 |
[12] | Guruge K S, Goswami P, Tanoue R, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways[J]. Science of the Total Environment, 2019, 690: 683-695. |
[13] | Fang T H, Lin C W, Kao C H. Occurrence and distribution of pharmaceutical compounds in the Danshuei River Estuary and the Northern Taiwan Strait[J]. Marine Pollution Bulletin, 2019, 146: 509-520. |
[14] | Wang Z, Du Y, Yang C, et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China[J]. Science of the Total Environment, 2017, 609: 1423-1432. |
[15] | Wu D H, Zhou Y, Lu G H, et al. The occurrence and risks of selected emerging pollutants in drinking water source areas in Henan, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(21). DOI:10.3390/ijerph16214109 |
[16] | Yan Z H, Yang H H, Dong H K, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China:A case study of water diversion[J]. Environmental Pollution, 2018, 239: 223-232. |
[17] | Xu C, Chen L, You L H, et al. Occurrence, impact variables and potential risk of PPCPs and pesticides in a drinking water reservoir and related drinking water treatment plants in the Yangtze Estuary[J]. Environmental Science:Processes & Impacts, 2018, 20(7): 1030-1045. |
[18] | He S N, Dong D M, Zhang X, et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China)[J]. Environmental Science and Pollution Research, 2018, 25(24): 24003-24012. |
[19] | Zhang P W, Zhou H D, Li K, et al. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in Guanting Reservoir and its upstream rivers in north China[J]. Rsc Advances, 2018, 8(9): 4703-4712. |
[20] | Na T W, Kang T W, Lee K H, et al. Distribution and ecological risk of pharmaceuticals in surface water of the Yeongsan river, Republic of Korea[J]. Ecotoxicology and Environmental Safety, 2019, 181: 180-186. |
[21] | Li S, Shi W Z, You M T, et al. Antibiotics in water and sediments of Danjiangkou Reservoir, China:Spatiotemporal distribution and indicator screening[J]. Environmental Pollution, 2019, 246: 435-442. |
[22] | Langford K H, Reid M J, Fjeld E, et al. Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway[J]. Environment International, 2015, 80: 1-7. |
[23] | Ramos S, Homem V, Alves A, et al. Advances in analytical methods and occurrence of organic UV-filters in the environment-A review[J]. Science of the Total Environment, 2015, 526: 278-311. |
[24] | Dai G H, Wang B, Fu C C, et al. Pharmaceuticals and personal care products (PPCPs) in urban and suburban rivers of Beijing, China:occurrence, source apportionment and potential ecological risk[J]. Environmental Science:Processes & Impacts, 2016, 18(4): 445-455. |
[25] | Mei X B, Sui Q, Lyu S G, et al. Pharmaceuticals and personal care products in the urban river across the megacity Shanghai:Occurrence, source apportionment and a snapshot of influence of rainfall[J]. Journal of Hazardous Materials, 2018, 359: 429-436. |
[26] | Sun Q, Li Y, Li M Y, et al. PPCPs in Jiulong River estuary (China):Spatiotemporal distributions, fate, and their use as chemical markers of wastewater[J]. Chemosphere, 2016, 150: 596-604. |
[27] | Wang Z, Zhang X H, Huang Y, et al. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China[J]. Environmental Pollution, 2015, 204: 223-232. |
[28] | Cui Y F, Wang Y H, Pan C G, et al. Spatiotemporal distributions, source apportionment and potential risks of 15 pharmaceuticals and personal care products (PPCPs) in Qinzhou Bay, South China[J]. Marine Pollution Bulletin, 2019, 141: 104-111. |
[29] | Ortiz De Garcia S A, Pinto Pinto G, García-Encina P A, et al. Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants[J]. Ecotoxicology, 2014, 23(8): 1517-1533. |
[30] | He K, Hain E, Timm A, et al. Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay[J]. Science of the Total Environment, 2019, 650: 3101-3109. |
[31] | Tsui M M P, Leung H W, Wai T C, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries[J]. Water Research, 2014, 67: 55-65. |
[32] |
谢全模, 陈云, 万金泉, 等. 东莞市饮用水源地中抗生素分布特征及风险评价[J]. 环境科学学报, 2020, 40(1): 166-178. Xie Q M, Chen Y, Wan J Q, et al. Occurrence, distribution and risk assessment of antibiotics in drinking water source in Dongguan[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 166-178. |