环境科学  2020, Vol. 41 Issue (12): 5419-5427   PDF    
汉江流域金水河与淇河潜在硝化速率及硝化功能基因的影响因子
赵彬洁1,2, 王旭1,3,4, 张健1,3,4, 谭香1, 何睿1,2, 周全1,2, 史航1,2, 张全发1     
1. 中国科学院武汉植物园水生植物与流域生态重点实验室, 武汉 430074;
2. 中国科学院大学, 北京 100049;
3. 西藏大学青藏高原生态与环境研究中心, 拉萨 850000;
4. 西藏大学理学院, 拉萨 850000
摘要: 河流是地表连接陆地和海洋生态系统生源要素的关键通道,河流生态系统中包括硝化作用在内的氮转化过程对全球氮循环具有重要影响.本研究选择位于秦岭南坡流域内人为干扰强度低的金水河及人为干扰强度高的淇河进行比较研究,探讨人为干扰强度对河流潜在硝化速率及硝化功能基因丰度的影响.结果表明,同时期的淇河潜在硝化速率显著高于金水河(P < 0.05).金水河和淇河的AOA-amoA基因丰度都显著高于AOB-amoAP < 0.05),但枯水期淇河的AOB-amoA基因丰度显著高于金水河,金水河与淇河AOA-amoA基因丰度无显著差异.潜在硝化速率与水温、pH、水体NO3-和沉积物NO3-浓度呈显著正相关(P < 0.05).硝化功能基因丰度与水温、pH、水体及沉积物NO3-、NH4+及有机碳浓度相关性显著(P < 0.05).潜在硝化速率与AOA-amoA基因丰度无显著相关性,但与AOB-amoA基因丰度呈负相关.本研究表明人为干扰强度高的河流具有更高的潜在硝化速率及硝化功能基因丰度,潜在硝化速率及硝化功能基因丰度与河流水体及沉积物的理化因子显著相关.本研究对于河流生态系统氮素迁移转化过程有重要意义.
关键词: 汉江流域      沉积物      硝化速率      amoA基因      人为干扰      理化因子     
Influence Factors of Potential Nitrification Rates and Functional Genes Abundance in the Jinshui River and the Qihe River of the Hanjiang River Basin
ZHAO Bin-jie1,2 , WANG Xu1,3,4 , ZHANG Jian1,3,4 , TAN Xiang1 , HE Rui1,2 , ZHOU Quan1,2 , SHI Hang1,2 , ZHANG Quan-fa1     
1. Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa 850000, China;
4. College of Science, Tibet University, Lhasa 850000, China
Abstract: In the context of increasing nitrogen loading in river systems worldwide, it is critically important to understand nitrification to maintain river ecosystem health. This comparative study was conducted to explore the relationships among the intensity of human disturbance, environmental factors, potential nitrification rate, and functional gene abundance in the Jinshui River (slightly disturbed basin) and the Qihe River (intensely disturbed basin). The results showed that AOA-amoA gene abundance was higher than that of AOB-amoA. The potential nitrification rate in the Qihe River was higher than that in the Jinshui River. There was no significant difference in AOA-amoA gene abundance between the two rivers; however, the AOB-amoA gene abundance in the Qihe River was significantly higher than that in the Jinshui River in the low flow season. The abundance of nitrification functional genes was significantly correlated with water temperature, pH, NO3-, NH4+, and organic carbon. The potential nitrification rate was positively correlated with water temperature, pH, and NO3-, and negatively correlated with AOB-amoA gene abundance. These results showed that the intensely disturbed sites had higher potential nitrification rates and nitrification functional genes abundances, and potential nitrification rates and abundances of nitrification function genes were significantly related to physical and chemical water and sediment factors. This study will be important for nitrogen pollution control in the river systems.
Key words: Hanjiang River Basin      sediment      potential nitrification rate      amoA gene      human disturbance      environment factors     

氮是自然界中最为重要的元素之一[1], 是构成有机体蛋白质、DNA和RNA等重要组分的必不可少的元素.河流作为陆地与海洋系统的联系枢纽, 对氮元素的全球生物地球化学循环发挥着重要作用[2].但近几十年, 随着人类活动的加强, 大量含氮污水排入河流水体[3], 生物可利用的活性氮浓度急剧升高, 水体富营养化趋势已十分严重[4].因此, 了解河流生态系统的氮循环过程对于河流生态系统健康至关重要.

河流氮循环过程主要包括固氮、硝化、反硝化、厌氧氨氧化(ANAMMOX)及硝酸盐异化还原成铵(DNRA)等过程[5, 6], 其中硝化作用是氮循环中将还原态氮转化为氧化态氮(NO3-), 即NH4+→NO2-→NO3-的唯一生物学过程[7], 潜在硝化速率是表征硝化作用的重要化学指标, 而硝化作用的限速步骤是好氧氨氧化过程(NH4+→NO2-)[8].参与氨氧化过程的微生物包括两大类群:氨氧化细菌(ammonia-oxidizing bacteria, AOB)和氨氧化古菌(ammonia-oxidizing archaea, AOA)[9], 这两大类群进行氨氧化的机制不同, 且受到不同环境因子的制约[10~14].所有的氨氧化微生物都含有amoA基因, 在其进行氨氧化的过程中, amoA基因编码的氨单加氧酶(ammonia monooxygenase)能够催化氨转化为羟胺, 进而转化为亚硝酸盐, 因此, 对氨氧化微生物多样性和定量研究多使用amoA基因作为分子标记[15, 16].有研究表明潜在硝化速率与微生物丰度有显著相关性[17, 18].分子生物学技术的发展使得人们可以把微生物与其环境效应结合起来, 对硝化作用机制及氮循环的研究起到了极大的推动作用.

河流生态系统中硝化作用的产生对河流各环境变量都很敏感.温度升高时, 硝化反应速率也会提高, 但是温度升高的同时也往往会导致底层海水溶解氧不足, 进而又会抑制硝化反应的进行, 有机物含量高时抑制作用更显著[20]. NO3-浓度高时, 以反硝化作用为主, 而浓度低时则主要进行氨化作用[21].沉积物有机碳、碳氮比、NO3-和NH4+含量等直接影响微生物生长和代谢, 从而影响沉积物潜在硝化速率[22].不同的土地利用类型或污染程度也会对沉积物硝化作用产生影响[19, 23].

汉江流域是我国南水北调中线工程的水源地, 但近年来流域内农业面源污染严重, 2013年监测的数据显示水源区未达标的水质断面超过50%[24], 超标的氮元素已成为水环境的主要污染物[25, 26], 严重影响河道及沿岸的生态环境及河流生态系统的氮循环.因此探究潜在硝化速率与生态环境因子的相关性及其对人为干扰的响应对控制水资源污染是极其重要的, 也是南水北调工程发挥效益的关键.

本研究选择位于秦岭南坡人为干扰强度低的金水河及人为干扰强度高的淇河开展研究, 比较这两条河流的主要理化因子、硝化功能基因丰度(AOA-amoA与AOB-amoA)及潜在硝化速率, 进而探讨:①理化因子对硝化功能基因丰度和沉积物潜在硝化速率的影响; ②硝化功能基因丰度与沉积物潜在硝化速率的相关性; ③干扰强度不同的两个流域的沉积物潜在硝化速率及硝化功能基因的差异.

1 材料与方法 1.1 研究区域概况

研究区域位于汉江流域金水河和淇河(图 1).金水河是长江的二级支流, 汉江的一级支流, 发源于陕西省佛坪县的岳坝乡光头山南坡, 经过洋县境内的秧田乡、金水镇, 经栗子坝乡经黄金峡峡口汇入汉江, 流域面积731 km2.年平均气温为11.8℃[27], 年降水量950~1 200 mm, 降雨量变化较大, 7~10月为丰水期, 12月~次年3月为枯水期[28].其上游位于佛坪国家级自然保护区, 几乎无人居住, 森林覆盖度高.全流域无工业或企业分布, 农业活动规模小.

图 1 金水河与淇河采样点分布示意 Fig. 1 Sampling sites for Jinshui River and Qihe River

淇河是长江的三级支流, 汉江的二级支流, 发源于河南省卢氏县狮子坪乡, 流经卢氏县瓦窑沟乡、西峡县境内的寨根乡、西坪镇和淅川县境内的西簧乡、寺湾镇, 至淅川县寺湾镇老君洞附近汇入丹江, 流域面积1 501 km2.年平均温度约为15.1℃, 年降水量860~935 mm, 6~8月为丰水期, 12月~次年2月为枯水期[29].丰水期气温最高, 其次是平水期, 最后为枯水期.淇河全流域食用菌、果树及药材种植生产规模大, 有农副土物产品加工厂、电站及药业等企业分布.淇河流域比金水河流域人类活动更为密集, 人为干扰强度更高.

1.2 样品采集

在金水河及淇河各设置9个采样点(图 1), 并分别于丰水期(2018年8月)、平水期(2018年11月)和枯水期(2019年3月)采集沉积物样品和水样.现场测定水体的部分理化性质, 沉积物用灭过菌的铲子迅速装入灭菌采样袋中, 用聚乙烯塑料瓶采集水样, 需随机采集3次即3个平行样品, 然后混合后作为每个样点沉积物和水体样品.水体及部分沉积物样品保存于4℃冰箱, 用于潜在硝化速率及理化因子测定; 部分沉积物采集后迅速保存于液氮中, 用于微生物检测.

1.3 理化因子测定

水体理化因子测定:用便携式YSI(Professional, ProPlus, USA)现场测量水体温度和pH.在实验室内用全自动化学分析仪(AMS westco, Smartchem 200, Italy)测量水体NO3-和NH4+, 用TOC仪(Elementar, Vario TOC, Germany)检测水体溶解有机碳(DOC).

沉积物理化因子测定:实验室内用60℃烘干前后湿重与干重之差计算样品含水率; 沉积物样品经冷冻干燥机冷冻干燥后, 磨碎并用1mol·L-1盐酸酸化, 用元素分析仪(Elementar analyzer, Vario MaxCNOHS, Germany)测定沉积物总有机碳; 用2mol·L-1氯化钾萃取沉积物中的NO3-和NH4+, 然后用全自动化学分析仪(AMS westco, Smartchem 200, Italy)测定NO3-和NH4+含量.

1.4 硝化作用功能基因丰度测定

DNA提取:采用TIANamp Soil DNA Kit试剂盒, 按说明书步骤进行DNA提取.

定量PCR:分析各采样点沉积物样品中硝化作用功能基因AOB-amoA和AOA-amoA.利用SYBR green qPCR方法和ABI 7500序列检测系统(Applied Biosystems, Canada)对基因的拷贝数进行了定量检测(3个重复). qPCR系统包含10 μL Maxima SYBR, 2 μL模板DNA, 引物0.4 μL+0.4 μL, 7.8 μL无菌ddH2O. qPCR反应为40个循环:95℃ 10 min, 95℃ 15 s, 60℃ 20 s.稀释目标片段量已知的质粒DNA, 构建标准曲线, 标准曲线R2值大于0.99.以水为模板进行阴性对照, 未发现显著的抑制作用. AOA-amoA引物见文献[15], AOB-amoA引物见文献[16], 基因丰度以单位质量干土内检测到的基因拷贝数表示.

1.5 沉积物潜在硝化速率测定

称取5 g沉积物于150 mL广口瓶中, 加入50 mL的NH4+培养液, 并用带孔的橡皮塞塞住, 置于水浴恒温振荡器上振荡24h(培养温度为采样点温度), 过滤后分析滤液中的NO3-含量, 用培养前后NO3-浓度的变化来计算沉积物潜在硝化速率(以单位质量干土单位时间内产生的NO3--N的量表示).液体培养液:磷酸二氢钾溶液0.2mol·L-1、磷酸氢二钾溶液0.2mol·L-1、硫酸铵溶液0.050mol·L-1, 按体积比3:7:30的比例配制, pH调至7.2[30].

1.6 数据分析

采用SPSS.20的单因素方差分析(ANOVA)对金水河、淇河的理化因子、硝化功能基因丰度、潜在硝化速率的时空差异进行了检验.采用Canoco 5进行全部采样点碳氮特征(水体及沉积物中的有机碳、NO3-和NH4+浓度)的非度量多维尺度分析(NMDS), 比较两条河流碳氮水平的差异性.采用Origin 9.0线性拟合分析了理化因子与功能基因丰度、潜在硝化速率的相关性, 并分析了功能基因丰度与潜在硝化速率的相关性.

2 结果与分析 2.1 理化因子

在季节水平上, 丰水期淇河的水体NO3-高于金水河(表 1, P < 0.05), 平水期淇河的水体温度、DOC浓度和pH均高于金水河(P < 0.05), 而枯水期淇河的DOC值及pH高于金水河(P < 0.05).在年水平上, 淇河水体NO3-、DOC和pH均高于金水河(表 1, P < 0.05). NMDS排序图结果显示, 淇河与金水河不同季节的碳氮水平(水体及沉积物的有机碳、NO3-和NH4+浓度)有明显的差异(图 2~4).

表 1 金水河与淇河理化因子1) Table 1 Physical and chemical characteristics of the Jinshui River and the Qihe River

图 2 2018年8月金水河与淇河水体及沉积物碳氮浓度差异性的NMDS分析 Fig. 2 NMDS analysis of the difference in carbon and nitrogen concentration between the Jinshui River and the Qihe River (2018-08)

图 3 2018年11月金水河与淇河水体及沉积物碳氮浓度差异性的NMDS分析 Fig. 3 NMDS analysis of the difference in carbon and nitrogen concentration between the Jinshui River and the Qihe River(2018-11)

图 4 2019年3月金水河与淇河水体及沉积物碳氮浓度差异性的NMDS分析 Fig. 4 NMDS analysis of the difference of carbon and nitrogen concentration between the Jinshui River and the Qihe River (2019-03)

2.2 硝化作用功能基因丰度及沉积物潜在硝化速率

金水河和淇河的AOA-amoA基因丰度无显著差异(图 5, P < 0.05).淇河枯水期的AOB-amoA基因丰度显著高于金水河(图 6, P>0.05), 其他季节两条河的AOB-amoA基因丰度无显著差异.在年水平上, 金水河与淇河AOA-amoA及AOB-amoA基因丰度均无显著差异. AOA-amoA基因丰度显著高于AOB-amoA基因(图 5图 6).

数据为平均值±SE(n=9) 图 5 金水河及淇河沉积物AOA-amoA基因丰度 Fig. 5 AOA-amoA gene abundance of the Jinshui River and the Qihe River sediment

数据为平均值±SE(n=9) 图 6 金水河及淇河沉积物AOB-amoA基因丰度 Fig. 6 AOB-amoA gene abundance of the Jinshui River and the Qihe River sediment

金水河丰水期、平水期及枯水期的潜在硝化速率(以单位质量干土单位时间内产生的NO3--N的质量表示)分别为1.02~2.79、0.69~2.94和0.56~1.76mg·(kg·h)-1, 淇河丰水期、平水期及枯水期的潜在硝化速率分别为0.99~5.13、1.11~5.10和0.74~1.31mg·(kg·h)-1(图 7).在年水平上, 淇河潜在硝化速率显著高于金水河(P < 0.01).在季节水平上, 平水期淇河硝化速率显著高于金水河(P < 0.05), 其他季节两条河的潜在硝化速率相似.

数据为平均值±SE(n=9) 图 7 金水河及淇河硝化速率 Fig. 7 Sediment nitrification rates of the Jinshui River and Qihe River

2.3 功能基因丰度、沉积物硝化潜力及与理化因子的相关性

用两条河流在3个季节采集到的54个样品进行了年水平的功能基因丰度、沉积物硝化潜力及与理化因子的相关性分析(表 2).

表 2 潜在硝化速率、功能基因丰度与理化因子的皮尔森相关系数1) Table 2 Pearson's correlation analyses among potential nitrification rates, environment factors, and functional genes abundance

河流沉积物的潜在硝化速率与水温(r=0.31, P < 0.05)、水体NO3-(r=0.44, P < 0.01)、水体pH(r=0.38, P < 0.01)和沉积物NO3-(r=0.35, P < 0.01)呈显著正相关.潜在硝化速率与AOA-amoA基因无显著相关性, 而与AOB-amoA基因呈负相关(r=-0.33, P < 0.05).

AOA-amoA丰度与水温(r=0.36, P < 0.01)、水体NH4+(r=0.38, P < 0.01)、水体C/NO3-(r=0.42, P < 0.01)、沉积物NO3-(r=0.30, P < 0.05)及沉积物NH4+(r=0.38, P < 0.01)呈显著正相关. AOB-amoA丰度与水温(r=-0.31, P < 0.05)、水体pH(r=-0.35, P < 0.01)、沉积物NO3-(r=-0.32, P < 0.05)及沉积物SOC(r=-0.37, P < 0.01)呈显著负相关, 与水体DOC(r=0.71, P < 0.01)及水体C/NO3-(r=0.56, P < 0.01)呈显著正相关.

用两条河流各季节采集到的18个样品进行了季节水平的功能基因丰度、沉积物硝化潜力及与理化因子的相关性分析(表 2).丰水期的潜在硝化速率与水体NH4+(r=-0.49, P < 0.05)及水体C/NO3-(r=-0.54, P < 0.05)呈显著负相关, 平水期的潜在硝化速率与pH呈显著正相关(r=0.57, P < 0.05), 枯水期与各理化因子相关性不显著.各季节的潜在硝化速率均与基因丰度无显著相关性.平水期AOA-amoA丰度与水温呈显著负相关(r=-0.48, P < 0.05), 与沉积物SOC(r=0.55, P < 0.05)呈显著正相关.枯水期AOA-amoA丰度与水体DOC(r=0.53, P < 0.05)及水体C/NO3-(r=0.93, P < 0.01)呈显著正相关.丰水期AOB-amoA丰度与沉积物NH4+(r=0.74, P < 0.01)呈显著正相关.枯水期AOB-amoA丰度与沉积物NH4+(r=0.60, P < 0.01)呈显著正相关, 与沉积物SOC(r=-0.47, P < 0.05)呈显著负相关.

3 讨论 3.1 硝化功能基因及潜在硝化速率对理化因子的响应

有研究报道AOA丰度经常比AOB高出几个数量级, 其多样性及其栖息范围等各个方面都胜于AOB[17, 31, 32].本研究显示AOB-amoA与AOA-amoA对理化因子的响应不同, 且两个流域中AOA-amoA的丰度都显著高于AOB-amoA.

温度可以影响氨氧化微生物的分布规律, 温度升高时AOA基因的丰度增大, 而AOB基因的丰度减少, AOB比AOA更加适应低温环境[33, 34].本研究显示年水平上不同氨氧化微生物对水温变化有相反的响应模式, 但平水期AOA-amoA基因的丰度却与温度呈现了显著的负相关, 这可能与淇河在平水期高的水体温度但高pH有关, 不同土壤中硝化菌数量和pH之间具有较好的负相关[35, 36].本研究结果也显示了年水平及丰水期AOB-amoA丰度随着pH的升高而下降的趋势, 这是由于pH强烈影响了硝化微生物的生理代谢.

高含量有机碳导致异养细菌大量繁殖, 并与自养硝化细菌竞争溶解氧和氨氮等底物, 使得DO在扩散至沉积物后被迅速消耗, 从而抑制硝化微生物的生长[37], 这与本研究结果中AOB-amoA与沉积物有机碳浓度的相关性结果相符.但本结果也显示出AOB-amoA丰度与水体DOC呈显著正相关, 而AOA-amoA与沉积物有机碳浓度在枯水期也显示出正相关, 可能是由于部分AOA会以有机碳作为碳源生长[38], 这与枯水期AOA-amoA丰度与沉积物有机碳浓度的相关性结果相符合.理论上硝化过程中AOB以二氧化碳作为碳源[38], 不消耗有机碳, 硝化过程与氮循环其他过程及碳循环紧密结合, 有机碳与AOB的相关性还需控制实验进行深入研究.有室内控制实验表明, 不同的C/N条件下, AOA-amoA和AOB-amoA功能基因丰度均有显著的增加, 但其增长率会随着C/N比的增加而下降[39], 表明碳氮含量均会影响氨氧化微生物的丰度.

本研究结果中年水平上AOA-amoA与沉积物及水体NH4+浓度均呈显著正相关, 但AOB-amoA在平水期与沉积物NH4+浓度相关性不显著. NH4+可以为硝化反应提供反应底物, 适当增加反应底物的含量可以促进硝化微生物的生长, 添加氮素可使AOA丰度增加[40]. AOB比AOA具有结构更加多变的氨单加氧酶, 导致了AOB比AOA具有更宽的底物浓度范围[41], 而AOA比AOB对底物具有更高的亲和力[42, 43], 这可能是本研究中AOA-amoA与NH4+浓度相关性更显著的原因.两种功能基因丰度与硝态氮的相关性不同, 对多种理化因子的响应也不同, 导致了其与硝化作用产物的关系也有所差异.

本研究结果显示潜在硝化速率与温度呈显著正相关[23, 44], 温度升高会促进微生物的新陈代谢, 有利于硝化细菌生长和硝化活性[45].低的pH对硝化速率有明显的的抑制作用, pH低于6.0硝化速率会显著下降[46, 47].本研究区域pH值均高于7.5, 淇河流域的pH值高于金水河, 相应地潜在硝化速率也高.本研究结果显示潜在硝化速率与NH4+没有显著相关性, 但与硝态氮呈显著正相关, 铵态氮是硝化作用的底物, 这可能主要是因为不同采样点的NH4+浓度并无显著性差异.硝化潜力反映了NH4+向硝酸盐转化的潜在能力, 因此硝化潜力的增加会伴随着NO3-浓度的不断增加, 最终完成硝化过程.

3.2 功能基因对硝化潜力的影响

本结果显示年水平上AOB-amoA基因丰度与硝化潜力呈显著负相关关系, 季节水平上两者无显著相关性, 而无论在年水平还是季节水平上AOA-amoA基因丰度均与硝化潜力无显著相关性.但影响溪流中微生物群落和功能之间联系的因素仍然不确定[48], 在DNA水平上的功能基因不能与氮循环速率很好地耦合[49, 50], 硝化作用活性与硝化微生物数量没有显著相关, AOA和AOB的基因拷贝数与硝化速率并无明显相关性[36, 51].这可能是由于硝化微生物的种类繁多, 不同种属硝化微生物表现出来的硝化活性不同[36, 52].这意味着功能基因的存在不能确保微生物活性或者酶活性[49, 53~55].因此后期需在转录水平或蛋白质水平进行研究, 确定哪些微生物种类具有更高的活性[56].

3.3 硝化潜力及硝化功能基因丰度对人为干扰的响应

人为干扰活动相对强烈的城乡过渡带河流中潜在硝化速率较低[23, 44].流域内农业土地面积及居民区的增加伴随着化肥使用及生活废水排放增加, 大量的营养物质(以氮、磷为主)及可降解有机物输入河流水体中, 使水质进一步恶化[57, 58].污染物的降解需要消耗水中大量的溶解氧, 致使水体溶解氧浓度下降, 甚至长期处于缺氧状态, 从而降低了硝化微生物的活性[23].但本研究结果显示了与上述研究相反的现象, 在人类活动较密集和人为干扰较强的淇河流域显示出了较强的硝化潜力.也有研究表明农田的硝化速率高于林地[19], 这主要由于不同土地利用类型间理化因子的差异造成, 如农田的高pH及低碳氮比.结合本研究理化因子结果, 人为干扰强度高的淇河与人为干扰强度低的金水河碳氮水平(水体DOC与NO3-)虽然有显著的差异, 但淇河流域的氮污染状况明显好于其他严重污染河流, 如与李如忠等[23]研究区域十五里河的氨氮浓度(2.33~12.69mg·L-1)相比, 本研究区域淇河的水体铵态氮浓度较低, 但仍可为硝化微生物提供充足的反应底物, 且淇河流域相比金水河流域具有更高的DOC, 可供部分异养硝化微生物利用有机碳进行生长繁殖[38], 但并没有达到使水体缺氧的污染程度, 从而保证了硝化作用的正常进行.而淇河流域农田面积显著高于金水河, 具有更高的pH, 并且淇河水体温度稍高于金水河, 促进了硝化作用的发生.

4 结论

(1) 本研究区域的AOA-amoA基因丰度显著高于AOB-amoA, 且两种基因丰度对水体温度、pH、NO3-及NH4+的响应不同, 呈相反的变化趋势.沉积物硝化功能基因丰度主要受到水体NH4+、pH及碳氮比的影响.潜在硝化速率与温度、pH及NO3-相关性显著.

(2) 河流沉积物潜在硝化与硝化功能基因丰度相关性不显著.

(3) 流域内人为干扰强度高的淇河具有更高的碳氮浓度(水体DOC与NO3-)、pH和水体温度, 河流沉积物潜在硝化速率及功能基因丰度更高, 进一步促进了河流内NO3-的积累.

参考文献
[1] Damashek J, Francis C A. Microbial nitrogen cycling in estuaries: from genes to ecosystem processes[J]. Estuaries and Coasts, 2017, 41(3): 626-660.
[2] 孟宪伟, 刘焱光, 王湘芹. 河流入海物质通量对海、陆环境变化的响应[J]. 海洋科学进展, 2005, 23(4): 391-397.
Meng X W, Liu Y G, Wang X Q. Material flux from river to sea and its response to land and sea environment changes[J]. Advances in Marine Science, 2005, 23(4): 391-397.
[3] 李珊珊, 单保庆, 张洪. 滏阳河河系表层沉积物重金属污染特征及其风险评价[J]. 环境科学学报, 2013, 33(8): 2277-2284.
Li S S, Shan B Q, Zhang H. Characteristics and ecological risk assessment of heavy metal pollution in surface sediments of Fuyang River[J]. Acta Scientiae Circumstantiae, 2013, 33(8): 2277-2284.
[4] Merseburger G, Martí E, Sabater F, et al. Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams[J]. Science of the Total Environment, 2011, 409(5): 957-967. DOI:10.1016/j.scitotenv.2010.11.014
[5] Daims H, Lebedeva E V, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. DOI:10.1038/nature16461
[6] Repert D A, Underwood J C, Smith R L, et al. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(12): 2328-2344. DOI:10.1002/2014JG002707
[7] Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296. DOI:10.1038/nature06592
[8] 常永凯.辽河口沉积物中氨氧化微生物多样性和硝化作用研究[D].大连: 大连海洋大学, 2016.
Chang Y K. Diversity of ammonia oxidizing microorganisms and nitrification in Liaohe Estuary sediments[D]. Dalian: Dalian Ocean University, 2016.
[9] 李佳霖.典型河口区沉积物的硝化和反硝化过程[D].青岛: 中国海洋大学, 2009.
Li J L. Nitrification and denitrification processes in sediment of typical estuarine sea area[D]. Qingdao: Ocean University of China, 2009.
[10] Jin T, Zhang T, Ye L, et al. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China[J]. Applied Microbiology and Biotechnology, 2011, 90(3): 1137-1145.
[11] Lipsewers Y A, Bale N J, Hopmans E C, et al. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea)[J]. Frontiers in Microbiology, 2014, 5. DOI:10.3389/fmicb.2014.00472
[12] Newell S E, Babbin A R, Jayakumar A, et al. Ammonia oxidation rates and nitrification in the Arabian Sea[J]. Global Biogeochemical Cycles, 2011, 25(4). DOI:10.1029/2010GB003940
[13] Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266): 976-979.
[14] Park H D, Wells G F, Bae H, et al. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors[J]. Applied and Environmental Microbiology, 2006, 72(8): 5643-5647. DOI:10.1128/AEM.00402-06
[15] Francis C A, Santoro A E, Oakley B B, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683-14688. DOI:10.1073/pnas.0506625102
[16] Rotthauwe J H, Witze K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(2): 4704-4712.
[17] Caffrey J M, Bano N, Kalanetra K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia[J]. The ISME Journal, 2007, 1(7): 660-662. DOI:10.1038/ismej.2007.79
[18] Kowalchuk G A, Stienstra A W, Heilig G H J, et al. Molecular analysis of ammonia-oxidising bacteria in soil of successional grasslands of the Drentsche A (The Netherlands)[J]. FEMS Microbiology Ecology, 2000, 31(3): 207-215. DOI:10.1111/j.1574-6941.2000.tb00685.x
[19] 李铭, 朱利川, 张全发, 等. 不同土地利用类型对丹江口库区土壤氮矿化的影响[J]. 植物生态学报, 2012, 36(6): 530-538.
Li M, Zhu L C, Zhang Q F, et al. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 530-538.
[20] Sloth N P, Nielson L P, Blackburn T H. Nitrification in sedimentcores measured with acetylene inhibition[J]. Limnol Oceanogr, 1992, 37: 1108-1112.
[21] Herbert R A, Nedwell D B. Role of environmental factors in regulating nitrate respiration in intertidal sediments[A]. Revsbech N P, Sørensen J. Denitrification in Soil and Sediment[M]. New York: Plenum Press, 1990. 77-90.
[22] 王若冰, 赵钰, 单保庆, 等. 海河流域典型重污染河流滏阳河沉积物氨化和硝化速率研究[J]. 环境科学学报, 2018, 38(3): 858-866.
Wang R B, Zhao Y, Shan B Q, et al. Ammonification and nitrification rates in sediment of typical heavy polluted river (Fuyang River) in the Haihe River Basin[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 858-866.
[23] 李如忠, 戴源, 刘晓薇, 等. 巢湖十五里河沉积物硝化速率的城乡梯度变化及相关性[J]. 环境科学学报, 2019, 39(3): 688-695.
Li R Z, Dai Y, Liu X W, et al. Gradient variation and correlation of sediment nitrification rates in urban and rural areas of Shiwuli River, Chaohu Lake Basin[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 688-695.
[24] 刘宗显. 汉江上游水质现状及治理强化路径[J]. 水利发展研究, 2016, 16(8): 75-77.
[25] 宋国强, 殷明, 张卫东, 等. 丹江口水库入库河流总氮通量监测[J]. 环境科学与技术, 2009, 32(12): 135-137, 198.
Song G Q, Yin M, Zhang W D, et al. Determination of concentration and fluxes of total nitrogen in river entries of Danjiangkou Reservoir[J]. Environmental Science & Technology, 2009, 32(12): 135-137, 198.
[26] 闵志华. 丹江口水库总氮变化趋势分析及防治对策研究[J]. 水力发电, 2017, 43(11): 5-9.
Min Z H. Research on the change trend and prevention countermeasures of total nitrogen in Danjiangkou Reservoir[J]. Water Power, 2017, 43(11): 5-9.
[27] Zhang K R, Dang H S, Tan S D, et al. Vegetation community and soil characteristics of abandoned agricultural land and pine plantation in the Qinling Mountains, China[J]. Forest Ecology and Management, 2010, 259(10): 2036-2047. DOI:10.1016/j.foreco.2010.02.014
[28] 王婧, 袁洁, 谭香, 等. 汉江上游金水河悬浮物及水体碳氮稳定同位素组成特征[J]. 生态学报, 2015, 35(22): 7338-7346.
Wang J, Yuan J, Tan X, et al. Stable isotope composition of particulate organic matters and dissolved nitrate in the Jinshui River, upper Han River basin[J]. Acta Ecologica Sinica, 2015, 35(22): 7338-7346.
[29] 熊梓茜.汉江流域河—库岸带湿地植被和土壤反硝化特征[D].武汉: 中国科学院大学(中国科学院武汉植物园), 2018.
Xiong Z Q. Vegetation characteristics and soil denitrification of reservoir shorelines and riparian wetlands in the Han River, China[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Science, 2018.
[30] 王晓娟, 张荣社. 人工湿地微生物硝化和反硝化强度对比研究[J]. 环境科学学报, 2006, 26(2): 225-229.
Wang X J, Zhang R S. Study on intensity of microorganism nitrification and denitrification in contructed wetlands[J]. Acta Scientiae Circumstantiae, 2006, 26(2): 225-229.
[31] Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809. DOI:10.1038/nature04983
[32] Li M, Cao H L, Hong Y G, et al. Spatial distribution and abundances of Ammonia-Oxidizing Archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1243-1254. DOI:10.1007/s00253-010-2929-0
[33] Sims A, Horton J, Gajaraj S, et al. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands[J]. Water Research, 2012, 46(13): 4121-4129. DOI:10.1016/j.watres.2012.05.007
[34] Zeng J, Zhao D Y, Yu Z B, et al. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms[J]. PLoS One, 2014, 9(6): e100653. DOI:10.1371/journal.pone.0100653
[35] Shen J P, Zhang L M, Zhu Y G, et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 2008, 10(6): 1601-1611. DOI:10.1111/j.1462-2920.2008.01578.x
[36] 汪小兰.紫色水稻土中的硝化作用与硝化微生物[D].重庆: 西南大学, 2013.
Wang X L. Nitrification and nitrifying microorganisms in purple paddy soil[D]. Chongqing: Southwest University, 2013.
[37] 王超, 单保庆, 赵钰. 滏阳河水系沉积物硝化速率分布及溶解氧的限制效应[J]. 环境科学学报, 2015, 35(6): 1735-1740.
Wang C, Shan B Q, Zhao Y. Spatial distribution of nitrification rate and the restriction effect of oxygen in the Fuyang River[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1735-1740.
[38] Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(4): e95. DOI:10.1371/journal.pbio.0040095
[39] 李筱宛, 张亚平, 万宇, 等. 上覆水不同C/N比条件下沉积物环境反硝化及氨氧化功能基因丰度变化特征[J]. 南京大学学报(自然科学版), 2016, 52(1): 27-35.
Li X W, Zhang Y P, Wan Y, et al. Abundance variations of denitrification and ammonium oxidation functional genes in sediments under different C/N ratios of overlying water[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(1): 27-35.
[40] Li X, Zhang M M, Liu F, et al. Seasonality distribution of the abundance and activity of nitrification and denitrification microorganisms in sediments of surface flow constructed wetlands planted with Myriophyllum elatinoides during swine wastewater treatment[J]. Bioresource Technology, 2017, 248: 89-97. DOI:10.1016/j.biortech.2017.06.102
[41] Taylor A E, Bottomley P J. Nitrite production by Nitrosomonas europaea and Nitrosospira sp. AV in soils at different solution concentrations of ammonium[J]. Soil Biology and Biochemistry, 2006, 38(4): 828-836. DOI:10.1016/j.soilbio.2005.08.001
[42] Zhang Y, Chen L J, Dai T J, et al. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms[J]. Applied Microbiology and Biotechnology, 2015, 99(15): 6481-6491. DOI:10.1007/s00253-015-6524-2
[43] Park B J, Park S J, Yoon D N, et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2010, 76(22): 7575-7287. DOI:10.1128/AEM.01478-10
[44] 秦如彬, 李如忠, 高苏蒂, 等. 城乡交错带典型溪流沟渠沉积物氮污染特征及硝化-反硝化潜力[J]. 环境科学, 2017, 38(3): 936-945.
Qin R B, Li R Z, Gao S D, et al. Pollution characteristics and nitrification and denitrification potential of superficial sediments from streams in an urban-rural fringe[J]. Environmental Science, 2017, 38(3): 936-945.
[45] Racchetti E, Bartoli M, Soana E, et al. Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification[J]. Biogeochemistry, 2011, 103(1-3): 335-354. DOI:10.1007/s10533-010-9477-7
[46] Ste-Marie C, Paré D. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands[J]. Soil Biology and Biochemistry, 1999, 31(11): 1579-1589. DOI:10.1016/S0038-0717(99)00086-3
[47] de Boer W, Kowalchuk G A. Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology and Biochemistry, 2001, 33(7-8): 853-866. DOI:10.1016/S0038-0717(00)00247-9
[48] Findlay S. Stream microbial ecology[J]. Journal of the North American Benthological Society, 2010, 29(1): 170-181. DOI:10.1899/09-023.1
[49] Smith C J, Dong L F, Wilson J, et al. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient[J]. Frontiers in Microbiology, 2015, 6: 542. DOI:10.3389/fmicb.2015.00542
[50] Tomasek A, Kozarek J L, Hondzo M, et al. Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian areas[J]. Water Resources Research, 2017, 53(8): 6523-6538. DOI:10.1002/2016WR019566
[51] Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55: 485-529. DOI:10.1146/annurev.micro.55.1.485
[52] 贾仲君, 翁佳华, 林先贵, 等. 氨氧化古菌的生态学研究进展[J]. 微生物学报, 2010, 50(4): 431-437.
Jia Z J, Weng J H, Lin X G, et al. Microbial ecology of archaeal ammonia oxidation—A review[J]. Acta Microbiologica Sinica, 2010, 50(4): 431-437.
[53] Nogales B, Timmis K N, Nedwell D B, et al. Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA[J]. Applied and Environmental Microbiology, 2002, 68(10): 5017-5025. DOI:10.1128/AEM.68.10.5017-5025.2002
[54] Ikeda E, Andou S, Iwama U, et al. Physiological roles of two dissimilatory nitrate reductases in the deep-sea denitrifier Pseudomonas sp. strain MT-1[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(4): 896-900. DOI:10.1271/bbb.80833
[55] Liu B B, Mørkved P T, Frostegård Å, et al. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH[J]. FEMS Microbiology Ecology, 2010, 72(3): 407-417. DOI:10.1111/j.1574-6941.2010.00856.x
[56] Wertz S, Dandie C E, Goyer C, et al. Diversity of nirK denitrifying genes and transcripts in an agricultural soil[J]. Applied and Environmental Microbiology, 2009, 75(23): 7365-7377. DOI:10.1128/AEM.01588-09
[57] Sponseller R A, Benfield E F, Valett H M. Relationships between land use, spatial scale and stream macroinvertebrate communities[J]. Freshwater Biology, 2001, 46(10): 1409-1424. DOI:10.1046/j.1365-2427.2001.00758.x
[58] 黄宝强, 刘青, 李荣昉, 等. 土地利用/覆被变化对河流的影响[J]. 安徽农业科学, 2012, 40(21): 11073-11076, 11136.
Huang B Q, Liu Q, Li R F, et al. Impacts of land use and land cover change on river[J]. Journal of Anhui Agricultural Sciences, 2012, 40(21): 11073-11076, 11136.