2. 浙江科技学院建筑工程学院, 杭州 310023;
3. 浙江大学建筑工程学院, 杭州 310058;
4. 厦门理工学院水资源环境研究所, 厦门 361005
2. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China;
3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
4. Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
消毒副产物(disinfection by-products, DBPs)是由消毒剂与天然有机物(natural organicmatter, NOM)的反应产物[1], 包括三卤甲烷(trihalomethanes, THMs)、卤代乙酸(haloacetic, HAAs)、卤代乙腈(haloacetonitrile, HANs)、卤代酮(halogenated, HKs)、亚硝胺(nitrosamine)和其它新型消毒副产物[2, 3].目前, 饮用水中检出DBPs的种类高达数百种[4, 5], 其中THMs和HAAs被许多国家和组织列入水质标准.
THMs和HAAs等常规受控DBPs在各国饮用水系统中均有检出, 含量地区差异较大.孟加拉国Kallyanpur和Panthapath地区供水管网中THMs浓度分别为(139.20±5.37)μg·L-1和(20.20±8.40)μg·L-1[6]; 在中国深圳饮用水系统中THMs浓度低于80 μg·L-1, 远高于中国台湾地区报道的浓度范围(10.00 μg·L-1), 其中位浓度为19.90 μg·L-1, 略高于广州(17.70 μg·L-1)和北京(14.12 μg·L-1)[7~10].近年来调查发现北京市自来水厂中HAAs浓度范围为ND~30.36 μg·L-1, 非受控HANs浓度范围为ND~4.70 μg·L-1, 与美国、英国和加拿大浓度水平相似[10~13].
中国大部分家庭习惯将自来水煮沸饮用, 加热过程对龙头水DBPs含量有较大影响.Wang等[14]对深圳某区的龙头水进行监测, 发现THMs浓度范围为8.60~111.00 μg·L-1, 5种HAAs的浓度范围为5.90~55.20 μg·L-1, 而龙头水经过配备活性炭滤芯的锅炉装置处理后THMs可去除40.00% ~60.00%, HAAs几乎无去除.Pan等[15]的研究发现, 龙头水煮沸后不仅氯化DBPs可减少61.10%, 溴化DBPs也可降低62.80%, 认为加热处理减少了人类接触DBPs的风险.Chowdhury等[16]对加拿大某住宅饮用水DBPs的研究发现, 水龙头和热水箱中的THMs分别是住宅进水口的1.40~1.80和1.90~2.70倍, HAAs为0.23~2.24倍和0.53~2.61倍, 认为在封闭管道中挥发性DBPs无法逸出, 此外水力停滞和水温升高的过程中可能使游离氯残留物和残留有机物之间的反应速率增加, 从而形成额外的DBPs; 加热还可能通过NOM与游离氯反应或通过预先形成的卤代前体物分解从而促进HAAs的形成[17].
由于余氯及管网中微生物的存在, 管网中DBPs会随着供水时间发生变化, 部分DBPs会出现逐渐升高的现象, 为避免供水风险, 及时掌握饮用水中的DBPs含量十分重要.通过DBPs与常规指标之间的相关性, 建立统计型预测模型可实现终端龙头水DBPs的粗略估算.据报道, Lin等[18]对长江三角洲地区原水建立DBPs预测模型, THMs、HANs和HAA5预测模型的相关系数R2分别为0.92、0.92和0.84, 为水厂优化水处理工艺控制DBPs提供了重要信息; Golfinopoulos等[19]建立多元线性回归模型对雅典饮用水处理厂中的THMs、三氯甲烷(TCM)和一溴二氯甲烷(BDCM)进行预测, 相关系数R2分别为0.89、0.89和0.87, 精度较高, 可用于类似希腊地区气候特征的饮用水处理厂中THMs浓度的预测.然而目前针对供水管网中DBPs的模型预测研究较少, 本文以浙江省H市大学校园内某建筑物供水龙头水为目标, 通过定期监测获取数据, 在分析DBPs的分布及其与理化指标相关性的基础上, 建立多元线性回归模型对供水终端DBPs含量进行预测.基于美国环保署推荐的风险评估模型, 分析该地区龙头水和热水经口摄入后对人类造成的风险.DBPs的预测模型和健康风险评估模型可实现管网终端龙头水中DBPs的预测, 以期为水厂的供水安全预警及工艺优化提供信息.
1 材料与方法 1.1 试剂与仪器本实验中所用到的药品和试剂均为色谱纯, 包括甲醇(HPLC级)、叔丁基甲醚(GC级)、三氯甲烷(TCM)、一溴二氯甲烷(BDCM)、二溴一氯甲烷(DBCM)和三溴甲烷(TBM)均购自上海安谱实验科技有限公司.二氯乙酸(DCAA)、三氯乙酸(TCAA)、二氯乙腈(DCAN)、三氯乙腈(TCAN)、二溴乙腈(DCBN)和溴氯乙腈(BCAN)等标准品购自上海阿拉丁试剂有限公司.
仪器设备包括GC-2014型气相色谱配ECD检测器(日本岛津)、multi N/C2100型TOC仪(德国耶拿)、UPHW1-90T型纯水机(北京优普时代)、TU-1901紫外分光光度计(北京普析)和SX751 pH计(上海雷磁).
1.2 样品的采集与保存2019年4~9月期间对浙江省杭州市西湖区浙江工业大学建工学院教学大楼内自来水龙头进行样品的采集和检测.为获得准确且具有可比性的数据, 每次选择相同的采样时间.所有自来水龙头均未配备过滤器或其它净水装置.在采取水样前, 打开水龙头放水5 min, 水样采集后立刻检测.
同期采集同管网热水器出水, 热水器为碧丽牌JO-K90商用热水器配备JC60(K-03-J)底座.热水器供水量为130 L·h-1, 底座装有管道式净水器, 采用多级过滤模式, 分别为微米优质PP棉、双高效活性炭和高纯度铜锌合金(KDF)净水材料, 热水采集后立刻检测.
1.3 样品分析方法理化指标pH值用pH计测定, 氨氮采用紫外分光光度法测定, TOC采用有机碳分析仪测定, 余氯采用N, N-二乙基-1, 4-苯二胺(N, N-Diethyl-1, 4-phenylenediamine, DPD)比色滴定法测定.
有机物指标THMs和HANs采用叔丁基甲醚(MTBE)为萃取剂进行液液萃取, 取水样25 mL于40 mL样品瓶中, 加入4 g无水硫酸钠, 溶解后加入2 mL 150 μg·L-1MTBE萃取液, 振荡2 min后静置分层, 取上部有机相进样GC-ECD检测.GC采用不分流进样, ECD温度设置为250℃, 进样口温度设置为210℃, 色谱柱初始温度为35℃维持5 min, 以8℃·min-1升至100℃维持2 min, 再以20℃·min-1升至200℃维持1 min. HAAs采用液液萃取联合酸性甲醇酯化法, 取水样30 mL于40 mL样品瓶中, 加入4 g无水硫酸钠, 溶解后加入2 mL浓硫酸, 再加入3 mL 300 μg·L-1MTBE萃取液, 振荡2 min后静置分层, 取上部有机相于20 mL样品瓶中, 立即加入2.5 mL新配制的10%的酸化甲醇溶液, 将样品瓶置于水温为50℃水浴锅中水浴加热2 h, 后放入4℃的冰箱中冷却5 min, 取出后立即加入7 mL 150 μg·L-1的硫酸钠溶液, 再取上层有机相于2 mL样品瓶中, 立即加入1 mL饱和碳酸氢钠溶液, 振荡、放气并静置3 min, 最后取上部有机相进样GC-ECD检测.GC采用不分流进样, 进样口温度设置为210℃, 色谱柱初始温度35℃保持8 min, 以8℃·min-1升到200℃, 保留15 min.载气均为高纯氮气, 总流量为50 mL·min-1.吹扫流量为3mL·min-1.
为保证实验的准确性, 每次测样均设平行样及空白对照, 并对检测结果异常的样品进行复查.
1.4 管网终端DBPs预测模型多元线性回归方程:
![]() |
式中, y表示因变量; x表示自变量; βj表示回归系数(i=1, 2, 3, …, k); p表示自变量个数; μ表示去除p个量对y影响后的随机误差.
多元线性回归方程可用下式表示:
![]() |
其矩阵形式为:
![]() |
其中:
![]() |
则多元线性回归模型的矩阵表达式为:
![]() |
健康风险评价是描述人类暴露于环境危害因素之后, 出现不良健康效应的特征[20].基于浙江省H市龙头水检测的DBPs, 以美国环保署推荐的致癌和非致癌健康风险评估模型对DBPs进行风险评价.癌症风险评估公式如下[21]:
![]() |
(1) |
![]() |
(2) |
式中, R为致癌风险, 表示人体终生超额患癌的概率; CDI为饮水途径的日摄入量[mg·(kg·d)-1]; SF表示化学致癌物的致癌斜率因子[(kg·d)·mg-1].
![]() |
式中, CW表示饮用水中DBPs浓度(mg·L-1); IR表示成人每日饮水量(L·d-1), 中国人群暴露参考手册(成人卷)推荐值为1.85 L·d-1; EF为暴露频率, 推荐值为365 d·a-1; ED为持续暴露时间, 推荐值为70 a; BW为成人体重, 中国人群暴露参考手册(成人卷)推荐值为60.6 kg; AT为平均暴露时间(致癌风险的AT值为70×365 d·a-1, 非致癌风险的AT值为30×365 d·a-1).当存在多种致癌物时, 通常将各种致癌物质的健康风险计算后求和
DBPs对人体的非致癌风险一般用危害指数HI表示:
![]() |
式中, RfD为化学物质非致癌参考量[mg·(kg·d)-1].
1.5.3 参考剂量龙头水中检出的各DBPs致癌分级、致癌斜率因子及非致癌参考剂量见表 1.
![]() |
表 1 DBPs致癌分级、致癌斜率因子及非致癌参考剂量1) Table 1 DBPs carcinogenic classification, slopefactor, and reference dose for non-cancer risk |
2 结果与讨论 2.1 龙头水DBPs的含量特征
供水管网终端龙头水中共检测了4类消毒副产物THMs、HANs、HAAs和三氯硝基甲烷(TCNM), 其中TCNM未检出.THMs包括TCM、DBCM、BDCM和TBM; HANs包括DCAN、TCAN、BCAN和DBAN; HAAs包括DCAA和TCAA.热水中未检出BCAN.所有DBPs均未超过《生活饮用水卫生标准》(GB 5749-2006)限值.供水点龙头水和热水DBPs分布见图 1~3.
![]() |
图 1 供水点龙头水和热水中三卤甲烷分布 Fig. 1 Distribution of THMs in tap water and boiledwater at the sample site |
![]() |
图 2 供水点龙头水和热水中卤乙腈分布 Fig. 2 Distribution of HANs in tap water and boiledwater at the sample site |
![]() |
图 3 供水点龙头水和热水中卤乙酸分布 Fig. 3 Distribution of HAAs in tap water and boiledwater at the sample site |
由图 1~3可见, 龙头水共检出3类10种DBPs, THMs、HANs和HAAs的存在水平分别为10.12~28.39、0.98~5.19和2.65~7.83 μg·L-1, 其中位浓度分别为16.95、2.41和4.50 μg·L-1, 热水THMs、HANs和HAAs的存在水平分别为0.60~12.58、0.02~0.52和2.42~5.86 μg·L-1, 其中位浓度分别为1.43、0.11和3.40 μg·L-1.龙头水煮沸后THMs和HANs的浓度大大降低, THMs的去除率最高可达94.38%, HANs的去除率最高为98.33%.设置为采样点的热水处理装置不断对饮用水进行加热, 可能是本研究中DBPs的去除率较高的主要原因.HAAs是非挥发性物质, 它浓度的降低主要是因为热脱羧反应分解生成挥发性THMs[15].造成其他非挥发性DBPs(HANs)浓度的降低可能因为一些其他的反应机制, 如水解等[22].HANs发生水解反应时首先断开碳氮三键, 随后与水中OH-和H+反应生成卤代乙酰胺, 而卤代乙酰胺是一种亚稳定中间产物, 可能继续发生水解反应而生成HAAs[23].因此, 在龙头水煮沸后, HAAs的浓度变化不明显, 有时会出现浓度增加等情况.
供水点龙头水和热水DBPs构成比例如图 4所示.
![]() |
图 4 供水点龙头水和热水DBPs构成 Fig. 4 Concentrations of DBPs in tap water and boiled water at the sample site |
供水点龙头水中10种DBPs均100%检出.由图 4可知, DBPs以THMs中的TCM和BDCM为主, 分别占总DBPs的25.47%和28.92%, 其中TCM浓度最高达16.14 μg·L-1; HAAs以DCAA为主, 占总DBPs的12.55%;非受控类HANs含量较低, 占总DBPs的9.89%.龙头水加热至沸腾后, TBM、TCAN和DBAN的检出率分别为46.43%、82.14%和92.86%, BCAN未检出, 其余DBPs检出率均为100%.加热后水中DBPs总量减小, 各类DBPs占比发生较大变化.HAAs为DBPs主要组分, DCAA占比最高(40.85%), TCAA次之.热水中的THMs大大降低, 但TCM仍为最主要的成分之一, 占比为37.20%.热水中TCM、BDCM、DBCM和TBM相比龙头水分别降低了60.20%、98.42%、97.08%和94.00%, 减量顺序与THMs水解速率(BDCM>DBCM>TBM>TCM)相符[24].由于HANs的不稳定性, 易挥发或水解等特性[17, 22, 25, 26], 加热后HANs也有所降低, 总占比降低为3.05%.
2.2 供水管网终端龙头水DBPs预测模型供水点龙头水理化指标余氯、pH值、TOC、UV254和氨氮见表 2.供水管网理化指标与DBPs的Spearman相关性分析见表 3.
![]() |
表 2 供水点龙头水理化指标 Table 2 Physicochemical parameters of tap water at the sample site |
![]() |
表 3 供水点龙头水DBPs与水体理化指标之间SPSS相关性分析 Table 3 Relationship between DBPs and physicochemical parameters of tap water at the sample site |
由表 3可以看出, THMs和HANs与pH具有显著的正相关关系(P < 0.05), 有研究证实碱性条件下许多中间DBPs(如三卤丙烷、三卤乙腈和三卤乙醛)易水解, 从而促进THMs的形成[27].有研究表明HAAs的生成量随着pH值升高而降低[28], 本次研究中HAAs与pH之间无显著的相关关系, 可能是因为水样pH值变化范围不大.THMs和HANs与余氯具有显著的负相关关系(P < 0.05).为保证管网水质的稳定性, 水厂出水具有较高浓度的余氯, 因此水在管网运输过程中DBPs前体物与游离氯持续反应生成DBPs[29], 导致DBPs含量增加, 而游离氯浓度降低.THMs、HANs和HAAs与氨氮浓度均具有显著的负相关关系(P < 0.05), 在氯化过程中, 氨可以与氯快速反应, 生成氯胺, 氨氮浓度的增加会抑制氯胺水解生成自由氯, 从而导致DBPs的产率降低[30, 31].THMs和HANs均与SUVA呈显著的正相关关系, 这表明THMs和HANs的前体物可能是具有苯环、酚羟基、共轭双键和疏水基团的有机物[32].有研究阐述当SUVA>3.00 L·(mg·m)-1时, SUVA与DBPs之间有较高的相关性, 而在低SUVA的水中相关性可能较弱[33].
根据上述相关性分析, 选择余氯、pH值、氨氮和SUVA为自变量, THMs和HANs为因变量, 建立H市某供水点龙头水THMs和HANs的多元线性回归预测模型.在模型建立过程中选择34组监测数据作为样本数据, 10组数据作为检验数据.利用MATLAB建立多元线性回归模型, 预测模型分析如下.
THMs的线性回归模型:
![]() |
HANs的线性回归模型:
![]() |
式中, x1为pH值, x2表示余氯浓度, x3表示氨氮浓度, x4表示SUVA
通过MATLAB建模分析, 选取相关系数R2、统计量F、概率P和误差方差作为多元线性回归模型的统计量, 当R2的值越接近1, 统计量F的值越大回归方程越显著, 概率P < 0.05或P < 0.001时预测模型有效, 具体结果见表 4.
![]() |
表 4 龙头水THMs和HANs多元线性回归模型统计量汇总表 Table 4 Summary of THMs and HANs multiple linear regression model statistics |
由表 4可知, THMs的线性模型相关系数较高(R2=0.871 3), 而HANs的相关系数相对较低(R2=0.581 2).因此, 在预测过程中THMs线性模型可以提供较为准确的预测结果.
由图 5可知, 在MATLAB多元线性回归分析的34组样本数据中, 仅有2~3组数据出现异常, 对模型的可靠性干扰不大.将10组DBPs数据代入预测模型计算可知, THMs预测模型的相关系数较高(R2=0.871 3), 相对误差在10.00%以内, 模拟效果较好; 而HANs预测模型的相关系数较低, 10组预测数的相对误差范围在1.73% ~26.99%.
![]() |
图 5 龙头水THMs和HANs的预测模型残差 Fig. 5 Residual map of THMs and HANs prediction model for tap water |
本次检测的龙头水及热水DBPs浓度较低, 故选择公式(1)计算致癌风险值, 见表 5.
![]() |
表 5 供水点龙头水和热水的致癌及非致癌风险 Table 5 Cancer risk and non-carcinogenic risk in tap water and boiledwater at the sample site |
由表 5可见, 根据健康风险评价模型及参数计算供水点龙头水及热水中DBPs通过饮用途径的致癌风险分别为(17.24~84.63)×10-6和(25.49~258.82)×10-7.龙头水的致癌风险主要来自于THMs, TCM、BDCM和DBCM的致癌风险均高于10-6, 这与Lee等[34]的研究结果一致.除HAAs外, 加热后DBPs的致癌风险均有所降低, 其致癌风险主要来自于TCM和HAAs.龙头水及热水中DBPs通过饮水途径的非致癌风险分别为(4.17~50.32)×10-2和(6.52~107.74)×10-3.龙头水非致癌风险主要来自于TCM和BDCM, 热水非致癌风险主要来自于TCM和DCAA.可见, 加热煮沸可大大降低饮用水的致癌和非致癌风险.据报道, 含氮消毒副产物(nitrogenous-disinfection by-products, N-DBPs)比含碳消毒副产物(carbonaceou-disinfection by-products, C-DBPs)具有更高的细胞毒性和基因毒性[35], 由于尚未获得N-DBPs的致癌斜率因子和非致癌参考剂量, 暂时无法评估其致癌风险.
3 结论(1) 加热煮沸可降低饮用水中DBPs含量, 供水管网终端龙头水THMs、HAAs和HANs分别降低84.21%、91.45%和21.16%; DBPs构成由以TCM、BDCM和DBCM为主变为以TCM、DCAA和TCAA为主.
(2) 基于常规指标的THMs预测模型, 准确度高(R2=0.871 3, SD), 简单易行, 可以运用到实际生活中为饮用水消毒副产物风险预警提供实时预测数据, 并为估算与氯化过程中DBPs暴露有关的健康风险提供基础数据.
(3) 加热器出水相对于同管网龙头水, 致癌风险和非致癌风险分别降低了79.00%和78.60%.供水管网终端龙头水的致癌风险主要来源于THMs, 其中BDCM致癌风险贡献最大, 热水系统中致癌风险主要来源于TCM和HAAs, 其中TCM致癌风险贡献最大.龙头水及加热器出水致癌风险均在美国环保署规定可接受的范围内, 但仍应加强对水源环境的保护.
[1] | Kimura S Y, Cuthbertson A A, Byer J D, et al. The DBP exposome:development of a new method to simultaneously quantify priority disinfection by-products and comprehensively identify unknowns[J]. Water Research, 2019, 148: 324-333. DOI:10.1016/j.watres.2018.10.057 |
[2] | Richardson S D, Postigo C. A new technique helps to uncover unknown peptides and disinfection by-products in water[J]. Journal of Environmental Sciences, 2016, 42: 6-8. DOI:10.1016/j.jes.2016.03.008 |
[3] | Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:a review and roadmap for research[J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1-3): 178-242. DOI:10.1016/j.mrrev.2007.09.001 |
[4] | Chu W H, Gao N Y, Yin D Q, et al. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products[J]. Chemosphere, 2012, 86(11): 1087-1091. DOI:10.1016/j.chemosphere.2011.11.070 |
[5] | Zhang H F, Zhang Y H, Shi Q, et al. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry[J]. Environmental Science & Technology, 2014, 48(6): 3112-3119. DOI:10.1021/es4057399 |
[6] | Ahmed F, Khan T A, Fakhruddin A N M, et al. Estimation and exposure concentration of trihalomethanes (THMs) and its human carcinogenic risk in supplied pipeline water of Dhaka City, Bangladesh[J]. Environmental Science and Pollution Research, 2019, 26(16): 16316-16330. DOI:10.1007/s11356-019-05049-6 |
[7] | Chang H H, Tung H H, Chao C C, et al. Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan[J]. Environmental Monitoring and Assessment, 2010, 162(1-4): 237-250. DOI:10.1007/s10661-009-0792-1 |
[8] | Huang H, Zhu H H, Gan W H, et al. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China[J]. Chemosphere, 2017, 188: 257-264. DOI:10.1016/j.chemosphere.2017.08.172 |
[9] | Gan W H, Guo W H, Mo J M, et al. The occurrence of disinfection by-products in municipal drinking water in China's Pearl River Delta and a multipathway cancer risk assessment[J]. Science of the Total Environment, 2013, 447: 108-115. DOI:10.1016/j.scitotenv.2012.12.091 |
[10] | Wei J R, Ye B X, Wang W Y, et al. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China[J]. Science of the Total Environment, 2010, 408(20): 4600-4606. DOI:10.1016/j.scitotenv.2010.06.053 |
[11] | Wang X M, Mao Y Q, Tang S, et al. Disinfection byproducts in drinking water and regulatory compliance:a critical review[J]. Frontiers of Environmental Science & Engineering, 2015, 9(1): 3-15. |
[12] | Bond T, Templeton M R, Mokhtar Kamal N H, et al. Nitrogenous disinfection byproducts in English drinking water supply systems:occurrence, bromine substitution and correlation analysis[J]. Water Research, 2015, 85: 85-94. DOI:10.1016/j.watres.2015.08.015 |
[13] | Mercier Shanks C, Sérodes J B, Rodriguez M J. Spatio-temporal variability of non-regulated disinfection by-products within a drinking water distribution network[J]. Water Research, 2013, 47(9): 3231-3243. DOI:10.1016/j.watres.2013.03.033 |
[14] | Wang L, Chen Y, Chen S W, et al. A one-year long survey of temporal disinfection byproducts variations in a consumer's tap and their removals by a point-of-use facility[J]. Water Research, 2019, 159: 203-213. DOI:10.1016/j.watres.2019.04.062 |
[15] | Pan Y, Zhang X R, Wagner E D, et al. Boiling of simulated tap water:effect on Polar brominated disinfection byproducts, halogen speciation, and cytotoxicity[J]. Environmental Science & Technology, 2014, 48(1): 149-156. DOI:10.1021/es403775v |
[16] | Chowdhury S, Rodriguez M J, Sadiq R, et al. Modeling DBPs formation in drinking water in residential plumbing pipes and hot water tanks[J]. Water Research, 2011, 45(1): 337-347. DOI:10.1016/j.watres.2010.08.002 |
[17] | Wu W W, Benjamin M M, Korshin G V. Effects of thermal treatment on halogenated disinfection by-products in drinking water[J]. Water Research, 2001, 35(15): 3545-3550. DOI:10.1016/S0043-1354(01)00080-X |
[18] | Lin J J, Chen X, Hong H C, et al. Regression models evaluating THMs, HAAs and HANs formation upon chloramination of source water collected from Yangtze River Delta Region, China[J]. Ecotoxicology and Environmental Safety, 2018, 160: 249-256. DOI:10.1016/j.ecoenv.2018.05.038 |
[19] | Golfinopoulos S K, Arhonditsis G B. Multiple regression models:a methodology for evaluating trihalomethane concentrations in drinking water from raw water characteristics[J]. Chemosphere, 2002, 47(9): 1007-1018. DOI:10.1016/S0045-6535(02)00058-9 |
[20] |
陈敏建, 陈炼钢, 丰华丽. 基于健康风险评价的饮用水水质安全管理[J]. 中国水利, 2007(7): 12-15. Chen M J, Chen L G, Feng H L. Quality safety management on drinking water based upon health risk assessment[J]. China Water Resources, 2007(7): 12-15. DOI:10.3969/j.issn.1000-1123.2007.07.005 |
[21] |
杨洛贤, 滕卫林, 王强, 等. 2014年杭州市主城区饮用水中消毒副产物的分布及其健康风险[J]. 环境与职业医学, 2016, 33(3): 237-242. Yang L X, Teng W L, Wang Q, et al. Distribution and health risk of disinfection by-products in drinking water in Hangzhou main urban zone, 2014[J]. Journal of Environmental & Occupational Medicine, 2016, 33(3): 237-242. |
[22] | Krasner S W, Wright J M. The effect of boiling water on disinfection by-product exposure[J]. Water Research, 2005, 39(5): 855-864. DOI:10.1016/j.watres.2004.12.006 |
[23] | Yu Y, Reckhow D A. Kinetic analysis of haloacetonitrile stability in drinking waters[J]. Environmental Science & Technology, 2015, 49(18): 11028-11036. |
[24] | Zhang X L, Yang H W, Wang X M, et al. Trihalomethane hydrolysis in drinking water at elevated temperatures[J]. Water Research, 2015, 78: 18-27. DOI:10.1016/j.watres.2015.03.027 |
[25] | Shi W D, Wang L, Chen B Y. Kinetics, mechanisms, and influencing factors on the treatment of haloacetonitriles (HANs) in water by two household heating devices[J]. Chemosphere, 2017, 172: 278-285. DOI:10.1016/j.chemosphere.2017.01.017 |
[26] | Koch J, Volker P. Zur bildung von artefakten und deren vermeidung bei der bestimmung leichtflüchtiger Halogenkohlenwasserstoffe in wasser mittels headspace-gaschromatographie unter den bedingungen der DIN 38407 Teil 5(DEV-F5). Teil Ⅱ:überhöhte trihalogenmethanbefunde in gechlortem schwimmbeckenwasser[J]. Acta Hydrochimica et Hydrobiologica, 1992, 24(4): 179-184. DOI:10.1002/aheh.19960240405 |
[27] | Fang J Y, Ma J, Yang X, et al. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa[J]. Water Research, 2010, 44(6): 1934-1940. DOI:10.1016/j.watres.2009.11.046 |
[28] |
陈萍萍, 张建英, 金坚袁. 饮用水中卤乙酸和三卤甲烷的形成及影响因素研究[J]. 环境化学, 2005, 24(4): 434-437. Chen P P, Zhang J Y, Jin J Y. Study on the effect and formation of trihalo-methanes and haloacetic ethyl acid in drinking waters[J]. Environmental Chemistry, 2005, 24(4): 434-437. DOI:10.3321/j.issn:0254-6108.2005.04.018 |
[29] | Hong H C, Xiong Y J, Ruan M Y, et al. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine[J]. Science of the Total Environment, 2013, 444: 196-204. DOI:10.1016/j.scitotenv.2012.11.086 |
[30] | Sun Y X, Wu Q Y, Hu H Y, et al. Effect of ammonia on the formation of THMs and HAAs in secondary effluent chlorination[J]. Chemosphere, 2009, 76(5): 631-637. DOI:10.1016/j.chemosphere.2009.04.041 |
[31] |
赵新华, 王熠宁, 周广宇, 等. 配水管网中三氯甲烷风险概率及影响因素分析[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(4): 343-348. Zhao X H, Wang Y N, Zhou G Y, et al. Analysis on chloroform risk probability and impact factors for water distribution network[J]. Journal of Tianjin University (Science and Technology), 2014, 47(4): 343-348. |
[32] | Hang C, Zhang B B, Gong T T, et al. Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water[J]. Science of the Total Environment, 2016, 543: 425-431. DOI:10.1016/j.scitotenv.2015.11.055 |
[33] | Ates N, Kitis M, Yetis U. Formation of chlorination by-products in waters with low SUVA-correlations with SUVA and differential UV spectroscopy[J]. Water Research, 2007, 41(18): 4139-4148. DOI:10.1016/j.watres.2007.05.042 |
[34] | Lee S C, Guo H, Lam S M J, et al. Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong[J]. Environmental Research, 2004, 94(1): 47-56. |
[35] | Bond T, Huang J, Templeton M R, et al. Occurrence and control of nitrogenous disinfection by-products in drinking water-a review[J]. Water Research, 2011, 45(15): 4341-4354. DOI:10.1016/j.watres.2011.05.034 |