环境科学  2020, Vol. 41 Issue (5): 2455-2467   PDF    
咸水滴灌对棉田土壤N2O排放和反硝化细菌群落结构的影响
郭慧楠, 马丽娟, 黄志杰, 李美琪, 侯振安, 闵伟     
石河子大学农学院, 新疆生产建设兵团绿洲生态农业重点实验室, 石河子 832003
摘要: 淡水资源短缺是干旱区农业可持续发展所面临的严峻问题,合理利用咸水灌溉是缓解淡水资源不足的重要手段.长期咸水灌溉会导致土壤盐分积累,进而影响氮素的转化和N2O的排放.本研究通过10 a咸水灌溉试验,探究咸水灌溉对棉田土壤N2O排放、反硝化细菌丰度和群落结构组成的影响.试验采用灌溉水盐度和施氮量两因子2×2随机区组设计,其中灌溉水盐度(以电导率表示)设置2个水平:0.35 dS·m-1和8.04 dS·m-1,施氮量设2个水平:0 kg·hm-2和360 kg·hm-2(分别用SFN0、SHN0、SFN360和SHN360表示).结果表明,长期咸水滴灌棉田土壤盐分、含水量和NH4+-N含量显著增加,pH值、NO3--N、有机质和全氮含量显著降低.咸水灌溉处理显著抑制N2O排放,不施氮肥和施氮肥处理下分别较淡水灌溉降低45.19%和43.50%.氮肥施用显著增加N2O排放,施肥处理N2O排放较不施肥处理增加161%.不施肥条件下,咸水灌溉显著降低反硝化酶活性、nirKnirSnosZ基因丰度,α多样性.施肥条件下,咸水灌溉对nosZ型反硝化细菌的丰度无显著影响,但显著降低反硝化酶活性和nirKnirS基因丰度.咸水灌溉和氮肥施用共同改变nirKnirSnosZ型反硝化细菌群落结构,灌溉水盐度对于反硝化细菌群落结构的影响要大于施肥.Lefse分析显示nirKnirSnsoZ型反硝化细菌差异物种随着灌溉水盐度的增加而增加,咸水灌溉显著改变反硝化细菌群落结构,导致优势种群数量增加.上述结果表明,长期咸水灌溉降低土壤N2O排放,但会导致土壤盐分的持续上升,nosZ、nirKnirS丰度的增加会促进N2O排放.
关键词: 咸水      N2O排放      反硝化细菌      群落结构      高通量测序     
Nitrous Oxide Emission and Denitrifying Bacterial Communities as Affected by Drip Irrigation with Saline Water in Cotton Fields
GUO Hui-nan , MA Li-juan , HUANG Zhi-jie , LI Mei-qi , HOU Zhen-an , MIN Wei     
Key Laboratory of Oasis Ecological Agriculture of Xinjiang Corps, College of Agriculture, Shihezi University, Shihezi 832003, China
Abstract: A shortage of freshwater resources has become a fundamental and chronic problem for sustainable agriculture development in arid regions. Use of saline water irrigation has become an important means for alleviating freshwater scarcity. However, long-term irrigation with saline water may cause salt accumulation in the soil, and further affect nitrogen transformation and N2O emission. To investigate this, we conducted a ten-year field experiment to evaluate the effect of irrigation water salinity and N amount on N2O emission and denitrifying bacterial communities. The experimental design was a 2×2 factorial with two irrigation water salinity levels (salinity levels are expressed as electrical conductivity), 0.35 dS·m-1 and 8.04 dS·m-1, and two N amounts, 0 kg·hm-2 and 360 kg·hm-2, representing SFN0, SHN0, SFN360, and SHN360, respectively. The results indicated that long-term saline water irrigation significantly increased soil salinity, moisture, and NH4+-N content, whereas it decreased soil pH, NO3--N, organic matter, and total nitrogen content. Irrigation with saline water significantly inhibited N2O emission, being associated with a decreased in level of 45.19% (unfertilized plots) and 43.50% (fertilized plots) compared with irrigation with fresh water. N2O emission increased as the N amount increased; the N2O emission was 161% higher in the fertilized plots than in the unfertilized plots. In the unfertilized plots, saline water irrigation significantly reduced the activity of denitrifying enzymes, the abundance of nirK, nirS, and nosZ, and the diversity of denitrifying bacterial communities. In the fertilized plots, saline water irrigation did not significantly affect the abundance of nosZ, whereas it significantly reduced the abundance of nirK and nirS. Saline water irrigation and nitrogen application altered the community structures of denitrifying bacteria with nirK, nirS, and nosZ; the irrigation water salinity seemed to have a greater impact on the denitrifying bacterial community in comparison with fertilization. Linear discriminant analysis (LDA) effect size (LEfSe) analysis demonstrated that denitrifying bacterial potential biomarkers increased as the water salinity increased, meaning that saline water irrigation could alter the community structures of denitrifying bacteria, and promote the growth of dominant species. Our findings indicate that increased abundance of nosZ, nirK, and nirS promoted N2O emission, and although long-term saline water reduced soil N2O emission, it resulted in a continuous increase of soil salinity. The emission of N2O had extremely positive correlation with soil NO3--N, organic matter, total nitrogen, denitrifying bacteria abundance, and denitrifying enzyme activities, and was negatively correlated with soil moisture. The soil physiochemical properties and the community structure of denitrifying bacteria had a significant influence on soil N2O emission in cotton fields, and nirS bacteria showed the highest association with N2O emission, thus it might be a dominant microflora in the process of denitrification. This information will aid in reducing atmospheric N2O emissions in agriculturally productive alluvial grey desert soils.
Key words: saline water      N2O emission      denitrifying bacteria      community structure      high-throughput sequencing     

全球范围内70%淡水用于农业灌溉[1], 然而随着人口数量的不断增长、工业的飞速发展, 导致分配给农业的淡水资源日益减少[2], 淡水资源短缺成为限制农业可持续发展的突出问题.因此, 越来越多的国家和地区开始开发利用咸水灌溉以缓解淡水不足的问题[3].新疆地处中国的西北部, 属于干旱半干旱地区, 淡水资源严重短缺, 且地表水和浅层地下水的盐度已超过2 dS ·m-1, 因此利用咸水灌溉已成为缓解该区域淡水资源不足的重要措施之一[4].

氮肥是影响作物生长的主要因素, 滴灌条件下氮肥利用率约在34.25% ~49.38%之间[5], 未被作物吸收的氮素会被淋洗出土壤, 污染地下水, 或是通过硝化和反硝化作用产生N2O排放到空气中[6, 7].N2O是一种强效的温室气体[8], 虽然N2O排放速率和浓度比CO2低, 但其温室效应却是CO2的300倍[9].在全球范围内, 土壤生态系统所排放的N2O量最多, 约占总排放量的65%, 预计到2030年农田土壤释放的N2O约占总排放量的60%左右[10].土壤的理化性质如含水量[11]、pH值[12]、无机氮浓度[13]和盐分[14]等都会影响N2O的排放.其中施用氮肥是增加农田土壤N2O排放的主要因素[15].Sehy等[16]的研究表明当玉米田施氮量从125 kg ·hm-2增加到150 kg ·hm-2, N2O排放量增加34%.反硝化作用是N2O排放的一条主要途径[17].在完全反硝化过程中, 主要有4种酶参与, 分别是硝酸还原酶、亚硝酸还原酶、NO还原酶和N2O还原酶, 这4种酶分别由narGH/napAnirK/nirSnorBnosZ编码[18].近年来, 随着分子生物学的不断发展, nirKnirSnosZ基因的研究备受学者关注, 为深入理解反硝化微生物与N2O排放之间的关系提供了技术支撑.

咸水灌溉在一定程度上缓解了农业生产中淡水资源短缺的问题, 但随之也将盐分带入土壤, 加剧土壤盐分的累积, 进而影响土壤微生物过程[19].有研究表明, 盐分胁迫会抑制反硝化速率和反硝化酶活性[20], 同时降低土壤中反硝化微生物的数量[21].Wang等[22]的研究表明, 盐分显著抑制nirKnirSnosZ基因丰度, 同时盐分是改变反硝化细菌群落结构的主要因素.Santoro等[23]的研究也发现在沿海含水土层中nirSnirK基因多样性与盐分呈显著负相关关系.但也有研究发现, 滩涂湿地中反硝化细菌数量随着盐分的增加而增加[24].可见, 反硝化微生物对于盐分的响应是不同的.盐分影响反硝化微生物的丰度和群落结构, 势必也会影响土壤N2O的排放, Pulla等[25]的研究表明, 随着土壤盐度的增加N2O的排放量随之增加, 但N2的排放量减少.相反地, Wang等[26]发现长江三角洲土壤中N2O的排放量与盐度呈显著负相关.而Inubushi等[27]的研究发现不同盐浓度对N2O排放都无影响.目前, 人们对咸水灌溉和氮肥对土壤N2O排放及其内在机制的认识仍然是碎片化和不完整的.

长期咸水灌溉导致土壤盐分积累, 改变土壤微生物的生存环境, 可能降低反硝化微生物的丰度和多样性, 抑制氮素转化相关的酶活性, 导致N2O排放下降.因此, 本研究使用静态箱法探讨咸水滴灌对棉田土壤N2O排放的影响, 运用高通量测序分析反硝化关键功能基因研究:①长期咸水滴灌对N2O排放的影响;②对反硝化细菌丰度和群落结构的影响;③阐明N2O排放与反硝化细菌丰度和群落结构的关系, 以期为干旱区咸水资源的合理使用及为减少农田N2O排放提供重要的科学依据.

1 材料与方法 1.1 试验区概况

本试验在石河子大学农学院试验站进行(44°18′N, 86°02′E), 气候类型为温带干旱大陆性气候, 年平均温度在6.5℃~7.2℃之间.年降水量在125.0~207.7 mm之间, 年日照时数为2 700~2 800 h.土壤类型为灌耕灰漠土. 0~20 cm土壤基础理化性质(2009年试验开始前)如下:电导率(EC1 :5)为0.13 dS ·m-1, pH值为7.9, 速效磷25.9 mg ·kg-1, 速效钾253 mg ·kg-1, 全氮1.1 g ·kg-1, 有机质16.8 g ·kg-1.

1.2 试验设计

2009~2018年连续进行了10年不同盐度灌溉水田间定位试验.试验设置灌溉水盐度和施氮量两因子“2×2”的模式.其中, 灌溉水盐度(以电导率表示, ECw)设2个水平为:0.35 dS ·m-1(淡水)和8.04 dS ·m-1(咸水), 氮肥(N)用量设2个水平:0 kg ·hm-2和360 kg ·hm-2, 分别用SFN0、SHN0、SFN360和SHN360表示.试验中咸水处理是通过在淡水中加入等量的NaCl和CaCl2(质量比1 :1)配置而成.施N 360 kg ·hm-2为当地棉花大田生产推荐用量.本试验共4个处理, 每个处理3次重复, 共12个小区, 小区面积25 m2.

磷肥和钾肥作基肥在播种前一次性施入, 施用量为P2O5 105 kg ·hm-2, K2O 60 kg ·hm-2.本试验中氮肥全部做追肥, 按照棉花生长发育规律在棉花生育期间分5次随水滴施, 初花期开始, 吐絮期前结束.棉花种植采用覆膜栽培, 膜上点播, 一膜4行, 行距配置为(30+60+30) cm, 株距10 cm, 播种密度22.2万株·hm-2.灌溉方式为膜下滴灌, 一膜两管, 滴灌毛管间距90 cm.棉花于4月中旬播种, 播种后滴淡水45 mm, 保证出苗.棉花生长期间灌水9次, 6月中旬开始至8月下旬结束, 灌溉周期为7~10 d, 每次灌水45~60 mm, 总灌溉量450 mm, 其它栽培管理措施参照当地大田生产.

1.3 土壤样品采集与测定

2018年(试验第10年)在棉花花铃期采集耕层0~20 cm土壤样品, 在每个小区的棉花行内随机采集6个样点, 土样混合均匀并去除其中的杂物、细根.将一部分土样过2 mm筛后分成两部分, 一部分用于测定土壤理化性质和反硝化酶活性(室温保存), 一部分用于反硝化细菌丰度和多样性的检测(土样放入冰箱-80℃保存).

1.3.1 土壤理化性质和反消化酶活性测定

土壤含水量采用烘干法测定;土壤盐度采用MP522型电导率仪测定1 :5(土水比)浸提液的电导率;土壤pH值采用MP522型精密pH计测定2.5 :1(水土比)浸提液pH;硝态氮(NO3--N)和铵态氮(NH4+-N)含量采用流动分析仪测定;有机质含量采用K2Cr2O7-H2SO4氧化还原滴定法测定;全氮含量采用凯氏定氮法测定;反硝化酶活性的测定参照文献[28].

1.3.2 N2O的采集和测定

N2O样品采集使用静态箱法, N2O累积排放量采样时间从棉花蕾期(6月11日)至盛铃期(8月6日), 每次灌水后的第2 d进行, N2O动态排放通量在7月16~21日连续动态监测一个周期.

N2O气体采样箱由底座和箱体两部分组成, 底座长期固定于田间小区, 采样时向底座中注水密封, 避免底座与箱体结合处漏气.箱体(规格55 cm×55 cm×100 cm)由不锈钢材料制成, 外部使用海绵和铝箔用以隔热, 箱体顶部安装温度计, 用于观测箱内温度变化, 箱体顶部和下部安置风扇以保持箱内气体均匀混合, 箱体中部安装抽气孔, 用于气体样品的采集.整个采集过程持续30 min, 分别在关闭采样箱后0、10、20和30 min采集气体, 并将气体转移到气袋后带回实验室分析.N2O气体分析采用装有电子捕获器的HP5890气相色谱仪测定.N2O排放通量F的计算公式如下[29]

(1)

式中, F为N2O气体通量[μg ·(m2 ·h)-1], ρ为标准状态N2O气体密度(1.25 kg ·m-3), V为采气箱体积(m3), A为N2O排放的土面面积(m2), Δct为单位时间采气箱内N2O累积浓度随时间变化速率[μg ·(kg ·h)-1], T为采气箱内的温度(℃).

N2O累积排放量(Q)计算公式如下[30]

(2)

式中, Q为N2O累积排放量(kg ·hm-2);FiFi+1分别为第ii+1次采样时的N2O平均排放通量[μg ·(m2 ·h)-1];DiDi+1分别为第ii+1次采样时间.

1.3.3 DNA提取

称取保存在-80℃冰箱中土壤样品0.4 g, 使用Power soilTM DNA Isolation Kit试剂盒(MoBio, San Diego, CA, USA), 按照操作说明书提取DNA样品, 然后使用分光光度对DNA的数量和质量进行测定, 并将提取的土壤总DNA保存在-20℃环境中.

1.3.4 qPCR测定

使用pMD 19-T Vector(TaKaRa, Tokyo, Japan)构建目标基因质粒.提取的阳性质粒经10倍稀释后作为qPCR反应的标准品.使用实时荧光定量PCR仪检测目标基因丰度, 25 μL的qPCR的反应体系包括:12.5 μL 2×SYBR Green qPCR Master Mix (Applied Biosystems, Foster City, CA, USA), 0.2 μL上下引物(20 μmol ·L-1), 2 μL DNA模板(约2 ng ·μL-1), 10.1 μL ddH2 O.最后通过标准曲线计算出目标基因的拷贝数.

1.3.5 焦磷酸测序

采用高通测序测定反硝化细菌(nirKnirSnosZ)群落结构多样性和群落组成.PCR扩增引物分别参照文献[31~33].PCR扩增体系为25 μL, 其中包括2 μL DNA模板, 前后引物各1 μL (10μmol ·L-1), 5 μL 5*PCR buffer, 2 μL (2.5 mmol ·L-1) dNTP, 5 μL 5*Q5High GC Enhancer buffer, 0.25 μL (0.02 U ·μL-1) Q5 High-Fidelity DNA polymerase (NEB)和8.75 μL ddH2 O.nirKnosZ基因热循环反应体系如下:98℃初变性5 min, 接着35个循环98℃ 30 s, 64℃ 30 s, 72℃ 1 min, 最后72℃延伸10 min.nirS基因热循环反应体系为, 98℃初变性5 min, 接着35个循环98℃ 30 s, 58℃ 30 s, 72℃ 1 min, 最后72℃延伸10 min.PCR产物使用Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN)纯化, 并用PicoGreen dsDNA Assay kits (Invitrogen, Carlsbad, CA, USA)质量化, 各样品等量混合后, 在上海派森诺生物科技股份有限公司使用Illumina MiSeq平台进行高通量测序, 每个处理重复3次.

1.4 数据分析

使用SPSS软件(version SPSS 19.0)进行数据方差分析和相关性分析, 显著性水平为0.05;各处间差异比较采用LSD法(P < 0.05);高通量测序结果使用UCHIME软件(v4.2), 鉴定并去除嵌合体序列, 得到最终有效数据.采用Greengenes数据库(Release 13.8, http://greengenes.secondgenome.com/)并使用QIIME软件(version 1.8.0)对序列在97%的相似度水平下进行聚类并获得OTU数(通常都以97%的序列相似度作为OTU划分阈值, 该阈值大致相当于分类学中物种水平的序列差异), 并选取每个OTU中丰度最高的序列作为该OTU的代表序列.基于OTU数得到不同分类水平上的物种丰度, 再利用R语言(v3.2.0)绘制成样品各分类学水平下的群落结构图.使用Mothur(version v.1.30.1)软件分析样品α多样性指数(ACE、Chao1、Simpson和Shannon指数), 分析时将样品所含序列数进行标准化并在97%相似度水平下, 对各样品α多样性指数值统计.基于Galaxy平台进行LEfSe分析[line discriminant analysis (LDA) effect size], LDA值>4.RDA分析(redundancy analysis)使用R语言vegan包进行并作图.

2 结果与分析 2.1 土壤理化性质

咸水灌溉对棉田土壤理化性质的影响如表 1所示, 咸水灌溉显著增加土壤盐分, 含水量和NH4+-N含量, 但显著降低土壤pH值、NO3--N、有机质和全氮含量.施用氮肥显著增加土壤盐分、NO3--N、NH4+-N、有机质和全氮含量, 但土壤含水量显著降低.

表 1 咸水灌溉对土壤理化性质的影响1) Table 1 Soil physiochemical properties as affected by irrigation water salinity and N application rate

2.2 N2O排放

一个灌水施肥周期内(6 d)土壤N2O排放通量动态变化如图 1所示.总体来看, 灌水施肥后第2 d土壤N2O排放通量达到最高值, 随后逐渐降低.施用氮肥显著增加N2O排放通量, 平均较不施氮肥处理增加203%, 且咸水处理N2O排放通量低于淡水处理. SFN0处理和SHN0处理N2O排放通量较小, 在1.4~4.4 μg ·(m2 ·h)-1之间变化, 灌水后前3 d SFN0处理和SHN0处理N2O排放通量分别占施肥周期内排放通量的60.87%和62.23%;SFN360处理N2O排放通量在1.1~26.7 μg ·(m2 ·h)-1之间变化, SHN360处理在1.4~19.6 μg ·(m2 ·h)-1之间变化;SFN360和SHN360处理在灌水施肥后前3 d的N2O排放通量分别占施肥周期内排放通量的87.30%和80.62%.

图 1 一个施肥周期(6 d)内土壤N2O排放通量的动态变化 Fig. 1 Dynamic emission of N2O in a fertilization cycle (6 d)

棉花生育周期内土壤N2O累积排放量受灌溉水盐度、施氮量及二者交互作用影响显著(图 2).从氮肥的施用来看, 施用氮肥处理(SFN360和SHN360)显著增加土壤N2O排放, 平均较不施肥处理(SFN0和SHN0)增加161%.从灌溉水盐度来看, 咸水灌溉处理(SHN0和SHN360)显著抑制土壤N2O累积排放量.SHN0和SHN360处理土壤N2O累积排放量分别较SFN0和SFN360处理降低45.19%和43.50%.

不同字母表示不同处理差异达显著水平(P < 0.05);ns为不显著, *表示P < 0.05, **表示P < 0.01, ***表示P < 0.001, 下同 图 2 咸水灌溉对土壤N2O累积排放通量的影响 Fig. 2 Cumulative emission of N2O as affected by irrigation water salinity and N application rate

2.3 反硝化作用酶活性

咸水灌溉显著抑制反硝化酶活性, 而施用氮肥显著促进反硝化酶活性(图 3).SHN0处理硝酸还原酶、亚硝酸还原酶、羟胺还原酶活性较SFN0处理分别降低了36.6%、30.3%和46.8%.SHN360处理硝酸还原酶、亚硝酸还原酶、羟胺还原酶活性较SFN360处理分别降低了28.5%、21.7%和23.2%.

图 3 咸水灌溉对土壤反硝化酶活性的影响 Fig. 3 Denitrifying enzyme activities as affected by irrigation water salinity and N application rate

2.4 反硝化基因丰度

咸水灌溉和施氮量显著影响反硝化细菌(nirKnirSnosZ)的丰度(图 4).总体上, nirS基因丰度显著高于nirKnosZ基因丰度.咸水灌溉对nirKnirS基因丰度影响表现为, 咸水灌溉处理nirKnirS基因丰度显著低于淡水灌溉处理[图 4(a)4(b)].SHN0处理nirKnirS基因丰度分别较SFN0处理降低31.13%和19.50%;SHN360处理nirKnirS基因丰度分别较SFN360处理降低29.48%和14.09%.从施氮量来看, 施氮肥处理nirKnirS丰度较不施氮肥处理分别增加26.48%和53.35%.灌溉水盐度和施氮量及其二者的交互作用均显著影响nosZ基因丰度[图 4(c)], 具体表现为:不施氮肥条件下, 咸水灌溉处理nosZ基因丰度较淡水灌溉处理显著降低, 在施氮肥条件下淡水灌溉和咸水灌溉处理nosZ基因丰度无明显差异.总体上施氮肥处理nosZ基因丰度较不施氮肥处理显著增加26.94%.

图 4 咸水灌溉对反硝化基因丰度的影响 Fig. 4 Abundance of denitrifying genes as affected by irrigation water salinity and N application rate

2.5 丰富度指数和多样性指数

咸水灌溉和施氮量对反硝化细菌丰富度和多样性指数的影响如表 2~4所示.SHN0处理下nirKnirSnosZ的群落丰富度(Chao1, ACE)和Shannon指数较SFN0处理显著降低;但是, SHN360处理下nirKnirSnosZ的群落丰富度和Shannon指数较SFN360处理显著增加.淡水灌溉条件下, 施用氮肥显著降低3种基因型(nirKnirSnosZ)反硝化细菌群落丰富度(Chao1指数、ACE指数)和Shannon指数;咸水灌溉条件下, 施用氮肥显著增加3种基因型反硝化细菌丰富度和Shannon指数.

表 2 咸水灌溉对土壤nirK型反硝化细菌丰富度和多样性指数的影响 Table 2 Richness and diversity of nirK genotype at the similarity level of 97% as affected by irrigation water salinity and N rate

表 3 咸水灌溉对土壤nirS型反硝化细菌丰富度和多样性指数的影响 Table 3 Richness and diversity of nirS genotype at the similarity level of 97% as affected by irrigation water salinity and N rate

表 4 咸水灌溉对土壤nosZ型反硝化细菌丰富度和多样性指数的影响 Table 4 Richness and diversity of nosZ genotype at the similarity level of 97% as affected by irrigation water salinity and N rate

2.6 反硝化细菌目水平上群落结构变化

nirK型反硝化细菌目水平群落结构见图 5(a).总体上相对丰度最高的优势微生物种群为Rhizobiales, 淡水灌溉处理Rhizobiales的相对丰度为63.28%, 高于咸水灌溉处理(51.18%).在SHN360处理Rhizobiales相对丰度最低, 仅为37.61%, 分别较SFN0、SFN360和SHN0处理低42.35%、38.79%和42.06%;咸水灌溉处理下Burkholderiales、Enterobacterales、Rhodobacterales、Propionibacteriales、Gemmatimonadales和Sphingomonadales的相对丰度显著高于淡水灌溉处理.在不施氮肥处理下, 咸水灌溉显著降低Rhodospirillales、Nitrospirales和Pseudomonadales的相对丰度.但是在施氮肥处理下, 咸水灌溉显著增加Rhodospirillales、Nitrospirales和Pseudomonadales的相对丰度.

图 5 咸水灌溉对反硝化细菌群落目水平相对丰度的影响 Fig. 5 Relative abundance of denitrifying bacteria order as affected by saline water irrigation

nirS型反硝化细菌目水平上的主要微生物种群为Burkholderiales、Rhodocyclales、Pseudomonadales、Xanthomonadales和Nitrosomonadales [图 5(b)], 这5个微生物种群约占总相对丰度的77.64% ~87.95%.随着灌溉水盐度的增加, Burkholderiales相对丰度显著降低(从59.31%降低至43.84%), 但是Pseudomonadales、Xanthomonadales和Nitrosomonadales相对丰度显著增加(分别从5.51%、2.42%和1.51%增至9.54%、3.94%和2.60%).在不施氮肥处理, 咸水灌溉显著增加Rhodocyclales相对丰度(从18.89%增至23.24%).相比之下, 在施氮肥处理下, 咸水灌溉显著降低Rhodocyclales相对丰度(从17.07%降低到13.07%).

nosZ型反硝化细菌目水平上的主要微生物种群为Rhizobiales、Gemmatimonadales、Pseudomonadales、Burkholderiales和Rhodobacterales [图 5(c)], 这5个微生物种群约占总相对丰度的59.48% ~85.74%.随着灌溉水盐度的增加, Rhizobiales和Gemmatimonadales相对丰度显著增加(相对丰度分别从16.37%、12.17%增至24.67%、24.35%), 在不施氮肥处理下, 咸水灌溉显著降低Burkholderiales和Rhodobacterales相对丰度(分别从17.34%、6.79%降至9.95%、5.44%).相比之下, 在施氮肥处理下, 咸水灌溉显著增加Burkholderiales相对丰度(从5.11%增至7.59%).

2.7 LEfSe分析

使用LEfSe (LDA>3.5, P < 0.05)进行组间比较分析, 得出不同处理下反硝化细菌群落显著差异种群(图 6).nirK型反硝化细菌共有38个显著差异物种[图 6(a)], 总体上, 咸水灌溉处理下差异物种的数量高于淡水灌溉处理;施用氮肥后, 差异物种数量增加, 特别是SHN360处理共有19个显著差异物种, 其中γ-Proteobacteria、Citrobacter和Enterobacteriaceae的相对丰度显著高于其他处理. nirS型反硝化细菌共有39个显著差异种群[图 6(b)], SFN0有1个、SFN360有3个、SHN0有21个和SHN360有14个.咸水灌溉处理下差异物种数量高于淡水灌溉处理, 在淡水灌溉处理, 施用氮肥增加差异物种数量, 而咸水灌溉条件下, 施用氮肥降低差异物种数量.nosZ型反硝化细菌共有31个显著差异物种, 咸水灌溉增加nosZ型反硝化细菌显著差异物种数量[图 6(c)], 特别是SHN0处理共有16个差异物种, 其中Gemmatimonadetes、Pseudoxanthomonas和Opitutae的相对丰度显著高于其他处理.

图 6 反硝化细菌群落LEfSe分析 Fig. 6 LEfSe analysis of denitrifying bacteria communities as affected by irrigation water salinity and N application rate

2.8 RDA分析

反硝化细菌(nirKnirSnosZ)群落结构与环境因子间的关系见图 7.nirK型反硝化细菌与环境因子的RDA分析结果显示[图 7(a)], 轴1和轴2共解释总变异的61.63%. SFN0、SFN360与SHN0、SHN360在轴1上分开, SHN0与SHN360在轴2上分开.咸水灌溉和施用氮肥也显著改变nirS基因型反硝化细菌群落[图 7(b)], 轴1解释总变异的47.18%, 轴2解释总变异的12.55%.相似地, 咸水灌溉和施用氮肥也显著改变nosZ型反硝化细菌群落[图 7(c)], 轴1解释了总变异的26.33%, 轴2将解释总变异的14.42%.SFN0和SFN360处理与SHN0和SHN360处理下nirSnosZ型反硝化细菌群落在轴1上分开, 轴2将施氮肥(SHN360、SFN360)与不施氮肥处理(SHN0、SFN0)分开.环境因子方面, nirKnirSnosZ基因型反硝化细菌群落与土壤含水量、盐分、NH4+-N含量、pH和全氮含量相关;nirKnosZ基因型反硝化细菌群落还与有机质含量相关, 而受其他环境因子的影响较小.

图 7 反硝化细菌群落RDA分析 Fig. 7 RDA of denitrifying bacterial communities as affected by irrigation water salinity and N application rate

2.9 相关性分析

N2O排放通量与土壤理化性质、反硝化基因丰度和反硝化酶活性相关性见图 8, 土壤N2O排放通量与土壤含水量和盐分呈负相关关系(其中和含水量呈显著负相关, 相关系数为-0.678), 与土壤NO3--N, 有机质、全氮、nirKnirSnosZ基因丰度、反硝化酶活性呈极显著的正相关关系, 特别是nirS基因丰度与N2O排放通量相关系数(0.948)高于nirK(0.844)和nosZ (0.761)的相关系数.

**表示在0.01水平上显著相关, *表示在0.05水平上显著相关 图 8 N2O排放通量与土壤理化性质、反硝化基因数量、反硝化酶活性相关性分析 Fig. 8 Correlation of N2O emission with physiochemical properties of soil, abundance of denitrifying bacteria, and activities of denitrifying enzymes

3 讨论

合理利用咸水资源可有效缓解干旱区农业灌溉用水供需矛盾, 然而咸水灌溉在补充水分的同时也将盐分带入土壤, 加剧土壤盐渍化的风险.盐分是影响土壤N2O排放重要因素之一[14], 本研究结果表明长期咸水灌溉显著降低土壤N2O排放, 这与Wei等[34]的研究结果相似, 其研究发现利用2 g ·L-1或8 g ·L-1咸水灌溉, 土壤N2O排放量均显著低于淡水灌溉.原因可能是咸水灌溉抑制土壤有机质的分解, 从而导致潜在矿化氮的减少[35].也可能是因为经过长期咸水灌溉, 土壤中积累的盐分显著降低硝化和反硝化速率[36], 抑制参与硝化、反硝化微生物生长[37], 进而降低N2O排放量.施用氮肥是农田土壤N2O排放量增加的主要因素[15].本研究中施肥显著增加N2O排放量, Van Trinh等[38]的研究也发现施用氮肥显著增加稻田土壤N2O排放量.本研究中, 在施肥后的前3 d土壤N2O排放量占整个施肥周期N2O总排放量的80%, 这可能因为尿素在施肥后3 d基本水解完成, 土壤中NH4+-N和NO3--N达到较高浓度[39], 硝化反硝化作用强烈, 导致N2O集中排放.相似地, 有研究也证实N2O排放速率与土壤NH4+-N和NO3--N浓度呈显著正相关关系[40].

咸水灌溉和施用氮肥显著改变土壤理化性质, 进而影响N2O排放.NO3--N作为反硝化作用的底物, 是影响N2O排放量的重要因素.本研究中土壤NO3--N含量与N2O排放量呈极显著正相关关系, 且相关性系数最高(r=0.927, P < 0.01), 相似地, Zhu等[41]的研究表明菜地土壤中NO3--N浓度与N2O排放存在显著正相关关系.咸水灌溉下土壤全氮含量下降, 矿化速度减慢, 可能间接降低N2O排放.有机质也是影响N2O排放的又一重要因素, Huang等[42]的研究表明, 有机质高的土壤N2O排放量增多.本研究中N2O排放与有机质呈极显著正相关关系, 可能是因为咸水灌溉降低了土壤有机质含量, N2O排放也相应减少.土壤水分是通过调控土壤的通气状况、氧化还原状况来影响N2O的产生与排放.Mkhabela等[43]的研究表明土壤N2O排放量随土壤水分含量的增加而增加.但本研究中, N2O排放量与土壤含水量呈显著负相关关系, 有两种可能的原因, 一是由于盐分显著抑制反硝化过程, 降低N2O排放, 土壤含水量变化对于反硝化细菌影响较微弱;二是取决于土壤含水量的范围, 旱地土壤水少气多, 通气性较好, 抑制了土壤的反硝化, N2O排放主要来源是硝化作用[44], 含水量增加土壤通气性变差, 抑制硝化作用进行, 减少N2O排放.

N2O排放主要是在微生物的驱动下进行, 咸水灌溉导致土壤盐分增加, 可能会抑制土壤酶活性[45]和参与反硝化作用微生物活性, 从而降低N2O排放.本研究中咸水灌溉显著降低硝酸还原酶, 亚硝酸还原酶、羟胺还原酶活性.这可能是因为盐分造成土壤微生物渗透胁迫[46], 从而抑制微生物分泌酶的数量.Magalhes等[47]的研究也表明河口沉积物中的盐分显著抑制反硝化酶活性.咸水灌溉抑制了反硝化酶活性, 相应地反硝化细菌数量会发生改变.有研究表明盐分中的Cl-通过渗透胁迫可以直接抑制反硝化细菌生长[48], 本研究发现, 咸水灌溉显著降低了nosZnirKnirS的丰度, 但是施肥条件下, 咸水灌溉对土壤nosZ的丰度无显著影响.原因可能是咸水灌溉后土壤含水量显著增加, 造成土壤通气性变差, nosZ基因对氧气较为敏感[49], 咸水灌溉导致土壤通气性变差可能刺激nosZ基因型反硝化细菌的生长[50].本研究中nirS的丰度显著高于nirK.Mosier等[51]的研究结果与本研究的结果相似, 其研究表明在含盐较高的河口沉积物中, nirK型反硝化细菌丰度高于nirS型反硝化细菌, 且在反硝化作用中nirK型反硝化细菌比nirS型反硝化细菌扮演更重要的角色.

咸水灌溉条件下, 反硝化细菌丰度改变可能是由于它们的多样性发生了变化.本研究中淡水灌溉条件下, 施用氮肥显著降低反硝化细菌(nirKnirSnosZ)丰富度指数和Shannon指数, 这可能是因为本研究中长期施用化学氮肥, 导致微生物多样性下降[52].但是, 咸水灌溉条件下, 施用氮肥显著增加反硝化细菌丰富度指数和Shannon指数, 说明盐分和施用氮肥交互作用改变了反硝化细菌群落结构.一般认为nosZ基因相对比较稳定[53], 但咸水灌溉和施用氮肥显著提高nosZ型反硝化细菌丰度指数和Shannon指数. Yang等[54]的研究也得到相似地结果, 盐分与nosZ基因多样性呈正相关关系, 这是可能是长期咸水灌溉施肥, 盐分改变土壤环境, 导致nosZ型细菌发生适应性改变[55].在本研究中, nirK型反硝化细菌目水平群落结构中Rhizobiales相对丰度最高, 为主导微生物类型, 这与前人研究结果一致[56].但是施用氮肥会降低Rhizobiales的相对丰度.nirS型反硝化细菌中Burkholderiales为主导微生物种群, 但咸水灌溉后Burkholderiales的相对丰度显著降低nosZ型反硝化细菌中Rhizobiales和Burkholderiales为主要微生物菌群, 这与Meng等[57]的研究结果一致.另外咸水灌溉和施用氮肥增加nirKnirSnosZ反硝化细菌显著差异物种, 且nirS型增加最多, 说明3种基因型反硝化细菌群落结构组成对灌溉水盐度和施氮量均有不同程度的响应, nirS型反硝化细菌群落结构组成对这种响应最为活跃.

土壤N2O排放是个复杂的过程, 本研究表明N2O排放既与土壤理化性质有关又与nirKnirSnosZ反硝化细菌丰度, 酶活性存在显著相关关系.这与Butterbach-Bahl等[58]的研究结果相似.然而, Attard等[59]的研究表明N2O排放仅与土壤理化性质有关, 与反硝化微生物丰度无关.另外, 本研究中N2O排放排放量与3种基因型反硝化细菌丰度均呈极显著正相关关系, 特别是与nirS型反硝化细菌丰度相关性最高, 说明nirKnirSnosZ型反硝化细菌均对咸水灌溉棉田土壤中N2O排放存在贡献, 且nirS型反硝化细菌可能是该过程中的主导微生物菌群.综上, 咸水灌溉可显著降低N2O排放, 对减少温室气体排放有一定贡献, 但是利用咸水进行灌溉需要控制好灌溉水盐度, 因为较高的灌溉水盐度会导致土壤盐分大量增加, 同时增加NO3--N淋洗损失, 降低氮肥利用率.所以, 今后需要权衡好灌溉水盐度、氮肥利用率、作物产量以及N2O排放之间的关系, 寻找最优化配比, 合理使用劣质水, 实现农业、环境资源的高效利用和可持续发展.

4 结论

长期咸水滴灌抑制土壤反硝化酶活性和N2O排放, 但是增加了土壤盐度.土壤中nirS基因丰度显著高于nirKnosZ基因丰度, 不施肥条件下, 咸水灌溉显著降低nirKnirSnosZ基因丰度、群落丰富度, Shannon指数;施肥条件下, 咸水灌溉对nosZ基因丰度无影响, 而显著降低nirKnirS基因丰度, 增加nirKnirSnosZ型反硝化细菌群落丰富度和Shannon.咸水灌溉和施用氮肥显著改变nirKnirSnosZ型反硝化细菌群落结构, 增加优势种群数量.土壤理化性质和反硝化细菌群落结构均显著影响土壤N2O排放, N2O排放与土壤NO3--N、有机质、全氮、反硝化细菌丰度和反硝化酶活性存在极显著正相关关系, 与土壤含水量存在负相关关系.nirS型反硝化细菌与N2O排放相关性最高, 可能是反硝化作用的主导微生物菌群.

参考文献
[1] Chen L J, Feng Q, Wei Y P, et al. Effects of saline water irrigation and fertilization regimes on soil microbial metabolic activity[J]. Journal of Soils and Sediments, 2017, 17(2): 376-383.
[2] Panta S, Flowers T, Doyle R, et al. Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation[J]. Environmental and Experimental Botany, 2016, 128: 39-50.
[3] Li X B, Kang Y H, Wan S Q, et al. Response of Symphyotrichum novi-belgii and Dianthus chinensis L. to saline water irrigation in a coastal saline soil[J]. Scientia Horticulturae, 2016, 203: 32-37.
[4] Liu M X, Yang J S, Li X M, et al. Effects of irrigation water quality and drip tape arrangement on soil salinity, soil moisture distribution, and cotton yield (Gossypium hirsutum L.) under mulched drip irrigation in Xinjiang, China[J]. Journal of Integrative Agriculture, 2012, 11(3): 502-511.
[5] Hou Z A, Li P F, Li B G, et al. Effects of fertigation scheme on N uptake and N use efficiency in cotton[J]. Plant and Soil, 2007, 290(1-2): 115-126.
[6] Mapanda F, Wuta M, Nyamangara J, et al. Nitrogen leaching and indirect nitrous oxide emissions from fertilized croplands in Zimbabwe[J]. Nutrient Cycling in Agroecosystems, 2012, 94(1): 85-96.
[7] 刘杏认, 赵光昕, 张晴雯, 等. 生物炭对华北农田土壤N2O通量及相关功能基因丰度的影响[J]. 环境科学, 2018, 39(8): 3816-3825.
Liu X R, Zhao G X, Zhang Q W, et al. Effects of biochar on nitrous oxide fluxes and the abundance of related functional genes from agriculture soil in the north China plain[J]. Environmental Science, 2018, 39(8): 3816-3825.
[8] 邹娟, 胡学玉, 张阳阳, 等. 生物炭介导的不同地表条件下土壤N2O的排放特征[J]. 环境科学, 2017, 38(5): 2093-2101.
Zou J, Hu X Y, Zhang Y Y, et al. Characteristics of biochar-mediated N2O emissions from soils of different surface conditions[J]. Environmental Science, 2017, 38(5): 2093-2101.
[9] Palmer K, Biasi C, Horn M A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra[J]. The ISME Journal, 2012, 6(5): 1058-1077.
[10] Hu H W, Chen D L, He J Z. Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways for prediction of emission rates[J]. FEMS Microbiology Reviews, 2015, 39(5): 729-749.
[11] Sanz-Cobena A, Abalos D, Meijide A, et al. Soil moisture determines the effectiveness of two urease inhibitors to decrease N2O emission[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(7): 1131-1144.
[12] Russenes A L, Korsaeth A, Bakken L R, et al. Spatial variation in soil pH controls off-season N2O emission in an agricultural soil[J]. Soil Biology and Biochemistry, 2016, 99: 36-46.
[13] 黄耀, 焦燕, 宗良纲, 等. 土壤理化特性对麦田N2O排放影响的研究[J]. 环境科学学报, 2002, 22(5): 598-602.
Huang Y, Jiao Y, Zong L G, et al. N2O emission from wheat cultivated soils as influenced by soil physico-chemical properties[J]. Acta Scientiae Circumstantiae, 2002, 22(5): 598-602.
[14] Reddy N, Crohn D M. Effects of soil salinity and carbon availability from organic amendments on nitrous oxide emissions[J]. Geoderma, 2014, 235-236: 363-371.
[15] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792-800.
Zhu Y G, Wang X H, Yang X R, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation Strategies[J]. Environmental Science, 2014, 35(2): 792-800.
[16] Sehy U, Ruser R, Munch J C. Nitrous oxide fluxes from maize fields:relationship to yield, site-specific fertilization, and soil conditions[J]. Agriculture, Ecosystems & Environment, 2003, 99(1-3): 97-111.
[17] Wrage N, Velthof G L, Van Beusichem M L, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and Biochemistry, 2001, 33(12-13): 1723-1732.
[18] Braker G, Conrad R. Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning?[J]. Advances in Applied Microbiology, 2011, 75: 33-70.
[19] Li C J, Lei J Q, Zhao Y, et al. Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway shelterbelt[J]. Soil and Tillage Research, 2015, 146: 99-107.
[20] Cao Y P, Green P G, Holden P A. Microbial community composition and denitrifying enzyme activities in salt marsh sediments[J]. Applied and Environmental Microbiology, 2008, 74(24): 7585-7595.
[21] 李佳霖, 白洁, 高会旺, 等. 长江口海域夏季沉积物反硝化细菌数量及反硝化作用[J]. 中国环境科学, 2009, 29(7): 756-761.
Li J L, Bai J, Gao H W, et al. Quantification of denitrifying bacteria and denitrification process in surface sediment at adjacent sea area of the Yangtze River Estuary in summer[J]. China Environmental Science, 2009, 29(7): 756-761.
[22] Wang H T, Gilbert J A, Zhu Y G, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment[J]. Science of the Total Environment, 2018, 631-632: 1342-1349.
[23] Santoro A E, Boehm A B, Francis C A. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer[J]. Applied and Environmental Microbiology, 2006, 72(3): 2102-2109.
[24] Franklin R B, Morrissey E M, Morina J C. Changes in abundance and community structure of nitrate-reducing bacteria along a salinity gradient in tidal wetlands[J]. Pedobiologia, 2017, 60: 21-26.
[25] Pulla Reddy Gari N. Evaluating the effects of organic amendment applications on nitrous oxide emissions from salt-affected soils[D]. United States: University of California, Riverside, 2013.
[26] Wang D Q, Chen Z L, Sun W W, et al. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net[J]. Science in China Series B:Chemistry, 2009, 52(5): 652-661.
[27] Inubushi K, Barahona M A, Yamakawa K. Effects of salts and moisture content on N2O emission and nitrogen dynamics in Yellow soil and Andosol in model experiments[J]. Biology and Fertility of Soils, 1999, 29(4): 401-407.
[28] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
Guan S Y. Soil enzyme and its research methods[M]. Beijing: Agricultural Press, 1986.
[29] Ding W X, Yu H Y, Cai Z C. Impact of urease and nitrification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain[J]. Biology and Fertility of Soils, 2011, 47(1): 91-99.
[30] Guo Y L, Luo L G, Chen G X, et al. Mitigating nitrous oxide emissions from a maize-cropping black soil in northeast China by a combination of reducing chemical N fertilizer application and applying manure in autumn[J]. Soil Science and Plant Nutrition, 2013, 59(3): 392-402.
[31] Hallin S, Lindgren P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria[J]. Applied and Environmental Microbiology, 1999, 65(4): 1652-1657.
[32] Dong L H, Meng Y, Wang J, et al. Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers[J]. Analytical and Bioanalytical Chemistry, 2014, 406(6): 1701-1712.
[33] Wu Y Z, Li Y, Fu X Q, et al. Three-dimensional spatial variability in soil microorganisms of nitrification and denitrification at a row-transect scale in a tea field[J]. Soil Biology and Biochemistry, 2016, 103: 452-463.
[34] Wei Q, Xu J Z, Liao L X, et al. Water salinity should be reduced for irrigation to minimize its risk of increased soil N2O emissions[J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2114.
[35] Rietz D N, Haynes R J. Effects of irrigation-induced salinity and sodicity on soil microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(6): 845-854.
[36] Bernhard A E, Tucker J, Giblin A E, et al. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient[J]. Environmental Microbiology, 2007, 9(6): 1439-1447.
[37] Yoshie S, Noda N, Tsuneda S, et al. Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems[J]. Applied and Environmental Microbiology, 2004, 70(5): 3152-3157.
[38] Van Trinh M, Tesfai M, Borrell A, et al. Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields[J]. Paddy and Water Environment, 2017, 15(2): 317-330.
[39] Zhou G W, Zhang W, Ma L J, et al. Effects of saline water irrigation and N application rate on NH3 volatilization and N use efficiency in a drip-irrigated cotton field[J]. Water, Air, & Soil Pollution, 2016, 227(4): 103.
[40] Allen D E, Kingston G, Rennenberg H, et al. Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils[J]. Agriculture, Ecosystems & Environment, 2010, 136(3-4): 209-217.
[41] Zhu T B, Zhang J B, Cai Z C. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation[J]. Plant and Soil, 2011, 343(1-2): 313-327.
[42] Huang T, Gao B, Christie P, et al. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management[J]. Biogeosciences, 2013, 10(12): 7897-7911.
[43] Mkhabela M S, Gordon R, Burton D, et al. Ammonia and nitrous oxide emissions from two acidic soils of Nova Scotia fertilised with liquid hog manure mixed with or without dicyandiamide[J]. Chemosphere, 2006, 65(8): 1381-1387.
[44] Carter M S. Contribution of nitrification and denitrification to N2O emissions from urine patches[J]. Soil Biology and Biochemistry, 2007, 39(8): 2091-2102.
[45] Iftikhar A, Khan K M. Studies on enzymes activity in normal and saline soils[J]. Pakistan Journal of Agricultural Research, 1988, 9(4): 506-508.
[46] Wichern J, Wichern F, Joergensen R G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils[J]. Geoderma, 2006, 137(1-2): 100-108.
[47] Magalhães C M, Joye S B, Moreira R M, et al. Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal[J]. Water Research, 2005, 39(9): 1783-1794.
[48] Wang C, Tong C, Chambers L G, et al. Identifying the salinity thresholds that impact greenhouse gas production in subtropical tidal freshwater marsh soils[J]. Wetlands, 2017, 37(3): 559-571.
[49] Burgin A J, Groffman P M. Soil O2 controls denitrification rates and N2O yield in a riparian wetland[J]. Journal of Geophysical Research:Biogeosciences, 2012, 117(G1): G01010. DOI:10.1029/2011JG001799
[50] Gomes J, Khandeparker R, Bandekar M, et al. Quantitative analyses of denitrifying bacterial diversity from a seasonally hypoxic monsoon governed tropical coastal region[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2018, 156: 34-43.
[51] Mosier A C, Francis C A. Denitrifier abundance and activity across the San Francisco Bay estuary[J]. Environmental Microbiology Reports, 2010, 2(5): 667-676.
[52] Yin C, Fan F L, Song A L, et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS- and nirK-denitrifying bacterial community[J]. European Journal of Soil Biology, 2014, 65: 47-56.
[53] Jones C M, Stres B, Rosenquist M, et al. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification[J]. Molecular Biology and Evolution, 2008, 25(9): 1955-1966.
[54] Yang A J, Zhang X L, Agogué H, et al. Contrasting spatiotemporal patterns and environmental drivers of diversity and community structure of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of estuarine tidal flats[J]. Annals of Microbiology, 2015, 65(2): 879-890.
[55] Piao Z, Zhang W W, Ma S, et al. Succession of denitrifying community composition in coastal wetland soils along a salinity gradient[J]. Pedosphere, 2012, 22(3): 367-374.
[56] Tang Y Q, Zhang X Y, Li D D, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations[J]. Soil Biology and Biochemistry, 2016, 103: 284-293.
[57] Meng H, Wu R N, Wang Y F, et al. A comparison of denitrifying bacterial community structures and abundance in acidic soils between natural forest and re-vegetated forest of Nanling Nature Reserve in southern China[J]. Journal of Environmental Management, 2017, 198: 41-49.
[58] Butterbach-Bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils:how well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621): 20130122.
[59] Attard E, Recous S, Chabbi A, et al. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses[J]. Global Change Biology, 2011, 17(5): 1975-1989.