环境科学  2020, Vol. 41 Issue (4): 1847-1854   PDF    
扬州市不同功能区表层土壤中多环芳烃的含量、来源及其生态风险
姚成1,2, 倪进治2,3, 刘瑞1,2, 杨柳明1,2, 陈卫锋2,3, 魏然1,3     
1. 福建师范大学地理科学学院, 福州 350007;
2. 福建师范大学地理研究所, 福州 350007;
3. 福建师范大学福建省植物生理生态重点实验室, 福州 350007
摘要: 对扬州市6个不同功能区(公园、菜地、文教区、居民区、加油站和工业区)共59个表层土壤样品(0~10 cm)中15种美国环境保护署优控的多环芳烃(PAHs)的含量和来源进行了分析,并利用苯并[a]芘(BaP)毒性当量浓度(TEQBaP)评价了土壤中PAHs的生态风险.结果表明,扬州市土壤中Σ15PAHs总量范围为21~36118 μg·kg-1,中值为295 μg·kg-1,PAHs组成中以4~6环为主.不同功能区Σ15PAHs总量平均值高低顺序为工业区>加油站>文教区>菜地>居民区>公园.相关性分析表明,整个扬州市土壤中Σ15PAHs总量与土壤总有机碳(TOC)(P < 0.05)和黑碳(BC)(P < 0.01)含量都呈显著性正相关,但除了加油站土壤中Σ15PAHs总量与BC含量呈显著性正相关(P < 0.01)外,不同功能区土壤中Σ15PAHs总量与TOC、BC含量都无显著相关性.特征比值法结果表明,不同功能区土壤中PAHs来源虽有些差异,但都主要来源于石油泄漏以及石油、煤和生物质等的燃烧.扬州市土壤中15种PAHs总TEQBaP值的范围是2~4448 μg·kg-1.以荷兰土壤环境标准中的10种PAHs总TEQBaP值33 μg·kg-1为标准,扬州市有45.8%的土样超标,各功能区点位超标率高低顺序为工业区(70%)>加油站(60%)>文教区(55.6%)>菜地(50.0%)>居民区(30%)>公园(10%).因此,扬州市不同功能区中都有部分表层土壤存在潜在的生态风险,工业区和加油站风险相对较高,而居民区和公园风险相对较低.
关键词: 多环芳烃(PAHs)      功能区      土壤      来源      生态风险     
Contents, Sources, and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Soils of Various Functional Zones in Yangzhou City, China
YAO Cheng1,2 , NI Jin-zhi2,3 , LIU Rui1,2 , YANG Liu-ming1,2 , CHEN Wei-feng2,3 , WEI Ran1,3     
1. School of Geographical Science, Fujian Normal University, Fuzhou 350007, China;
2. Institute of Geography, Fujian Normal University, Fuzhou 350007, China;
3. Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350007, China
Abstract: The contents and sources of 15 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were analyzed in 59 surface soil samples (0-10 cm depth) collected from six functional zones, including cultural and educational area, park, residential area, vegetable garden, gas station, and industrial area, in Yangzhou City. The toxicity equivalent content of benzo[a]pyrene (TEQBaP) was adopted to assess PAH risks in soils. The results showed that the contents of Σ15PAHs in soil samples ranged from 21 to 36118 μg·kg-1, with a median value of 295 μg·kg-1. The composition of PAHs was dominated by 4-6 ring PAHs. The average contents of Σ15PAHs in various functional zones in Yangzhou City was in the order of industrial area > gas station > cultural and educational area > vegetable garden > residential area > park. Correlation analysis showed that the contents of Σ15PAHs were significantly positively correlated with the contents of both TOC (P < 0.05) and BC (P < 0.01) in soil samples from whole Yangzhou City. However, the contents of Σ15PAHs had no significant correlations with the contents of both TOC and BC in soil samples within each functional zone except gas station, in which the contents of Σ15PAHs had a significant correlation with those of BC (P < 0.01). The results of PAH ratios showed that the sources of PAHs in soils of various functional zones were mainly from oil leakage and the combustion of oil, coal, and biomass, although there were some differences among them. The values of ΣTEQBaP of 15 PAHs ranged from 2 to 4448 μg·kg-1 in the soil samples of Yangzhou City. According to the standard value of 33 μg·kg-1 of ΣTEQBaP for 10 PAHs in the soil environmental standard of Netherland, 45.8% of soil samples exceeded the standard in Yangzhou City. The percentages of soil samples exceeding the standard of various functional zones in Yangzhou City were in the order of industrial area (70%) > gas station (60%) > cultural and educational area (55.6%) > vegetable garden (50.0%) > residential area (30%) > park (10%). Hence, in all the functional zones of Yangzhou City, there were some soil samples with potential ecological risks, which was relatively higher in industrial area and gas station, and relatively lower in residential area and park.
Key words: Polycyclic aromatic hydrocarbon (PAHs)      functional zone      soil      source      ecological risk     

多环芳烃(polycyclic aromatic hydrocarbon, PAHs)是具有两个或多个苯环稠合而成的一类化合物, 因其具有高疏水性和在环境中不易降解的特性, 会产生持久性的污染[1].城市作为人类主要的活动场所, 由人类活动如煤和化石燃料的燃烧、汽车尾气的排放等产生的PAHs, 通过干湿沉降等途径进入土壤, 所以城市土壤也是PAHs重要的储存库[2].

当前国内外学者对城市土壤中PAHs的含量、来源和生态风险都有一些研究, 但大多数都是以整个城市较大尺度下的研究[3~5], 而区分城市中不同功能区土壤中PAHs的研究较少.城市不同功能区存在人类活动方式和强度, 以及地表覆盖等的差异, 其土壤中污染物(如PAHs、重金属)的含量往往也存在较大不同[4, 6, 7].此外, 土壤中PAHs的含量与土壤总有机碳(TOC)和黑碳(BC)的含量有着密切的关系[8, 9], 而城市不同功能区土壤中TOC和BC含量有很大的变异[10, 11].因此, 对城市不同功能区土壤中PAHs污染状况及其与土壤TOC、BC之间的关系进行研究, 能够更好地反映人类活动对土壤环境质量的影响.

扬州市作为长三角城市群中重要城市, 随着城市规模不断扩大, 各种土壤污染问题也日益显现.当前对扬州市土壤污染研究主要集中于城区或沿江地区重金属污染[12], 而对市区土壤中PAHs污染特别是对不同功能区土壤中PAHs的污染则鲜见报道.因此, 本文以扬州市不同功能区土壤为研究对象, 分析了土壤中15种美国环保署(USEPA)优控的PAHs含量及其来源, 以及PAHs与BC、TOC之间的关系, 并利用苯并[a]芘(BaP)毒性当量浓度(TEQBaP)评价了土壤中PAHs的生态风险, 以期为更好地了解人类活动对土壤环境质量的影响以及防范土壤污染的生态风险提供基础数据.

1 材料与方法 1.1 采样点布设与样品采集

样品采集于2018年7月, 在扬州市区内按不同的土地利用类型划分成6种不同的功能区:公园、菜地、文教区、居民区、工业区和加油站.并依据采样点在市区范围内均匀分布的原则来设点采样, 采样点分布如图 1所示.

图 1 采样点分布示意 Fig. 1 Schematic map of sampling sites

每个功能区选择9~10个代表性的地块, 使用不锈钢铲按照多点混合法采集0~10 cm表层土壤, 共采集59个土壤样品.样品带回实验室风干, 挑除石子和动植物残体等杂质, 过2 mm筛.部分土样冷冻干燥后过60目筛, 待测PAHs.

1.2 土壤总有机碳和黑碳的测定

土壤TOC采用元素分析仪(Elementar Vario MAX, Germany)测定.BC采取热氧化法测定[13], 称取一定量酸化处理过的土样于坩埚内, 放入马弗炉中, 在375℃下高温氧化24 h, 用元素分析仪测定土样中残存的有机碳含量, 即为土样中BC的含量.土壤中TOC和BC含量见表 1.

表 1 供试土壤有机碳(TOC)和黑炭(BC)的含量/g·kg-1 Table 1 Contents of TOC and BC in the tested soils/g·kg-1

1.3 土壤中PAHs的提取和测定

称取5.0 g土壤样品于40 mL带聚四氟乙烯衬垫盖的玻璃瓶中, 加入等量的无水硫酸钠, 再加入15 mL二氯甲烷, 静置过夜.置于超声波清洗槽(40 kHz, 200 W)中超声2 h, 超声结束后, 以2 500 r·min-1离心20 min, 将上清液转移至圆底烧瓶中, 旋转蒸发浓缩至2 mL, 加入2 mL乙腈, 再次浓缩至约1 mL, 重复2次, 过C18小柱后待测.

PAHs的测定采用美国Waters公司的超高效液相色谱仪(UPLC), 荧光检测器.色谱柱为BEH Shield RP18(2.1 mm×150 mm, 1.7 μm), 柱温为45℃, 流动相为乙腈和水, 进行梯度洗脱, 流速为0.4 mL·min-1, 详见倪进治等[14]的研究.本实验分析了15种USEPA优控的PAHs:萘(Nap)、二氢苊(Ace)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Fla)、芘(Pyr)、苯并[a]蒽(BaA)、 (Chry)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)、二苯并[a, h]蒽(DahA)、苯并[g, h, i]苝(BghiP)和茚并[1, 2, 3-cd]芘(InP).苊烯的荧光效应较弱, 本实验没有测定.

1.4 质量控制

通过向土样中添加PAHs混标(EPA610), 使土样中PAHs单体化合物含量均为800 μg·kg-1, 同时做不加标的土样作为对照, 4个平行, 按照1.3节中的方法进行提取和测定. 15种PAHs平均回收率范围为81%±2% ~112%±4%.

1.5 数据分析与处理方法

实验数据分析和作图采取Origin 2017、SPSS 22.0和Arcgis 10.0等软件.

2 结果与讨论 2.1 不同功能区表层土壤中PAHs污染特征 2.1.1 不同功能区表层土壤中PAHs含量

不同功能区表层土壤中15种PAHs含量见表 2.从Σ15PAHs总量来看, 不同功能区表层土壤中PAHs含量差异较大, Σ15PAHs总量平均值的大小顺序为工业区>加油站>文教区>菜地>居民区>公园.工业区Σ15PAHs总量范围为21~36 118 μg·kg-1, 平均值为5 817 μg·kg-1;公园Σ15PAHs总量范围为24~354 μg·kg-1, 平均值为166 μg·kg-1. 7种致癌性PAHs平均含量的大小顺序为工业区>文教区>加油站>菜地>居民区>公园, 其中工业区平均含量为2 989 μg·kg-1, 公园平均含量为76 μg·kg-1.对比扬州市区不同功能区表层土壤中Σ15PAHs含量与文献[5, 15]中报道的结果发现, 不同城市不同功能区表层土壤PAHs总量的高低具有相似的趋势, 工业区和加油站PAHs含量显著高于文教区、居民区和公园等功能区.工业区来往的大型货运车辆较多, 其停靠启动都会排放出大量尾气, 其中的大部分PAHs最终会进入附近的土壤中;同时工业区内企业生产活动多使用化石燃料, 工业废气及废油的排放也都会造成土壤中PAHs的积累.加油站是市内机动车主要油气补给地, 由于大量机动车停靠, 以及加油站部分汽油的泄漏都会造成土壤PAHs含量的增加[15].在本研究中, 部分菜地和文教区土壤中Σ15PAHs含量也相对较高, 这是由于部分菜地位于市区主干道路旁边, 机动车流量较大, 排放的尾气中PAHs主要进入附近的土壤中, 导致土壤中PAHs含量较高.而文教区中选取的部分学校, 采样点在道路两旁的绿化带上, 土壤中PAHs含量相对较高可能与校园内机动车辆来往频繁所排放的尾气有关.

表 2 不同功能区表层土壤中PAHs含量和BaP毒性当量浓度1)/μg·kg-1 Table 2 Contents and TEQBaP of PAHs in surface soil of various functional zones/μg·kg-1

2.1.2 不同功能区表层土壤中PAHs组成特征

图 2为不同功能区表层土壤中PAHs的组成特征.总体来看, 不同功能区表层土壤中PAHs组成以4~6环PAHs为主[18], 占15种PAHs总量的85.6% ~90.4%, 其中又以4环PAHs占比最高;2~3环PAHs占比则相对较少, 为PAHs总量的9.6% ~14.4%, 其中2环PAHs占比最低. 2~3环PAHs比较容易挥发和降解, 距排放源较远的土样中含量通常会较低.加油站和工业区中Nap和Ace的检出率都分别为60%和10%, 其它功能区的所有样品中都未检出Ace;居民区、文教区和菜地中Nap的检出率分别为20%、30%和40%, 而公园所有样品中都未检出Nap.此外, 加油站和工业区中6环PAHs占比相对较高, 分别为23.5%和24.2%, 公园和居民区中6环PAHs占比相对较低, 分别为11.1%和13.8%.不同功能区表层土壤中PAHs组成特征的差异可能与PAHs污染源的不同以及采样点距离污染源的远近有关.

图 2 不同功能区表层土壤PAHs组成特征 Fig. 2 Compositional characters of PAHs in the surface soil of various functional zones

2.1.3 不同功能区表层土壤中PAHs与TOC的相关性

土壤中PAHs含量的高低与多种因素有关, 其中土壤有机质被认为是影响PAHs土壤环境行为最主要的因素之一[19].很多研究都表明土壤中PAHs含量与TOC含量之间具有显著的相关性[20~22].本研究中, 整个扬州市区59个土样中Σ15PAHs总量以及PAHs各组分含量都与TOC含量呈显著(P < 0.05)或极显著性(P < 0.01)正相关, 但不同功能区土样中Σ15PAHs总量和各组分含量与TOC含量之间均无显著相关性(表 3).Hiller等[23]的研究认为, 虽然土壤有机碳是影响土壤中PAHs含量高低的一个重要因素, 但是土壤中PAHs分布也与其它因素有关.例如, 该区域如果有新的PAHs持续输入, 会导致土壤有机碳与PAHs之间没有达到动态平衡.此外, PAHs污染的途径、来源以及污染历史情况都会影响TOC与PAHs之间的相关性[24].也有研究表明, 含有PAHs的烟灰颗粒被排放到大气中后, 低分子量PAHs更容易从烟灰颗粒中解吸下来, 游离于大气中, 而当烟灰颗粒沉降到土壤中后, 游离于大气中的低分子量PAHs更容易与土壤有机碳之间达到动态平衡[25, 26].此外, 土壤有机质组成和性质的复杂性, 亦会对TOC与PAHs之间的相关性产生影响[27, 28].

表 3 表层土壤中PAHs与TOC、BC的相关性分析1) Table 3 Correlations between TOC, BC, and PAHs in surface soil

2.1.4 不同功能区表层土壤中PAHs与BC的相关性

土壤BC是土壤碳库的重要组成部分, 主要是包含木炭(charcoal)和烟灰(soot)等, 多来源于化石燃料和生物质的不完全燃烧, 与PAHs具有一定的同源性[29].BC性质特征较为稳定, 多孔隙和较大的比表面积使其对PAHs具有很强的吸附性, 被认为是土壤中影响疏水性有机污染物生物有效性和最终归宿的最重要组分[30, 31].本研究结果也体现了这一特征, 整个扬州市区59个土样中的BC含量与Σ15PAHs总量以及PAHs各组分含量之间都呈极显著性正相关(P < 0.01).但在各功能区中, 加油站土样中Σ15PAHs总量以及3~6环PAHs含量与BC含量之间呈显著性(P < 0.05)或极显著性(P < 0.01)正相关, 文教区土样中2环PAHs含量与BC含量之间呈显著性正相关(P < 0.05), 而其它功能区中BC含量与Σ15PAHs总量以及PAHs各组分含量之间都无显著的相关性(表 3).前人研究结果[24, 28, 32]与本研究的一致, 即在燃烧源附近土壤中PAHs与BC的相关性趋势表现更为明显, 加油站附近汽车启动停车都会带来化石燃料燃烧, 因而具有良好的相关性.而其它功能区土壤中BC与PAHs含量之间无显著的相关性, 可能的原因是PAHs来源并非只与烟灰和木炭有关, 其他有机物在携带PAHs方面也起着重要作用[29].

2.2 不同功能区表层土壤中PAHs的源解析

同分异构体比值法是判断PAHs污染来源的一个重要方法, 常用的异构体比值有Fla/(Fla+Pyr)、BaA/(BaA+Chry)、InP/(InP+BghiP)和Ant/(Ant+Phe)等[33, 34].当BaA/(BaA+Chry)比值>0.35, InP/(InP+BghiP)比值在0.5~1时, PAHs污染主要来源于生物质和煤炭的燃烧[35~37].Han等[38]认为当Fla/(Fla+Pyr)比值<0.4时, PAHs污染主要来源于石油源, 当Fla/(Fla+Pyr)比值>0.5时, PAHs污染主要来源于生物质和煤的燃烧.而当Ant/(Ant+Phe)比值>0.1和<0.1时, PAHs主要污染来源分别是燃烧源和石油源[39, 40].此外也有研究表明当BaA/(BaA+Chry)比值<0.2时, PAHs主要污染来源为石油源, 而当BaA/(BaA+Chry)比值处于0.2~0.35之间时, PAHs主要来源于燃烧和石油组成的混合源.而当InP/(InP+BghiP)比值在0.2~0.5之间时, PAHs主要污染来源为石油源的燃烧[33, 34].由图 3中Fla/(Fla+Pyr)和BaA/(BaA+Chry)比值结果可知, 扬州市6个不同功能区土壤中PAHs都主要来源于煤和生物质燃烧, 而InP/(InP+BghiP)和Ant/(Ant+Phe)的比值结果表明石油和石油燃烧也是PAHs的重要来源, 说明扬州市区机动车尾气的排放和化石燃料的使用依然是产生PAHs最主要的原因.同时不同功能区之间主要污染来源也存在一定的差异, 例如公园受石油源影响较大, 而菜地、加油站、工业区、文教区则受石油燃烧源影响较大, 煤和生物质燃烧则为居民区主要污染来源.此外各个功能区均发现多种污染来源, 这也表明了PAHs污染来源的复杂性.

图 3 PAHs比值十字交叉 Fig. 3 Cross plots for PAHs ratios

2.3 不同功能区表层土壤PAHs生态风险评估 2.3.1 生态安全评价

根据生态环境部2018年最新发布执行的《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618-2018)和《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018), 农业用地中BaP风险筛选值为0.55 mg·kg-1, 建设用地中8种PAHs风险筛选值见表 4.本研究的6个功能区中, 根据土地用途, 菜地属于农业用地, 居民区、公园和文教区属于建设用地第一类用地, 加油站和工业区属于建设用地第二类用地.菜地各采样点BaP含量范围为7~83 μg·kg-1, 远低于筛选值;居民区、公园、文教区、加油站各采样点Nap、BaA、Chry、BbF、BkF、BaP、DahA和InP的含量也都远低于筛选值.工业区中有一个土样中的BaP含量高于筛选值, 为2.335 mg·kg-1, 具有一定的生态环境风险.而随着时间的延续, 工业生产的持续进行, 势必会引起土壤中PAHs含量的不断增加, 其生态风险也不容忽视.

表 4 建设用地土壤污染风险筛选值 Table 4 Risk intervention values for soil contamination of development land

2.3.2 致癌风险评估

在USEPA优控的16种PAHs中, BaA、Chry、BbF、BkF、BaP、DahA和InP等7种致癌性PAHs更受关注, 其中BaP又以其强致癌性成为PAHs致癌风险研究中的代表性化合物[16].当前对PAHs致癌风险评估都是以BaP毒性当量浓度作为参考, 其计算公式如下:

本研究使用Tsai等[16]提出的毒性当量因子(TEF)来计算各单体BaPeq, 再计算出每个土样的总TEQBaP值, 结果见表 2.不同功能区总TEQBaP值的范围存在较大差距, 并且各功能区内部土样之间的总TEQBaP值变异也较大.总TEQBaP的最高值出现在工业区内, 最低值则位于加油站区域内.从平均值来看, 各功能区总TEQBaP值高低顺序为工业区>加油站>文教区>菜地>居民区>公园.根据林纪旺等[41]研究中的荷兰土壤标准TEQBaP参考值33 μg·kg-1, 扬州市59个采样点中, 总TEQBaP值的点位超标率达到了45.8%, 各功能区点位超标率高低顺序为工业区(70%)>加油站(60%)>文教区(55.6%)>菜地(50.0%)>居民区(30%)>公园(10%).因此, 扬州市不同功能区都有部分表层土壤中的PAHs存在潜在的致癌风险, 工业区和加油站风险相对较高, 而居民区和公园风险相对较低.

3 结论

(1) 扬州市59个表层土样中Σ15PAHs总量的范围为21~36 118 μg·kg-1, 中值为295 μg·kg-1.不同功能区土壤中Σ15PAHs总量的大小顺序为工业区>加油站>文教区>菜地>居民区>公园.

(2) 不同功能区土壤中PAHs都以高环PAHs为主.从整个扬州市来看, 土壤中PAHs总量与TOC(P < 0.05)、BC(P < 0.01)都呈显著性正相关, 但不同功能区内除加油站土壤中PAHs总量与BC呈显著性正相关外, 其他功能区PAHs总量与TOC、BC都无显著的相关性.

(3) 不同功能区土壤中PAHs主要来源于石油以及石油、煤和生物质等的燃烧.公园受石油源影响较大, 而菜地、加油站、工业区、文教区则受石油燃烧源影响较大, 煤和生物质燃烧则为居民区主要污染来源.

(4) 不同功能区土壤中总TEQBaP平均值的大小顺序为工业区>加油站>文教区>菜地>居民区>公园;按照荷兰土壤环境标准, 10种PAHs总TEQBaP值的超标率分别为工业区70%、加油站60%、文教区55.6%、菜地50.0%、居民区30%和公园10%, 部分土样存在一定的生态和致癌风险.

参考文献
[1] Uyttebroek M, Breugelmans P, Janssen M, et al. Distribution of the Mycobacterium community and Polycyclic Aromatic Hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil[J]. Environmental Microbiology, 2006, 8(5): 836-847. DOI:10.1111/j.1462-2920.2005.00970.x
[2] Haritash A K, Kaushik C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):a review[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1-15. DOI:10.1016/j.jhazmat.2009.03.137
[3] Wang X T, Chen L, Wang X K, et al. Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China[J]. Chemosphere, 2015, 119: 1224-1232. DOI:10.1016/j.chemosphere.2014.10.019
[4] Wang L J, Zhang S W, Wang L, et al. Concentration and risk evaluation of polycyclic aromatic hydrocarbons in urban soil in the typical semi-arid city of Xi'an in Northwest China[J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 607. DOI:10.3390/ijerph15040607
[5] Gereslassie T, Workineh A, Liu X N, et al. Occurrence and ecological and human health risk assessment of polycyclic aromatic hydrocarbons in soils from Wuhan, Central China[J]. International Journal of Environmental Research and Public Health, 2018, 15(12): 2751. DOI:10.3390/ijerph15122751
[6] Li X Y, Liu L J, Wang Y G, et al. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China[J]. Geoderma, 2013, 192: 50-58. DOI:10.1016/j.geoderma.2012.08.011
[7] Zhang X, Zhang K, Lv W L, et al. Characteristics and risk assessments of heavy metals in fine and coarse particles in an industrial area of central China[J]. Ecotoxicology and Environmental Safety, 2019, 179: 1-8. DOI:10.1016/j.ecoenv.2019.04.024
[8] 华德武, 汪青, 徐红, 等. 芜湖市交通区表层土壤多环芳烃与黑碳研究[J]. 中国环境科学, 2018, 38(6): 2253-2263.
Hua D W, Wang Q, Xu H, et al. Polycyclic aromatic hydrocarbons and black carbon in surface soil from traffic areas in Wuhu, China[J]. China Environmental Science, 2018, 38(6): 2253-2263. DOI:10.3969/j.issn.1000-6923.2018.06.028
[9] Bandowe B A M, Wei C, Han Y M, et al. Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs and azaarenes) in soils from China and their relationship with geographic location, land use and soil carbon fractions[J]. Science of the Total Environment, 2019, 690: 1268-1276. DOI:10.1016/j.scitotenv.2019.07.022
[10] 何跃, 张甘霖. 城市土壤有机碳和黑碳的含量特征与来源分析[J]. 土壤学报, 2006, 43(2): 177-182.
He Y, Zhang G L. Concentration and sources of organic carbon and black carbon of urban soils in Nanjing[J]. Acta Pedologica Sinica, 2006, 43(2): 177-182. DOI:10.3321/j.issn:0564-3929.2006.02.001
[11] 张智博, 殷山红, 刘涛, 等. 聊城市城区不同功能区土壤黑碳含量与来源分析[J]. 土壤通报, 2019, 50(2): 444-448.
Zhang Z B, Yin S H, Liu T, et al. Distribution and source analysis of soil black carbon in the urban area of Liaocheng[J]. Chinese Journal of Soil Science, 2019, 50(2): 444-448.
[12] 刘文婷, 王子波, 陈满荣. 扬州城区道路两侧土壤重金属污染检测与评价[J]. 扬州大学学报(自然科学版), 2011, 14(4): 78-82.
Liu W T, Wang Z B, Chen M R. Detection and evaluation of heavy metal contamination of roadsides soil in Yangzhou city[J]. Journal of Yangzhou University (Natural Science Edition), 2011, 14(4): 78-82.
[13] Gustafsson Ö, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase:implications for PAH speciation and bioavailability[J]. Environmental Science & Technology, 1996, 31(1): 203-209.
[14] 倪进治, 王军, 李小燕, 等. 超高效液相色谱荧光检测器测定土壤中多环芳烃[J]. 分析试验室, 2010, 29(5): 25-28.
Ni J Z, Wang J, Li X Y, et al. Determination of polycyclic aromatic hydrocarbons in soil by ultra performance liquid chromatography with a fluorescence detector[J]. Chinese Journal of Analysis Laboratory, 2010, 29(5): 25-28. DOI:10.3969/j.issn.1000-0720.2010.05.007
[15] 倪进治, 陈卫锋, 杨红玉, 等. 福州市不同功能区土壤中多环芳烃的含量及其源解析[J]. 中国环境科学, 2012, 32(5): 921-926.
Ni J Z, Chen W F, Yang H Y, et al. Concentrations and sources of soil PAHs in various functional zones of Fuzhou City[J]. China Environmental Science, 2012, 32(5): 921-926. DOI:10.3969/j.issn.1000-6923.2012.05.023
[16] Tsai P J, Shih T S, Chen H L, et al. Assessing and predicting the exposures of Polycyclic Aromatic Hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers[J]. Atmospheric Environment, 2004, 38(2): 333-343.
[17] VR OM. Environmental quality objectives in the Netherlands:a review of environmental quality objectives and their policy framework in the Netherlands[M]. The Hague: Ministry of Housing, Spatial Planning and Environment, 1994.
[18] 姚宏, 张士超, 刘明丽, 等. 基于城镇化进程表层土壤多环芳烃来源解析及风险评价[J]. 环境科学, 2018, 39(2): 889-898.
Yao H, Zhang S C, Liu M L, et al. Sources and risk assessment of polycyclic aromatic hydrocarbons from the urbanization process of topsoil[J]. Environmental Science, 2018, 39(2): 889-898.
[19] Chiou C T, McGroddy S E, Kile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments[J]. Environmental Science & Technology, 1998, 32(2): 264-269.
[20] Xiao R, Bai J H, Wang J J, et al. Polycyclic Aromatic Hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary:toxic levels, sources and relationships with soil organic matter and water-stable aggregates[J]. Chemosphere, 2014, 110: 8-16. DOI:10.1016/j.chemosphere.2014.03.001
[21] Simpson C D, Mosi A A, Cullen W R, et al. Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada[J]. Science of the Total Environment, 1996, 181(3): 265-278. DOI:10.1016/0048-9697(95)05026-4
[22] 吴义国, 方冰芯, 李玉成, 等. 杭埠-丰乐河表层沉积物中多环芳烃的污染特征、来源分析及生态风险评价[J]. 环境化学, 2017, 36(2): 420-429.
Wu Y G, Fang B X, Li Y C, et al. Occurrence of Polycyclic Aromatic Hydrocarbons (PAHs) in surface sediments from Hangbu-Fengle River:pollution characteristics, potential source and risk assessment[J]. Environmental Chemistry, 2017, 36(2): 420-429.
[23] Hiller E, Lachká L, Jurkovi Dč L, et al. Polycyclic aromatic hydrocarbons in urban soils from kindergartens and playgrounds in Bratislava, the capital city of Slovakia[J]. Environmental Earth Sciences, 2015, 73(11): 7147-7156.
[24] Nam J J, Thomas G O, Jaward F M, et al. PAHs in background soils from Western Europe:influence of atmospheric deposition and soil organic matter[J]. Chemosphere, 2008, 70(9): 1596-1602. DOI:10.1016/j.chemosphere.2007.08.010
[25] Bucheli T D, Blum F, Desaules A, et al. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland[J]. Chemosphere, 2004, 56(11): 1061-1076. DOI:10.1016/j.chemosphere.2004.06.002
[26] Vane C H, Kim A W, Beriro D J, et al. Polycyclic Aromatic Hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK[J]. Applied Geochemistry, 2014, 51: 303-314. DOI:10.1016/j.apgeochem.2014.09.013
[27] Zhang H B, Luo Y M, Wong M H, et al. Distributions and concentrations of PAHs in Hong Kong soils[J]. Environmental Pollution, 2006, 141(1): 107-114.
[28] Zhao L, Hou H, Shangguan Y X, et al. Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China[J]. Ecotoxicology and Environmental Safety, 2014, 108: 120-128. DOI:10.1016/j.ecoenv.2014.05.034
[29] Wang Q, Liu M, Yu Y P, et al. Black carbon in soils from different land use areas of Shanghai, China:level, sources and relationship with polycyclic aromatic hydrocarbons[J]. Applied Geochemistry, 2014, 47: 36-43. DOI:10.1016/j.apgeochem.2014.04.011
[30] Xiao B H, Yu Z Q, Huang W L, et al. Black carbon and Kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants[J]. Environmental Science & Technology, 2004, 38(22): 5842-5852.
[31] Ran Y, Sun K, Yang Y, et al. Strong sorption of phenanthrene by condensed organic matter in soils and sediments[J]. Environmental Science & Technology, 2007, 41(11): 3952-3958.
[32] Klimkowicz-Pawlas A, Smreczak B, Ukalska-Jaruga A. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure[J]. Environmental Science and Pollution Research, 2017, 24(12): 10955-10965. DOI:10.1007/s11356-016-6610-8
[33] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. DOI:10.1016/S0146-6380(02)00002-5
[34] Zhang Z L, Huang J, Yu G, et al. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China[J]. Environmental Pollution, 2004, 130(2): 249-261. DOI:10.1016/j.envpol.2003.12.002
[35] Wang J, Zhang X F, Ling W T, et al. Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China[J]. Chemosphere, 2017, 168: 976-987. DOI:10.1016/j.chemosphere.2016.10.113
[36] Waqas M, Khan S, Chao C, et al. Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan[J]. Science of the Total Environment, 2014, 497-498: 448-458. DOI:10.1016/j.scitotenv.2014.07.128
[37] 李嘉康, 宋雪英, 魏建兵, 等. 沈北新区土壤中多环芳烃污染特征及源解析[J]. 环境科学, 2018, 39(1): 379-388.
Li J K, Song X Y, Wei J B, et al. Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in soils of Shenyang North New Area[J]. Environmental Science, 2018, 39(1): 379-388.
[38] Han B, Ding X, Bai Z P, et al. Source analysis of particulate matter associated Polycyclic Aromatic Hydrocarbons (PAHs) in an industrial city in northeastern China[J]. Journal of Environmental Monitoring, 2011, 13(9): 2597-2604. DOI:10.1039/c1em10251f
[39] Wu D, Wang Z S, Chen J H, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city:implication for PAH control at industrial agglomeration regions, China[J]. Atmospheric Research, 2014, 149: 217-229. DOI:10.1016/j.atmosres.2014.06.012
[40] 周燕, 卢新卫. 西安市公园土壤多环芳烃污染特征、来源及风险评价[J]. 环境科学, 2017, 38(11): 4800-4808.
Zhou Y, Lu X W. Assessment of pollution, sources, and risks of polycyclic aromatic hydrocarbons in soil from urban parks in Xi'an City, China[J]. Environmental Science, 2017, 38(11): 4800-4808.
[41] 林纪旺, 倪进治, 杨红玉, 等. 泉州市表层土中多环芳烃的含量、来源及其生态风险评价[J]. 环境科学, 2011, 32(7): 2074-2080.
Lin J W, Ni J Z, Yang H Y, et al. Concentrations, sources and ecological risks of polycyclic aromatic hydrocarbons in the topsoils of Quanzhou city, China[J]. Environmental Science, 2011, 32(7): 2074-2080.