赤泥活化过一硫酸盐降解环丙沙星:性能和机制
史京转,
魏红,
周孝德,
李克斌,
史颖娟
环境科学 ![]() ![]() |
![]() |
有研究指出[1], 喹诺酮类抗生素(quinolones, QNs)在临床上已成为除头孢类抗生素外的第二大抗菌药物.加之其在禽畜养殖的广泛使用和不完全代谢, QNs在不同环境介质中(河流、污水、土壤和饮用水)频繁检出[2], 检出浓度在ng·L-1~μg·L-1范围, 制药废水中更是高达mg·L-1[3].水环境QNs残留的生物毒性及诱导微生物产生的耐药性等严重威胁水生态安全和人类健康[4].因此探索其高效的去除和降解方法尤为重要.
基于过一硫酸盐(peroxymonosulfate, PMS)的化学氧化工艺在水污染控制方面的应用日益受到关注.与其他氧化剂相比, PMS价格便宜, 而且在紫外光、超声、热、过渡金属[5]、碱[6]、氯离子[7]和酮基化合物[8]的催化作用下, 活化产生SO4-·和HO·等自由基, 进一步通过自由基氧化或电子直接转移达到有毒有害和持久性有机物的降解.关于过渡金属催化, Fe及其氧化物因价格低廉、生物毒性低等优点, 在催化PMS等氧化剂降解有机污染物方面具有显著优势.
赤泥(red mud, RM)是氧化铝冶炼过程中排放的固体废弃物, 含有大量过渡金属, 具有强碱性, 对自然环境具有潜在危害[9].赤泥的综合利用是目前的研究热点之一.赤泥含有Al2O3、Fe2O3和TiO2等, 具有较大的比表面积[10], 可用于废水[11]和废气净化[12].但是基于赤泥的强碱性、成分及表面特性对有机污染物的催化降解还鲜见报道.
本文以喹诺酮类抗生素环丙沙星(ciprofloxacin, CIP)为目标污染物, 研究RM对PMS的催化活性.采用TEM、EDX和BET-BJH等方法对RM进行表征.考察反应温度、PMS浓度和RM投加量对CIP降解效果的影响, 探索RM活化PMS的机制.进一步解析CIP的降解产物, 探索CIP的降解路径, 以期为RM的综合利用及喹诺酮类抗生素的去除提供一定理论参考.
1 材料与方法 1.1 实验试剂RM采自三门峡义翔铝业有限公司尾矿库, 堆积时间2 a, 含水率8%, 浸出液pH为11.04. RM自然通风阴干后, 研磨过150目筛, 经四分法缩分取样备用.CIP购于日本东京化成工业株式会社, 纯度大于98%, 分子式C17H18FN3O3, 相对分子量331.35;实验用其他试剂为分析纯, 实验用水为超纯水.
1.2 实验方法CIP降解实验在气浴恒温振荡器(HZ-8811K, 常州德欧)中进行.将200 mL质量浓度为20 mg·L-1的CIP溶液置于锥形瓶中, 分别加入一定量的PMS和RM.在一定温度和避光条件下反应(未调节pH), 每5 min取样1 mL, 立即用0.1 mL质量浓度为100 mmol·L-1的Na2S2O3溶液进行淬灭, 过0.22 μm滤膜, 通过HPLC(Aglient 1200, 美国)分析CIP浓度.
1.3 分析方法RM表征:采用JEM-3010高分辨透射电镜仪(TEM, 日本电子株式会社)对RM表面和内部结果进行测试分析; X射线能谱仪(EDX, Oxford INCA)对RM的成分进行定性和定量分析; V-Sorb 2800TP比表面积和孔径分析仪(BET-BJH, 金埃谱科技)测定RM的比表面积及孔径.
CIP浓度采用Aglient 1200液相色谱仪测定.色谱柱为Eclipse XDB-C18(150 mm×4.6 mm, 5 μm), 流动相为V(乙腈):V(0.2%甲酸水溶液)=20:80, 检测波长277 nm, 流速0.3 mL·min-1, 进样体积10 μL, 柱温30℃. TOC采用全自动总有机碳测定仪Vario TOC(Elementar, 德国)进行测定.
CIP降解产物采用ExionLCTM+X500B QTOF高分辨率四极杆飞行液质联用仪(SCIEX, 美国)测定.HPLC分析条件:色谱柱Phenomenex C18(100 mm× 2.1 mm, 1.7 μm), 流动相A为0.1%甲酸水溶液, B为0.1%甲酸乙腈溶液, 采用梯度洗脱模式(表 1), 流速0.4 mL·min-1. MS分析条件: ESI离子源, 正离子电离模式, IDA扫描, 扫描范围100~1 000.
![]() |
表 1 CIP降解产物的HPLC/MS分析液相洗脱方法 Table 1 Gradient elution procedure of HPLC/MS/MS for CIP oxidation products |
图 1为RM的TEM分析结果.从中可清晰地看出, RM具有一定团聚现象, 圆形聚集体由细小微粒与分散不规则的四边形晶体组成, 以胶结连接的多孔框架结构为主, 没有确定的形状[13].这可能是由铝土矿中某些已结晶的矿物相和新形成的矿物相组成, 具体可能为方解石、方钠石、硅酸盐和铁氧化物等[14].
![]() |
图 1 RM的TEM图 Fig. 1 TEM image of the RM |
图 2为RM的N2吸附-脱附曲线及孔径结构分布.由图 2(a)可知, RM的N2吸附-脱附等温线在整个压力范围内凸向下, 曲线没有拐点, 根据IUPAC分类属于Ⅲ型等温线和H3型滞后圈。H3型滞后圈表明存在片状颗粒聚集形成裂隙状空隙[15].这与TEM分析结果一致.经BET方法计算RM的比表面积为10.96 m2·g-1.
![]() |
图 2 RM的N2吸附脱附曲线和孔径结构分布 Fig. 2 N2 adsorption-desorption isotherms and pore size distribution of the RM |
由图 2(b)可知, RM的孔径分布有明显的峰值, 其对应的最可几孔径(即为孔出现概率最大的孔径[14])出现的两个峰值为3.18 nm和6.76 nm, 说明RM是由少量微孔和较小介孔组成的孔道结构[16]. BJH计算结果显示RM的平均孔径为40.93 nm.铁基催化剂如铁碳复合物Fe@C的比表面积为5.02 m2·g-1, 平均孔径2.1 nm [17].与Fe@C相比, RM具有较大的比表面积和发达的孔隙结构.
图 3为RM的XRD分析, RM主要含有方解石(C, CaCO3)、方钠石[S, Na6(Al6Si6O24)CO3)]、赤铁矿(H, Fe2O3)、三水铝石[G, Al(OH)3]、一水硬铝石[B, γ-AlO(OH)]、锐钛矿(A, TiO2)和石英石(Q, SiO2), 与Guru等[18]的研究报道一致. RM的EDX结果见表 2, RM含有Ca、Fe、Na、Al、Si和Ti等元素.
![]() |
图 3 RM的XRD图 Fig. 3 XRD image of the RM |
![]() |
表 2 RM的元素组成/% Table 2 Elemental composition of the RM/% |
由图 4(a)可知, PMS单独氧化时, 30 min, CIP的降解率为21.3%.这是因为PMS的E0=1.82 V[19], 对CIP具有明显的氧化作用(pH=4.75). RM对CIP具有一定吸附作用, 30 min CIP的吸附去除率为43.6%, 这主要是CIP分子中的—COO与赤泥发生微弱的静电作用或内球面键合作用, 在赤泥表面发生吸附[20, 21].相同反应时间, CIP在RM/PMS体系中的降解率达到92.8%, 表明RM对PMS降解CIP具有显著的催化作用.
![]() |
反应条件:[CIP]0=20 mg·L-1; [PMS]=0.5 mmol·L-1; [RM]=1 g·L-1; T=25℃ 图 4 不同体系下环丙沙星的降解效果 Fig. 4 CIP degradation under different systems |
采用准一级反应动力学[式(1)]对CIP在不同体系中的降解过程进行拟合, 结果见图 4(b).
![]() |
(1) |
式中, [CIP]0和[CIP]分别为CIP的初始浓度和在t时刻的浓度, mg·L-1; kapp为准一级反应速率常数, min-1.
RM/PMS体系中, kapp为0.083 min-1, 是RM吸附的4.8倍; PMS氧化的11.8倍. RM显著增强PMS降解CIP主要是因为: ① RM较大的比表面积和复杂的孔道结构, 能够为反应提供较多的活性点位. ②含铝矿物具有丰富的表面活性氧, RM中Al、Ti和Fe等金属离子的电负性不同, 在催化PMS过程中存在复杂的电子转移[22, 23], 有利于PMS分解生成的HO·和SO4-·[24].
2.3 活性自由基分析本实验选择叔丁醇(t-BA)、甲醇(MTA)和苯酚(Phenol)作为特定自由基的捕获剂, 对RM/PMS降解CIP的活性自由基进行分析, 结果如图 5所示.当RM/PMS/CIP体系加入1 000倍于PMS的t-BA时, CIP的降解率由92.8%下降到89.5%;加入与t-BA等质量的MTA时, CIP降解率由92.8%下降到88.6%.据报道t-BA与HO·和SO4-·的二级反应速率常数k分别为(3.8~7.6)×108 M-1·s-1和(4~9.1)×105 M-1·s-1, 因此t-BA是HO·的有效清除剂[25].而MTA与HO·和SO4-·的k分别为(1.2~2.8)×109 L·(mol·s)-1和(1.6~7.7)×107 L·(mol·s)-1[26], 因此它是HO·和SO4-·的抑制剂. t-BA和MTA微弱抑制CIP的催化降解, 并且二者抑制作用差别较小, 表明HO·和SO4-·参与CIP降解, 但溶液中HO·和SO4-·氧化CIP的作用不显著.
![]() |
反应条件:[CIP]0=20 mg·L-1; [PMS]=0.5 mmol·L-1; [RM]=1 g·L-1; [MTA]=0.5 mol·L-1; [t-BA]=0.5 mol·L-1; [Phenol]=0.5 mol·L-1; T=25 ℃ 图 5 不同捕获剂对CIP降解的影响 Fig. 5 Effect of different scavengers on the CIP degradation |
Phenol与HO·和SO4-·的二级反应速率常数k分别为6.6×109 L·(mol·s)-1和8.8×109 L·(mol·s)-1[27].由于Phenol的疏水性, 极易扩散到催化剂表面, 捕获表面上形成的HO·和SO4-·.当Phenol加入量为PMS的1 000倍时, CIP的降解率由92.8%下降到36.9%, 显著抑制CIP的氧化降解.这一结果表明CIP与HO·和SO4-·的反应主要发生在RM的表面[28].
综合RM催化PMS降解CIP的效果、自由基抑制实验及相关报道[29], 推测RM活化PMS降解CIP的主要机制如图 6所示. ① RM具有强碱性, 加入RM后溶液pH由4.75升高至9.30, PMS主要以HSO5-为主[30](PMS的pKa=9.4), 水解生成H2O2, 并进一步分解生成HO·和HO2·[式(2)~(6)][31]. ② RM表面Al、Ti和Fe等金属离子发生复杂的电子转移并生成HO·和SO4-·[式(7)~(9)][23, 24]. ③ RM中Ca、Al和Na等非还原金属离子作为Lewis酸, 与PMS形成配合物[32], 在提高PMS氧化性能的基础上产生更多自由基, 与吸附在RM表面的CIP发生氧化反应.
![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
![]() |
(5) |
![]() |
(6) |
![]() |
(7) |
![]() |
(8) |
![]() |
(9) |
![]() |
图 6 RM活化PMS降解CIP的机制 Fig. 6 CIP degradation mechanism by RM activated PMS system |
图 7(a)为温度对CIP降解过程的准一级反应动力学拟合结果.温度从25℃升高到55℃, 相应地kapp由0.083 min-1增加到0.114 min-1.较高的温度能加快分子热运动, 增加分子间的碰撞概率, 从而加快反应进程[33].将lnkapp和1/T进行拟合[图 7(b)], 根据Arrhenius方程计算得到反应活化能Ea=5.74 kJ·mol-1.这远低于Fe3O4/β-FeOOH催化PMS降解磺胺甲噁唑(Ea=45.1 kJ·mol-1)[34]和磁性纳米CoFe2O4/PMS降解罗丹明B(Ea=70.56 kJ·mol-1)[35].与碱活化PMS降解CIP接近(Ea=5.09 kJ·mol-1), 不考虑有机物性质的差异, RM活化PMS在较低能量即可实现CIP的有效降解.
![]() |
反应条件:[CIP]0=20 mg·L-1; [PMS]=0.5 mmol·L-1; [RM]=1 g·L-1; T为25~55℃ 图 7 反应温度对CIP降解的影响 Fig. 7 Effect of temperature on the CIP degradation |
图 8(a)为RM投加量对CIP降解过程影响的准一级动力学拟合结果. RM的投加量在0.1~2.0 g·L-1范围, kapp由0.028 min-1增加到0.102 min-1, 随RM投加量的增加而升高.这是因为一方面RM投加量增加, 提供更多的活性点位; 另一方面体系pH升高[由5.39上升到10.15, 图 8(b)], 在中性和碱性条件下, PMS的主要存在形态为HSO5-和SO52-[30], 更易与RM中的Ca2+等Lewis酸形成配合物, 进一步增强PMS的氧化能力[32].此外, 碱性条件下金属不易溶出[22].考虑到CIP的降解率及RM的安全使用, 实验选择1.0 g·L-1为RM的最佳投加量.
![]() |
反应条件:[CIP]0=20 mg·L-1; [PMS]=0.5 mmol·L-1; [RM]为0.1~2.0 g·L-1; T=25 ℃ 图 8 RM投加量对CIP降解的影响 Fig. 8 Effect of the RM dosage on the CIP degradation |
图 9为PMS浓度对CIP降解过程的准一级动力学拟合结果. PMS浓度由0.1 mmol·L-1增加到0.5 mmol·L-1时, 30 min, CIP的降解率由50.6%提高到92.8%, 相应kapp值由0.021 min-1提升到0.083 min-1.这是因为PMS作为活性自由基的母体物质, 其浓度增加, 反应体系中产生更多的自由基, 进而促进CIP的降解[31].
![]() |
反应条件: [CIP]0=20 mg·L-1; [PMS]为0.1~0.5 mmol·L-1; [RM]=1.0 g·L-1; T=25 ℃ 图 9 PMS浓度对CIP降解的影响 Fig. 9 Effect of PMS concentration on the CIP degradation |
图 10为CIP在PMS氧化、RM和RM/PMS体系中的TOC的变化. 30 min, CIP的TOC去除率分别为5.9%、26.8%和50.5%, RM/PMS显著提高了CIP的矿化度, 与CIP降解率的变化基本一致.说明CIP在RM/PMS体系中发生了有效降解.
![]() |
反应条件: [CIP]0=20 mg·L-1; [PMS]=0.5 mmol·L-1; [RM]=1 g·L-1; T=25 ℃ 图 10 不同体系中TOC去除情况 Fig. 10 Removal of TOC in different systems |
采用HPLC/MS/MS方法对CIP在RM/PMS体系中的降解产物进行检测, 共检出8种降解产物, 具体如表 3所示.根据m/z信息推测CIP的降解路径, 结果如图 11所示.
![]() |
表 3 RM催化PMS降解CIP的产物分析 Table 3 Degradation products of CIP under RM/PMS system |
由图 11可知, CIP主要通过2条途径进行降解. CIP分子中的哌嗪环具有高的2FEDHOMO2值, 容易受到HO·和SO4-·攻击失去电子而氧化[36].①CIP的哌嗪环受HO·攻击生成P1 (m/z348)和P2 (m/z 364); P1哌嗪环上的羟基继续氧化成酮基生成P3 (m/z346);P3哌嗪环开环, 生成P4 (m/z362);失去一个CO, P4转化为P5(m/z334);继续失去CO, 生成P6(m/z306);哌嗪环完全去除生成P7(m/z 263), P7可进一步被HO·氧化成CO2和H2O等小分子物质.这与Zhang等[37]采用掺铈的氧化锰八面体分子筛(Ce-OMS-2)催化降解CIP的路径一致. ②CIP分子中喹诺酮环上的羧基可被HO·取代生成P8[38, 39].
![]() |
图 11 RM/PMS体系中CIP的降解路径分析 Fig. 11 Proposed pathways of CIP degradation under RM/PMS system |
(1) TEM、N2-吸附脱附曲线、XRD以及EDX等结果表明, RM是由细小微粒与不规则的四边形晶体以胶结连接的多孔框架结构组成, 具有较大的比表面积及复杂孔道结构.
(2) RM能够有效催化PMS产生SO4-·和HO·, 在表面与CIP发生氧化反应使其快速降解.温度升高有助于CIP的降解, 反应活化能Ea为5.74 kJ·mol-1; PMS浓度和RM的投加量增加, CIP的降解率增加.
(3) RM催化PMS降解CIP主要通过两种途径进行, 生成8种产物.
[1] | 2018-2023年中国化学制药行业市场发展趋势分析及投资战略研究报告[R].北京: 北京博研智尚信息咨询有限公司-中国市场调研在线, 2019, 175-185. |
[2] | Tang J, Shi T Z, Wu X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China:Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122: 154-161. DOI:10.1016/j.chemosphere.2014.11.032 |
[3] | Zhang H, Du M M, Jiang H Y, et al. Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China[J]. Environmental Science Processes & Impacts, 2015, 17(1): 225-234. |
[4] | Bengtsson-Palme J, Larsson D G J. Concentrations of antibiotics predicted to select for resistant bacteria:Proposed limits for environmental regulation[J]. Environment International, 2016, 86: 140-149. DOI:10.1016/j.envint.2015.10.015 |
[5] | Guo S, Wang H J, Yang W, et al. Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation[J]. Applied Catalysis B:Environmental, 2020, 262: 118250. DOI:10.1016/j.apcatb.2019.118250 |
[6] | Qi C D, Liu X T, Ma J, et al. Activation of peroxymonosulfate by base:Implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. DOI:10.1016/j.chemosphere.2016.02.089 |
[7] |
吴梅, 徐劼, 吴玮, 等. 新型Cl-活化过一硫酸盐法降解磺胺甲恶唑研究[J]. 水处理技术, 2019, 45(10): 64-68. Wu M, Xu J, Wu W, et al. Study on sulfamethoxazole degradation by new type Cl- activated peroxymonosulfate method[J]. Technology of Water Treatment, 2019, 45(10): 64-68. |
[8] |
许芬, 陈家斌, 张书源, 等. 丙酮活化过一硫酸盐性能及非自由基机制[J]. 环境科学学报, 2018, 38(11): 4333-4339. Xu F, Chen J B, Zhang S Y, et al. Performance and non-radical mechanism of activation of peroxymonosulfate by acetone[J]. Acta Scientiae Circumstantiae, 2018, 38(11): 4333-4339. |
[9] | Ren J, Chen J, Han L, et al. Spatial distribution of heavy metals, salinity and alkalinity in soils around bauxite residue disposal area[J]. Science of the Total Environment, 2018, 628-629: 1200-1208. DOI:10.1016/j.scitotenv.2018.02.149 |
[10] | Xue S G, Zhu F, Kong X F, et al. A review of the characterization and revegetation of bauxite residues (Red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. DOI:10.1007/s11356-015-4558-8 |
[11] | Shao L H, Wei G T, Wang Y Z, et al. Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process[J]. Environmental Science and Pollution Research, 2016, 23(15): 15202-15207. DOI:10.1007/s11356-016-6691-4 |
[12] | Hu Z P, Zhu Y P, Gao Z M, et al. CuO catalysts supported on activated red mud for efficient catalytic carbon monoxide oxidation[J]. Chemical Engineering Journal, 2016, 302: 23-32. DOI:10.1016/j.cej.2016.05.008 |
[13] | Jayasankar K, Ray P K, Chaubey A K, et al. Production of pig iron from red mud waste fines using thermal plasma technology[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(8): 679-684. DOI:10.1007/s12613-012-0613-3 |
[14] | Sahu M K, Mandal S, Dash S S, et al. Removal of Pb(Ⅱ) from aqueous solution by acid activated red mud[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 1315-1324. DOI:10.1016/j.jece.2013.09.027 |
[15] | Isahak W N R W, Ramli Z A C, Ismail M W, et al. Adsorption-desorption of CO2 on different type of copper oxides surfaces:physical and chemical attractions studies[J]. Journal of CO2 Utilization, 2013, 2: 8-15. DOI:10.1016/j.jcou.2013.06.002 |
[16] |
李勃, 陈方文, 肖佃师, 等. 颗粒粒径对低温氮吸附实验的影响——以五峰组-龙马溪组海相含气页岩为例[J]. 中国矿业大学学报, 2019, 48(2): 395-404. Li B, Chen F W, Xiao D S, et al. Effect of particle size on the experiment of low temperature nitrogen adsorption:a case study of marine gas shale in Wufeng-Longmaxi formation[J]. Journal of China University of Mining & Technology, 2019, 48(2): 395-404. DOI:10.13247/j.cnki.jcumt.000931 |
[17] | Liu Y, Guo H G, Zhang Y L, et al. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation[J]. Environmental Pollution, 2019, 252: 1042-1050. DOI:10.1016/j.envpol.2019.05.157 |
[18] | Guru S, Amritphale S S, Mishra J, et al. Multicomponent red mud- polyester composites for neutron shielding Application[J]. Materials Chemistry and Physics, 2019, 224: 369-375. DOI:10.1016/j.matchemphys.2018.12.039 |
[19] | Ghanbari F, Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants:review[J]. Chemical Engineering Journal, 2017, 310: 41-62. DOI:10.1016/j.cej.2016.10.064 |
[20] | Venkatesan G, Narayanan S L. Synthesis of Fe2O3-coated and HCl-treated bauxite ore waste for the adsorption of arsenic (Ⅲ) from aqueous solution:isotherm and kinetic models[J]. Chemical Engineering Communications, 2018, 205(1): 34-46. |
[21] | Trivedi P, Vasudevan D. Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface[J]. Environmental Science & Technology, 2007, 41(9): 3153-3158. |
[22] | Wu S H, Lin Y, Yang C P, et al. Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants[J]. Chemosphere, 2019, 237: 124478. DOI:10.1016/j.chemosphere.2019.124478 |
[23] | Lyu L, Zhang L L, Hu C. Galvanic-like cells produced by negative charge nonuniformity of lattice oxygen on d-TiCuAl-SiO2 nanospheres for enhancement of Fenton-catalytic efficiency[J]. Environmental Science Nano, 2016, 3(6): 1483-1492. DOI:10.1039/C6EN00290K |
[24] | Feng Y, Wu D L, Liao C Z, et al. Red mud powders as low-cost and efficient catalysts for persulfate activation:pathways and reusability of mineralizing sulfadiazine[J]. Separation and Purification Technology, 2016, 167: 136-145. DOI:10.1016/j.seppur.2016.04.051 |
[25] | Zhang T, Zhu H B, Croue J P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water:efficiency, stability, and mechanism[J]. Environmental Science & Technology, 2013, 47(6): 2784-2791. DOI:10.1021/es304721g |
[26] | Oh W D, Lua S K, Dong Z L, et al. Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes[J]. Journal of Hazardous Materials, 2015, 284: 1-9. DOI:10.1016/j.jhazmat.2014.10.042 |
[27] |
于永波, 黄湾, 董正玉, 等. N原子杂化石墨烯高效活化过一硫酸盐降解RBK5染料废水[J]. 环境科学, 2019, 40(7): 3154-3161. Yu Y B, Huang W, Dong Z Y, et al. Degradation of RBK5 with peroxymonosulfate efficiently activated by N-doped graphene[J]. Environmental Science, 2019, 40(7): 3154-3161. |
[28] |
李晶, 鲍建国, 杜江坤, 等. Fe/Cu双金属活化过一硫酸盐降解四环素的机制[J]. 环境科学, 2018, 39(7): 3203-3211. Li Jing, Bao J G, Du J K, et al. Degradation mechanism of tetracycline using Fe/Cu oxides as heterogeneous activators of peroxymonosulfate[J]. Environmental Science, 2018, 39(7): 3203-3211. |
[29] | Zhu S J, Xu Y P, Zhu Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. DOI:10.1016/j.cej.2019.123298 |
[30] | Deng J, Feng S F, Zhang K J, et al. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH[J]. Chemical Engineering Journal, 2017, 308: 505-515. DOI:10.1016/j.cej.2016.09.075 |
[31] |
葛勇建, 蔡显威, 林翰, 等. 碱活化过一硫酸盐降解水中环丙沙星[J]. 环境科学, 2017, 38(12): 5116-5123. Ge Y J, Cai X W, Lin H, et al. Base activation of peroxymonosulfate for the degradation of ciprofloxacin in water[J]. Environmental Science, 2017, 38(12): 5116-5123. |
[32] | Xu A H, Wei Y, Zou Q C, et al. The effects of nonredox metal ions on the activation of peroxymonosulfate for organic pollutants degradation in aqueous solution with cobalt based catalysts:A new mechanism investigation[J]. Journal of Hazardous Materials, 2020, 382: 121081. DOI:10.1016/j.jhazmat.2019.121081 |
[33] | Zhao Y, Zhao Y S, Zhou R, et al. Insights into the degradation of 2, 4-dichlorophenol in aqueous solution by α-MnO2 nanowire activated persulfate:catalytic performance and kinetic modeling[J]. RSC Advances, 2016, 6(42): 35441-35448. DOI:10.1039/C6RA00008H |
[34] | Li C X, Wu J E, Peng W, et al. Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites:coexistence of radical and non-radical reactions[J]. Chemical Engineering Journal, 2019, 356: 904-914. DOI:10.1016/j.cej.2018.09.064 |
[35] | Du Y C, Ma W J, Liu P X, et al. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants[J]. Journal of Hazardous Materials, 2016, 308: 58-66. DOI:10.1016/j.jhazmat.2016.01.035 |
[36] | Sturini M, Speltin A, Maraschi F, et al. Photochemical degradation of marbofloxacin and enrofloxacin in natural waters[J]. Environmental Science & Technology, 2010, 44(12): 4564-4569. |
[37] | Zhang L L, Tu J J, Lyu L, et al. Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres[J]. Applied Catalysis B:Environmental, 2016, 181: 561-569. DOI:10.1016/j.apcatb.2015.08.029 |
[38] | Zhang L L, Yue Q Y, Yang K L, et al. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis:Investigation on pollutants removal and degradation mechanisms[J]. Journal of Hazardous Materials, 2018, 342: 705-714. DOI:10.1016/j.jhazmat.2017.09.010 |
[39] | Chen L S, Yuan T J, Ni R, et al. Multivariate optimization of ciprofloxacin removal by polyvinylpyrrolidone stabilized NZVI/Cu bimetallic particles[J]. Chemical Engineering Journal, 2019, 365: 183-192. DOI:10.1016/j.cej.2019.02.051 |
[40] | Li S, Hu J Y. Transformation products formation of ciprofloxacin in UVA/LED and UVA/LED/TiO2 systems:impact of natural organic matter characteristics[J]. Water Research, 2018, 132: 320-330. DOI:10.1016/j.watres.2017.12.065 |
[41] | Wachter N, Aquino J M, Denadai M, et al. Electrochemical degradation of the antibiotic ciprofloxacin in a flow reactor using distinct BDD anodes:Reaction kinetics, identification and toxicity of the degradation products[J]. Chemosphere, 2019, 234: 461-470. DOI:10.1016/j.chemosphere.2019.06.053 |
[42] | Nekouei F, Nekouei S. Comparative study of photocatalytic activities of Zn5(OH)8Cl2·H2O and ZnO nanostructures in ciprofloxacin degradation:Response surface methodology and kinetic studies[J]. Science of the Total Environment, 2017, 601-602: 508-517. DOI:10.1016/j.scitotenv.2017.05.117 |