环境科学  2020, Vol. 41 Issue (1): 232-241   PDF    
松花江表层沉积物PAEs分布特征及生态风险评价
王欢1,2,3, 杨永哲1, 王海燕2,3, 董伟羊2,3, 闫国凯2,3, 常洋2,3, 李泽文2,3, 赵远哲1,2,3, 凌宇2,3     
1. 西安建筑科技大学环境与市政工程学院, 西安 710055;
2. 中国环境科学研究院环境污染控制工程技术研究中心, 北京 100012;
3. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012
摘要: 为揭示松花江干支流表层沉积物中邻苯二甲酸酯类(phthalate esters,PAEs)的空间分布特征及其生态风险状况,本文利用气相色谱三重四级杆质谱联用仪(GC-MS)对松花江干支流表层沉积物中6种PAEs的含量分布和组成特征进行了分析,并采用商值法和环境风险水平(ERL)法对其生态风险状况进行评价.结果表明:①松花江干支流沉积物6种邻苯二甲酸酯(∑6PAEs)含量范围(以干重计)为6832.5~36298.9 ng·g-1(平均值为18388.6 ng·g-1),邻苯二甲酸(2-乙基己基)酯(DEHP)和邻苯二甲酸二丁酯(DBP)为主要组分,干流点位∑6PAEs含量(6832.5~36298.9 ng·g-1,平均值为18616.9 ng·g-1)与支流点位∑6PAEs(10367.6~26593.3 ng·g-1,平均值为18264.1 ng·g-1)差异不显著(P>0.05),支流点位各PAEs单体含量与干流点位差异不大.从上游到下游干支流∑6PAEs含量呈现先降后升的趋势.农业自然区域∑6PAEs平均含量(18677.5 ng·g-1)与城市工业区域(18063.7 ng·g-1)相近(P>0.05),DBP和DEHP是两区域内的主要PAEs,两者平均值贡献率高达98%以上.②松花江干支流表层沉积物中∑6PAEs主要来源于人类日用品、农业生产以及含有增塑剂的工业生产.③松花江表层沉积物中DMP和BBP对水生生物无生态风险,DEP具有低水平生态风险,而DEHP和DBP对水生生物具有高生态风险.
关键词: 松花江      邻苯二甲酸酯(PAEs)      沉积物      分布特征      生态风险评价     
Distribution Characteristics and Ecological Risk Assessment of Phthalate Esters in Surface Sediments of the Songhua River
WANG Huan1,2,3 , YANG Yong-zhe1 , WANG Hai-yan2,3 , DONG Wei-yang2,3 , YAN Guo-kai2,3 , CHANG Yang2,3 , LI Ze-wen2,3 , ZHAO Yuan-zhe1,2,3 , LING Yu2,3     
1. School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2. Research Center for Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
3. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: This study assesses the spatial distribution characteristics and ecological risk of phthalate esters (PAEs) in the surface sediments of the mainstream and tributaries of the Songhua River, China, using concentrations and composition of six PAEs, which were analyzed using gas chromatography-mass spectrometery (GC-MS). We assess the ∑6PAEs ecological risk using the hazard quotient (HQ) method and environmental risk levels (ERL). The results were as follows. ① It was found that the total concentrations of ∑6PAEs ranged from 6832.5 to 36298.9 ng·g-1 dry weight (average 18388.6 ng·g-1), with the main contributions coming from di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP). The difference between the main stream ∑6PAEs (6832.5-36298.9 ng·g-1, average 18616.9 ng·g-1) and the tributary ∑6PAEs (10367.6-26593.3 ng·g-1, average 18264.1 ng·g-1) was not significant (P >0.05). The mean concentrations of individual PAEs in the tributary stream differed little from that of the main stream. The ∑6PAEs concentration of the Songhua River decreased initially but then increased from the upstream to the downstream. The average ∑6PAEs concentration in natural agricultural areas (18677.5 ng·g-1) was similar to that found in urban industrial areas (18063.7 ng·g-1), and DBP and DEHP contributed 98% of ∑6PAEs. ② The main sources of ∑6PAEs were domestic, agricultural production, and industrial production using plasticizers. ③ The ecological risk assessment indicated that DMP and BBP in the surface sediments of the Songhua River did not pose an ecological risk for aquatic organisms, and that DEP was associated with a low ecological risk, whereas DEHP and DBP posed a high ecological risk for aquatic organisms.
Key words: Songhua River      phthalate esters (PAEs)      sediments      spatial distribution      ecological risk assessment     

邻苯二甲酸酯(phthalate esters, PAEs)又名酞酸酯, 是一类重要的有机化合物, 被广泛用于塑料工业, 作为聚氯乙烯(PVC)材料的粘合剂和增塑剂, 以提高其柔韧性和加工能力[1~4], 还被应用于其他非增塑剂行业, 包括化妆品、驱虫剂、推进剂、装饰性油墨和润滑油制造等行业[5, 6].由于其广泛应用, PAEs在空气、水、沉积物、土壤和食物中被广泛检测出[7~10].曾报道PAEs对人体的生殖和发育有潜在危害, 可导致内分泌紊乱和生殖机能失常等[11~13].因此, PAEs被公认为全球性的环境有机污染物, 已引起世界各国的重视.美国环保署(environmental protection agency, USEPA)将6种PAEs[邻苯二甲酸二甲酯(dimethyl phthalate, DMP)、邻苯二甲酸二乙酯(diethyl phthalate, DEP)、邻苯二甲酸二丁酯(di-n-butyl phthalate, DBP)、邻苯二甲酸丁基苄酯(butyl-benzyl phthalate, BBP)、邻苯二甲酸(2-乙基己基)酯(di-2-ethylhexyl phthalate, DEHP)和邻苯二甲酸二正辛酯(di-n-octyl phthalate, DnOP)]列为优先控制污染物[14].

由于PAEs的高疏水性, 水体中的PAEs易与底部沉积物结合并且沉积物对其具有高吸收率和低运输潜力[15].沉积物作为污染物的长期储层, 与水体进行物质和能量交换, 其中的PAEs对水生生物构成潜在的威胁[16].国内外学者对沉积物中的PAEs分布特征及生态风险评价做了大量研究, Chen等[17]发现了中国台湾高雄港沉积物中∑6PAEs含量范围为400.0~34 800.0 ng ·g-1, DEHP占比达92%;Li等[18]研究了中国九龙江沉积物中∑6PAEs的空间分布, 发现DIBP和DEHP具有高风险, 而DBP和DINP具有中等风险;Gao等[19]的研究发现, 太湖沉积物中∑6PAEs含量范围为5 150.0~20 900.0 ng ·g-1, 沉积物中的DEP对水生态系统具有较高的风险;董雷等[20]的研究发现,丰水期长江武汉段沉积物中PAEs主要来源于塑料、重化工工业和生活垃圾;Zhang等[21]的研究发现,长江口及临江地区沉积物中∑6PAEs含量范围为480.0~29 940.0 ng ·g-1, DEHP和DBP含量超过环境风险水平(environmental risk levels, ERL)值, 对海洋环境存在潜在危害;Zhang等[22]的研究发现,渤海沉积物中∑16PAEs含量高于黄海, 并运用风险熵(risk quotient, RQ)评价发现DBP和DiBP在沉积物中达到高风险水平;Liu等[23]的研究发现,在高度城市化和工业化的珠江三角洲地区河流沉积物中∑16PAEs含量较高.Srivastava等[24]通过高效液相色谱法对印度Gomti河沉积物中5种PAEs进行定量和定性分析, 确定了DMP、DEP、DBP、DEHP和DOP的含量(10.5、4.6、10.4、31.6和5.2 ng ·g-1);Adeogun等[25]研究了尼日利亚(Epe和Lagos)两个澙湖沉积物中3种PAEs含量高于水中, 且DEP和DEHP是含量最高的;Arfaeinia等[26]的研究发现波斯湾北部工业区和农业区沉积物PAEs污染水平显著高于城市区和自然区, 主要来源为工业和农业活动.

松花江是我国第三大水系, 为黑龙江、吉林和内蒙古提供饮用水和农业灌溉用水等, 同时松花江流域因其丰富的煤炭资源、石油、电力、森林等非金属资源, 沿岸分布了许多重工业城市如哈尔滨、吉林及佳木斯市等.近年来由于流域社会经济的快速发展, 河流沉积物中部分污染物含量较高, 部分河流水生生态系统遭到破坏, 水体自净能力受到损伤, 区域内分布的煤化工、塑料制品和农业等成为PAEs潜在的污染来源[27, 28].目前有关松花江流域沉积物PAEs空间分布特征的研究主要集中在松花江部分河段.陆继龙等[29]的研究发现, 第二松花江沉积物PAEs中DBP(7 632.4 ng ·g-1)和DEHP(6 367.6 ng ·g-1)含量均已超过了美国华盛顿州的警戒标准(均为610.0 ng ·g-1), 从上游至下游沉积物中5种PAEs呈现先增加后减少的趋势.崔志丹等[30]报道第二松花江上游松花湖沉积物中∑6PAEs含量范围为33.7~2 062.3 ng ·g-1, 生态风险较低, 只有部分点位存在低度生态风险.杨艳艳[31]研究了松花江(嫩江、第二松花江和松花江主段)2016年丰水期∑6PAEs含量范围为819.4~24 035.4 ng ·g-1, DBP和DEHP的含量较高, DBP和DEHP对生态环境潜在风险较高.但尚未发现对松花江干支流、上下游和不同区域沉积物中PAEs含量分布特征、风险评价和来源分析的综合报道.

本研究主要研究了松花江干支流、上下游和不同区域沉积物中PAEs含量分布特征, 并采用主成分分析法, 探讨其主要来源;采用商值法和环境风险水平(ERL)法, 开展污染水平分析和风险评估, 以期为松花江水生态恢复保护及风险管控提供科学依据.

1 材料与方法 1.1 样品采集

本研究于2017年3月(枯水期)在松花江流域布置19个采样点, 其中嫩江4个采样点(N1~N4), 第二松花江(“二松”)3个采样点(D1~D3), 松花江主段(“松主段”)10个采样点(S1~S10), 黑龙江2个采样点(H1和H2);其中N1~N3、D1、S1~S3、S9和S10为农业自然区域点位, N4、D2和D3、S4~S8为城市工业区域点位(图 1表 1).使用抓斗采样器(ZGCSC-5, 上海梓桂仪器有限公司)采集沉积物样品, 每个点位随机采集3份沉积物平行样.采集的样品用锡箔纸包好, 置于不锈钢盒中, -20℃冰箱保存, 备用.

图 1 松花江流域采样点分布示意 Fig. 1 Sampling sites in the Songhua River

表 1 松花江流域采样点信息 Table 1 Information of sampling sites

1.2 仪器与试剂

Agilent 7890A-5975C气相色谱-质谱联用仪(美国Agilent公司);FreeZone®冷冻干燥机(美国Labconco公司);Visiprep DL SPE固相萃取装置(美国Supelco公司);ASE-350加速溶剂萃取仪(美国Thermo Fisher公司);SE812氮吹浓缩仪(北京帅恩科技有限公司).

6PAEs混合标准溶液(美国o2si公司), 包括DMP、DEP、DBP、BBP、DEHP和DnOP;EPA525.2内标混标(含苊-d10、菲-d10和-d12)和2种替代物混标(HJ805-2016对三联苯-d14和2-氟联苯, HJ 950-2018)标准品购于美国o2si公司;正己烷、丙酮和甲醇均为农残级(美国MREDA和德国MERCK);无水硫酸钠(优级纯, 天津津科)、硅藻土(20目~100目, 国药集团)和石英砂(20目~100目, 国药集团).

1.3 样品预处理与分析

沉积物样品经真空冷冻干燥(Free Zone®冷冻干燥机, 美国Labconco公司)、研磨和过0.15 mm筛后, 取5 g样品(精确到0.000 1 g), 加2 g硅藻土作分散剂, 采用加速溶剂萃取仪(ASE-350加速溶剂萃取仪, 美国Thermo Fisher公司)进行萃取, 以正己烷和丙酮1 :1为萃取溶剂, 萃取仪载气压力为0.8 MPa, 加热温度为100℃, 萃取池压力为8.3~13.8 MPa, 预加热平衡5 min, 静态萃取5 min, 溶剂淋洗体积为60%池体积, 氮气吹扫时间为60 s, 静态萃取2次, 将萃取液氮吹浓缩至2 mL进行铜粉脱硫, 然后采用Aglient硅胶小柱串联PSA小柱(N-丙基乙二胺固相萃取柱)对萃取液进一步净化, 先在串联好的小柱上加入2 g无水硫酸钠脱水, 然后加入20 mL正己烷进行柱子的活化, 活化后进行上样, 上样完成后用丙酮和正己烷混合溶剂(体积比为1 :1)洗脱3次, 将收集到的洗脱液氮吹浓缩至1 mL, 用于GC-MS分析.

采用TOC-VCPH型总有机碳分析仪, 配有SSM-5000A固体样品进样装置(Shimadzu公司, 日本)测定沉积物样品中总有机碳(TOC)含量.

1.4 仪器分析条件

气相色谱参考条件:DB-5MS 122-5562UI毛细管柱(60 m×0.25 mm×0.25 μm);载气为高纯氦气(纯度>99.999%);流速1.0mL ·min-1, 恒流模式;进样口温度(280℃);进样量(1.0 μL);分流方式(不分流);色谱柱升温程序:60℃保留2 min, 以10℃ ·min-1升温到200℃, 保持2 min, 再以5℃ ·min-1升温到300℃, 保持15 min.

质谱参考条件:离子源温度[230℃电子轰击源(EI)];离子化能量(70 eV);四级杆温度(150℃);接口温度(280℃);扫描质量范围(45~450 u);扫描模式(Scan定性, Sim定量).

1.5 质量保证与质量控制

本研究采用方法空白、空白加标、样品平行样和内标法定量进行质量控制和质量保证, 为避免分析过程产生的污染, 每一批处理10个样品, 溶剂空白和方法空白各1个, 空白加标和基质加标各1个(检测仪器的重现性和稳定性).每一个样品均添加替代标准物测方法回收率, 回收率介于63.6% ~114.4%;目标化合物的平行样标准偏差范围为0.3% ~16.4%, 所有样品上机测试3次, 最终结果取3次平行平均值.方法空白样品仅检出含量较低的DEHP, 在最后结果中扣除.空白加标回收率为73.2% ~117.1%, 基质加标回收率76.5% ~119.0%, 检出限为0.1(BBP)~3.1(DBP) ng ·g-1, 定量限为2.6~9.1 ng ·g-1.

1.6 数据分析

使用SPSS Statistics 23软件对所得数据进行统计学分析, 多独立样本非参数检验(中位数检验, Kruskal-Wallis, Jonckheere-Terpstra)和T检验分析数据之间的差异性, Pearson相关性用于分析PAEs含量与TOC含量之间的相关性, 主成分分析用来估计沉积物中PAEs的可能来源.此外, 用ArcMap 10.2(GIS)软件绘制松花江流域采样点位.

1.7 生态风险评价

目前有关PAEs生态风险影响评价研究较少, 尚未建立起统一的标准.为此, 以ERL值评价沉积物PAEs的生态风险.此外, 还采用商值法半定量表征PAEs的生态风险, 通过从US EPA数据库(http://cfpub.epa.gov/ecotox/)获得5种PAEs对相对敏感生物的毒性数据, 计算得到这5种PAES(DBP、DEHP、DEP、BBP和DMP)相对应的预测无影响含量值(PNEC), 并根据风险按熵公式计算出风险熵[32]

式中, EC为环境暴露含量值(ng ·g-1);PNEC为计算得到的预期无影响含量值(ng ·g-1).

HQ值被分为4个级别以评估生态风险, 等级为[33]:当HQ < 0.1, 无生态风险;0.1≤HQ < 1, 低生态风险水平;1≤HQ < 10, 中等生态风险水平;HQ≥10, 高生态风险.

2 结果与讨论 2.1 松花江表层沉积物PAEs含量分布

2017年3月松花江流域19个采样点位表层沉积物中6种PAEs均有检出, 其∑6PAEs含量范围(以干重计, 下同)为6 832.5~36 298.9 ng ·g-1, 平均值为18 388.6 ng ·g-1. DEHP检出含量最高, 范围为4 808.4~18 909.5 ng ·g-1, 平均值为10 636.9 ng ·g-1(表 2).

表 2 松花江表层沉积物样品中∑6PAEs Table 2 Concentrations of ∑6PAEs in the sediments of the Songhua River

干流点位∑6PAEs含量范围为6 832.5~36 298.9 ng ·g-1, 平均值为18 616.9 ng ·g-1, 支流点位∑6PAEs含量范围为10 367.6~26 593.3 ng ·g-1, 平均值为18 264.1 ng ·g-1.支流点位∑6PAEs平均含量比干流点位略低, 但差异不显著(P>0.05), 与杨艳艳[31]研究9月样点不一致, 这可能由于9月支流多接纳农田退水, 但3月冬季农业退水较少, 支流沉积物中PAEs含量相对较低, 而干流PAEs来源较广, 故而导致干支流差异变小.支流点位各PAEs单体含量与干流点位差异不大(表 2).黑龙江H1和H2点位∑6PAEs含量分别为19 207.3 ng ·g-1和16 648.4 ng ·g-1, 平均值为17 927.9 ng ·g-1.

不同江段干支流∑6PAEs平均含量既存在一定相似性, 又呈现某些差异性.嫩江支流∑6PAEs平均含量(19 802.3 ng ·g-1)与嫩江干流(19 515.6 ng ·g-1)接近, 松主段支流(18 497.8 ng ·g-1)与松主段干流(17 237.2 ng ·g-1)相比差异不大, 与整个流域干支流含量分布一致.二松支流∑6PAEs平均含量(15 907.6 ng ·g-1)显著低于二松干流(20 959.2 ng ·g-1), 这主要是因为二松干流点位位于吉林和长春等重工业城市的下游, 而支流点位多位于工业较分散的区域或是城市上游, 受经济社会和工业影响较小.嫩江(19 659.0 ng ·g-1)、松主段(18 119.6 ng ·g-1)、黑龙江(17 927.9 ng ·g-1)和二松(17 591.5 ng ·g-1)这4个江段∑6PAEs平均含量相差不大, 且经多独立样本非参数检验表明, 各江段∑6PAEs含量分布无显著性差异(P>0.05), 这可能与松花江流域各江段均有农业退水、工业废水和生活污水等汇入有关, 导致各江段∑6PAEs含量差异较小.

松花江上、中、下游点位∑6PAEs含量范围分别为14 323.7~24 619.3、10 367.6~20 660.5和6 832.5~36 298.9 ng ·g-1, 平均值分别为18 772.9、15 784.6和20 454.7 ng ·g-1.从上游到下游干支流∑6PAEs平均含量呈现先降后升的趋势.下游点位含量最高, 可能是由于松花江下游流域流经了工业城市佳木斯、鹤岗和七台河市等, 下游西林(S9)点位紧临于以煤化工、煤炭采选和造纸等为主要产业的佳木斯市下游, ∑6PAEs含量最高达到36298.9 ng ·g-1, 流经煤炭丰富的鹤岗市的梧桐河向松主段汇入也会贡献一定的PAEs, 且松花江下游流经我国著名的商品粮基地“三江平原”, 大量农业退水直接排入致使下游沉积物中PAEs累积;倭肯河中游(S6)和桔源林场(S7)点位分别位于七台河市和伊春市周边, PAEs含量升高可能与城市工业废水与生活污水的排放有关.从上游到中游∑6PAEs含量下降可能是因为上游嫩江和第二松花江沿岸曾聚集大量以冶金、化工、造纸、化纤、石油开采等工业为主的齐齐哈尔市、大庆市、松原市、长春市和吉林市等大中型城市, 工业排污影响较大, 但中游城市工业聚集密度不如上游, 故∑6PAEs含量相对于上游偏低.最小值出现在松花江干流佳木斯上(S8)点位, 该点位远离城市, 自然环境好, 受重工业及人类活动影响较小.

从农业自然区域和城市工业区域来看, 农业自然区域∑6PAEs平均含量(18 677.5 ng ·g-1)与城市工业区域∑6PAEs平均含量(18 063.7 ng ·g-1)相近, 经T检验(P>0.05)表明两种区域类型的∑6PAEs平均含量无显著性差异, 而Wang等[34]的研究发现江苏省河流沉积物中工业∑PAEs含量显著高于农业点位.这可能与松花江流域产业结构有关, 东北是我国重要的商品粮基地, 农业自然区域高PAEs值与蔬菜温室、塑料薄膜、农药和化肥的大量使用密切相关[35].同时松花江流域是老工业基地, 沿岸的城市生活污水以及工业废水的汇入使得沉积物中∑6PAEs含量升高.从组成情况来看, 在城市工业区域和农村自然区域DEHP含量平均值贡献率分别为68.0%和55.5%, DBP含量平均值贡献率分别为31.2%和43.7%, DBP和DEHP是2种主要的PAEs污染物, 两者含量平均值贡献率高达98%以上, 这与Arfaeinia等[26]对波斯湾农业和工业等区域河流沉积物的研究一致.

沉积物中∑6PAEs污染以DBP和DEHP为主, 这与Gao等[19]和陆继龙等[29]的研究结果一致(表 3).松花江流域沉积物中DBP含量略高于珠江三角洲和巢湖, 并明显高于其他河流(表 3);DEHP含量低于珠江三角洲和高雄港1~2倍, 高于其他河流;但DMP、DEP和BBP含量低于其他河流;松花江流域∑6PAEs含量处于中等水平, 表明松花江流域水生生态系统面临一定的PAEs风险.

表 3 国内外河流、湖泊沉积物中PAEs污染水平比较1)/ng ·g-1 Table 3 Comparison of ∑6PAEs in sediments of the Songhua River with other waterbodies in China and abroad/ng ·g-1

多数研究表明, 河流沉积物中的TOC含量是影响有机物吸附的主要因素之一[40, 41], 因此松花江流域表层沉积物中的PAEs含量水平可能与TOC相关联.本研究采样点沉积物中TOC含量为0.0% ~2.7%(平均值为0.9%), PAEs与TOC相关性如图 2所示, 在P=0.05的置信水平上, PAEs与TOC相关性不显著.表明松花江流域17个点位∑6PAEs平均含量不受沉积物中TOC含量影响, 可能与运输、混合、沉淀机制和源组成等因素有关[42, 43].

图 2 PAEs含量与TOC的相关性 Fig. 2 Relationship between the concentrations of PAEs and TOC

2.2 沉积物PAEs组成特征

松花江沉积物∑6PAEs中各PAE单体相对占比为:DEHP(57.80%)>DBP(41.35%)>DEP(0.28%)>BBP(0.25%)>DMP(0.20)>DnOP(0.07%).N1、N2、N3、S7和S9点位DBP占比范围为50.3% ~67.5%, 其余点位除D3点位外DEHP占比范围为56.0% ~87.3%(图 3), 可以看出松花江干支流沉积物中PAEs主要组分为DEHP和DBP.国内许多研究表明河流沉积物中PAEs以DEHP和DBP为主要组分, 如长江武汉段、太湖和黄河[44~47], 这可能是因为PAEs是亲脂性的有机污染物, 其辛醇-水分配系数较高, 水溶性低, 进入水体的PAEs易于在沉积物中富集, 尤其对于吸附能力强和水中溶解度相对较小的DBP和DEHP, 另一方面也可能是因为DBP和DEHP属于最为普遍的PAEs[48~50], 而DMP对光敏感[51], 并且在硝酸盐和强氧化剂的影响下容易分解[52, 53], 这些特征可能影响DMP的分布.

图 3 松花江表层沉积物PAEs在各点位组成特征分布 Fig. 3 6PAEs composition characteristics in sediments of the Songhua River

2.3 沉积物PAEs来源分析

采用主成分分析法分析松花江表层沉积物中PAEs的来源结果如图 4所示, 沉积物样品提出两个主成分, 每个主成分(PC)的特征值均大于1, 方差贡献率分别为57.71%和84.27%, 在第一主成分(PC1)中, DMP(0.9)、BBP(0.8)、DEP(0.8)、DnOP(0.8)和DBP(0.7)呈现很高的正载荷, 说明他们来源相似, 而DEP和DBP广泛存在于个人护理产品的添加剂中[54, 55], DMP和DBP也是生活垃圾中的主要PAEs类污染物[56, 57], BBP和DnOP则主要用于合成皮革、墨水、密封剂和粘合剂[58].第二主要成分(PC2)中DEHP(0.6)载荷最高, DEHP主要用于聚合物工业生产中的增塑剂, 以提高柔韧性、可加工性和一般处理性能[59, 60], 同时DEHP主要应用于农业, 是白色和黑色塑料薄膜中主要成分[61, 62], 据调查2017年黑吉两省塑料薄膜的农业消费量约为20.2万t, 覆盖面积达到37.7万hm2[63].由此可见, PC1可能主要来源于化妆品、个人护理品和人类日常用品, 而PC2则来源于含有增塑剂的工业产品以及农业生产活动中.总而言之, 松花江表层沉积物中PAEs主要来源于人类日常生活用品、农业生产以及含有增塑剂的工业生产, 这与陆继龙等[29]的研究结果一致.

图 4 PAEs单体主成分分析因子载荷值 Fig. 4 Factor loadings of PAEs congeners by principal component analysis

2.4 沉积物PAEs生态风险评价

本研究参考van Wezel等[64]确定的两种PAEs的ERL值(DBP和DEHP的ERL值分别为700 ng ·g-1和1 000 ng ·g-1), 当相对污染系数(RCF=CPAEs/ERL, CPAEs为PAEs环境暴露含量)结果小于1, PAEs不存在内分泌干扰和生态毒性风险;结果大于1, PAEs存在内分泌干扰和生态毒性风险.至于其他单体PAEs, 国家海洋局推荐使用美国华盛顿颁布的沉积物质量警戒线[65], 各组分均为610 ng ·g-1.松花江所有点位表层沉积物中的DBP和DEHP均超过了美国华盛顿州颁布的质量警戒水平且RCF值均大于1, 表明DBP和DEHP对研究区域生态环境存在内分泌干扰和生态毒性风险, 这与国内部分河流一致[66~68], 其余4种PAEs均未超过美国华盛顿沉积物质量警戒线, 表明DMP、DEP、BBP和DnOP这4种PAEs生态风险较小.

采用商值法进一步评价了松花江沉积物中5种PAEs对水生生物的风险(表 4), 5种PAEs的HQ值排序如下:DBP>DEHP>DEP>BBP>DMP.其中DMP和BBP在各江段的HQ值均小于0.1, 表明DMP和BBP对各江段水生生物均无生态风险.DEP在各江段的HQ值均大于0.1而小于1, 表明DEP对各江段水生生物生态风险处于低水平.DBP和DEHP在各江段的HQ值均大于10, 表明DBP和DEHP对各江段水生生物具有高生态风险.支流沉积物中DEP和DEHP对水生生物的风险比干流稍高, 而干流沉积物中DBP对水生生物的风险比支流高.

表 4 PAEs的HQ分布 Table 4 HQ values of PAEs

3 结论

(1) 松花江干支流表层沉积物中∑6PAEs范围为6 832.5~36 298.9 ng ·g-1, 平均值为18 388.6 ng ·g-1, 与国内外其他河流相比, 含量水平处于中等.干流点位∑6PAEs平均含量与支流点位差异不显著;从上游到下游干支流∑6PAEs含量呈现先降后升的趋势;各江段∑6PAEs平均含量相差不大, 无显著性差异;农业自然区域∑6PAEs平均含量与城市工业区域接近, 区域差异对松花江流域∑6PAEs平均含量无显著性影响.松花江流域沉积物中∑6PAEs含量不受TOC影响.

(2) 松花江沉积物∑6PAEs中各PAEs单体相对占比为:DEHP>DBP>DEP>BBP>DMP>DnOP, 表明松花江干支流沉积物中PAEs主要组分为DEHP和DBP, 其中DEHP是最主要的污染物, 其单体贡献率为57.80%.

(3) 松花江表层沉积物中PAEs主要来源于人类日常生活用品, 农业生产以及含有增塑剂的工业生产, 这与研究区域内产业布局一致.

(4) 松花江表层沉积物中DMP和BBP对水生生物无生态风险, DEP处于低生态风险水平, 而DEHP和DBP对水生生物具有高生态风险.

参考文献
[1] Gómez-Hens A, Aguilar-Caballos M P. Social and economic interest in the control of phthalic acid esters[J]. TrAC Trends in Analytical Chemistry, 2003, 22(11): 847-857. DOI:10.1016/S0165-9936(03)01201-9
[2] Zeng F, Cui K Y, Fu J M, et al. Biodegradability of Di(2-Ethylhexyl) phthalate by Pseudomonas fluorescens FS1[J]. Water, Air, and Soil Pollution, 2002, 140(1-4): 297-305.
[3] Peterson J C, Freeman D H. Phthalate ester concentration variations in dated sediment cores from the Chesapeake Bay[USA][J]. Environmental Science & Technology, 1982, 16(8): 464-469.
[4] Simoneit B R T, Medeiros P M, Didyk B M. Combustion products of plastics as indicators for refuse burning in the atmosphere[J]. Environmental Science & Technology, 2005, 39(18): 6961-6970.
[5] Tyler C R, Jobling S, Sumpter J P. Endocrine disruption in wildlife:a critical review of the evidence[J]. Critical Reviews in Toxicology, 1998, 28(4): 319-361. DOI:10.1080/10408449891344236
[6] Vitali M, Guidotti M, Macilenti G, et al. Phthalate esters in freshwaters as markers of contamination sources-A site study in Italy[J]. Environment International, 1997, 23(3): 337-347. DOI:10.1016/S0160-4120(97)00035-4
[7] Blair J D, Ikonomou M G, Kelly B C, et al. Ultra-trace determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by LC/ESI-MS/MS[J]. Environmental Science & Technology, 2009, 43(16): 6262-6268.
[8] Fierens T, Servaes K, van Holderbeke M, et al. Analysis of phthalates in food products and packaging materials sold on the Belgian market[J]. Food and Chemical Toxicology, 2012, 50(7): 2575-2583. DOI:10.1016/j.fct.2012.04.029
[9] Xu D M, Deng X J, Fang E H, et al. Determination of 23 phthalic acid esters in food by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1324: 49-56. DOI:10.1016/j.chroma.2013.11.017
[10] 刘成, 孙翠竹, 张哿, 等. 胶州湾表层水体中邻苯二甲酸酯的污染特征和生态风险[J]. 环境科学, 2019, 40(4): 1726-1733.
Liu C, Sun C Z, Zhang G, et al. Pollution characteristics and ecological risk assessment of phthalate esters (PAEs) in the surface water of Jiaozhou Bay[J]. Environmental Science, 2019, 40(4): 1726-1733.
[11] Howdeshell K L, Wilson V S, Furr J, et al. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner[J]. Toxicological Sciences, 2008, 105(1): 153-165. DOI:10.1093/toxsci/kfn077
[12] Gao J, Chi J. Biodegradation of phthalate acid esters by different marine microalgal species[J]. Marine Pollution Bulletin, 2015, 99(1-2): 70-75. DOI:10.1016/j.marpolbul.2015.07.061
[13] Yuan S Y, Liu C, Liao C S, et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments[J]. Chemosphere, 2002, 49(10): 1295-1299. DOI:10.1016/S0045-6535(02)00495-2
[14] Tan G H. Residue levels of phthalate esters in water and sediment samples from the Klang River basin[J]. Bulletin of Environmental Contamination and Toxicology, 1995, 54(2): 171-176.
[15] Huang P C, Tien C J, Sun Y M, et al. Occurrence of phthalates in sediment and biota:Relationship to aquatic factors and the biota-sediment accumulation factor[J]. Chemosphere, 2008, 73(4): 539-544. DOI:10.1016/j.chemosphere.2008.06.019
[16] Adeniyi A A, Okedeyi O O, Yusuf K A. Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun river catchments, Ketu, Lagos, Nigeria[J]. Environmental Monitoring and Assessment, 2011, 172(1-4): 561-569. DOI:10.1007/s10661-010-1354-2
[17] Chen C W, Chen C F, Dong C D. Distribution of phthalate esters in sediments of Kaohsiung Harbor, Taiwan[J]. Soil and Sediment Contamination:An International Journal, 2013, 22(2): 119-131. DOI:10.1080/15320383.2013.722141
[18] Li R L, Liang J, Gong Z B, et al. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China[J]. Science of the Total Environment, 2017, 580: 388-397. DOI:10.1016/j.scitotenv.2016.11.190
[19] Gao X Y, Li J, Wang X N, et al. Exposure and ecological risk of phthalate esters in the Taihu Lake basin, China[J]. Ecotoxicology and Environmental Safety, 2019, 171: 564-570. DOI:10.1016/j.ecoenv.2019.01.001
[20] 董磊, 汤显强, 林莉, 等. 长江武汉段丰水期水体和沉积物中多环芳烃及邻苯二甲酸酯类有机污染物污染特征及来源分析[J]. 环境科学, 2018, 39(6): 2588-2599.
Dong L, Tang X Q, Lin L, et al. Pollution characteristics and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters during high water level periods in the Wuhan section of the Yangtze River, China[J]. Environmental Science, 2018, 39(6): 2588-2599.
[21] Zhang Z M, Zhang H H, Zhang J, et al. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area[J]. Science of the Total Environment, 2018, 619-620: 93-102. DOI:10.1016/j.scitotenv.2017.11.070
[22] Zhang Z M, Zhang H H, Zou Y W, et al. Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea[J]. Environmental Pollution, 2018, 240: 235-247. DOI:10.1016/j.envpol.2018.04.056
[23] Liu H, Cui K Y, Zeng F, et al. Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China[J]. Marine Pollution Bulletin, 2014, 83(1): 358-365. DOI:10.1016/j.marpolbul.2014.03.038
[24] Srivastava A, Sharma V P, Tripathi R, et al. Occurrence of phthalic acid esters in Gomti River Sediment, India[J]. Environmental Monitoring and Assessment, 2010, 169(1-4): 397-406. DOI:10.1007/s10661-009-1182-4
[25] Adeogun A O, Ibor O R, Omogbemi E D, et al. Environmental occurrence and biota concentration of phthalate esters in Epe and Lagos Lagoons, Nigeria[J]. Marine Environmental Research, 2015, 108: 24-32. DOI:10.1016/j.marenvres.2015.04.002
[26] Arfaeinia H, Fazlzadeh M, Taghizadeh F, et al. Phthalate acid esters (PAEs) accumulation in coastal sediments from regions with different land use configuration along the Persian Gulf[J]. Ecotoxicology and Environmental Safety, 2019, 169: 496-506. DOI:10.1016/j.ecoenv.2018.11.033
[27] 王芳. 关于松花江流域水污染防治策略探究[J]. 环境与可持续发展, 2017, 42(2): 178-179.
Wang F. Research on water pollution control strategies in Songhua River basin[J]. Environment and Sustainable Development, 2017, 42(2): 178-179. DOI:10.3969/j.issn.1673-288X.2017.02.055
[28] 王东辉, 王禹, 林志华. 松花江水环境污染特征及防治措施[J]. 环境科学与管理, 2007, 32(6): 67-69.
Wang D H, Wang Y, Lin Z H. The control and damage of organic pollutant in Song-hua River to the ecological environment[J]. Environmental Science and Management, 2007, 32(6): 67-69. DOI:10.3969/j.issn.1673-1212.2007.06.019
[29] 陆继龙, 郝立波, 王春珍, 等. 第二松花江中下游水体邻苯二甲酸酯分布特征[J]. 环境科学与技术, 2007, 30(12): 35-37.
Lu J L, Hao L B, Wang C Z, et al. Distribution characteristics of phthalic acid esters in middle and lower reaches of No. 2 Songhua River[J]. Environmental Science & Technology, 2007, 30(12): 35-37. DOI:10.3969/j.issn.1003-6504.2007.12.013
[30] 崔志丹, 冯建国, 焦立新, 等. 松花湖表层沉积物中PAHs及PAEs污染特征[J]. 环境科学研究, 2019, 32(9): 1531-1539.
Cui Z D, Feng J G, Jiao L X, et al. Pollution characteristics of polycyclic aromatic hydrocarbons and phthalate esters in surface sediments from Lake Songhua[J]. Research of Environmental Sciences, 2019, 32(9): 1531-1539.
[31] 杨艳艳.松花江表层沉积物中PAHs和PAEs的分布特征及生态风险评价[D].兰州: 兰州大学, 2018.
Yang Y Y. The distribution characteristics and ecological risk accessment of PAHs and PAEs in surface sediment of the Songhua River[D]. Lanzhou: Lanzhou University, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10730-1018979967.htm
[32] Zhao Z, Tang J H, Xie Z Y, et al. Perfluoroalkyl acids (PFAAs) in riverine and coastal sediments of Laizhou Bay, North China[J]. Science of the Total Environment, 2013, 447: 415-423. DOI:10.1016/j.scitotenv.2012.12.095
[33] Lemly A D. Evaluation of the Hazard quotient method for risk assessment of selenium[J]. Ecotoxicology and Environmental Safety, 1996, 35(2): 156-162. DOI:10.1006/eesa.1996.0095
[34] Wang J, Bo L J, Li L N, et al. Occurrence of phthalate esters in river sediments in areas with different land use patterns[J]. Science of the Total Environment, 2014, 500-501: 113-119. DOI:10.1016/j.scitotenv.2014.08.092
[35] Li K K, Ma D, Wu J, et al. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China[J]. Chemosphere, 2016, 164: 314-321. DOI:10.1016/j.chemosphere.2016.08.068
[36] 廖日权, 张艳军, 钟书明, 等. 钦州湾入海口邻苯二甲酸酯分布特征及生态风险评价[J]. 环境污染与防治, 2019, 41(4): 458-462, 467.
Liao R Q, Zhang Y J, Zhong S M, et al. Distribution characteristics and ecological risk evaluation of phthalic acid esters in sediments of Qinzhou Bay estuary[J]. Environmental Pollution and Control, 2019, 41(4): 458-462, 467.
[37] Sun J Q, Huang J, Zhang A P, et al. Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime[J]. Journal of Hazardous Materials, 2013, 248-249: 142-149. DOI:10.1016/j.jhazmat.2012.12.057
[38] Gao D W, Li Z, Wen Z D, et al. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China[J]. Chemosphere, 2014, 95: 24-32. DOI:10.1016/j.chemosphere.2013.08.009
[39] Kang L, Wang Q M, He Q S, et al. Current status and historical variations of phthalate ester (PAE) contamination in the sediments from a large Chinese lake (Lake Chaohu)[J]. Environmental Science and Pollution Research, 2016, 23(11): 10393-10405. DOI:10.1007/s11356-015-5173-4
[40] Mai B X, Chen S J, Luo X J, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea[J]. Environmental Science & Technology, 2005, 39(10): 3521-3527.
[41] Wang F, Xia X H, Sha Y J. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China[J]. Journal of Hazardous Materials, 2008, 154(1-3): 317-324. DOI:10.1016/j.jhazmat.2007.10.028
[42] Zheng X X, Zhang B T, Teng Y G. Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities[J]. Science of the Total Environment, 2014, 476-477: 107-113. DOI:10.1016/j.scitotenv.2013.12.111
[43] Zeng F, Cui K Y, Xie Z Y, et al. Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China[J]. Environment International, 2008, 34(3): 372-380. DOI:10.1016/j.envint.2007.09.002
[44] 王凡, 沙玉娟, 夏星辉, 等. 长江武汉段水体邻苯二甲酸酯分布特征研究[J]. 环境科学, 2008, 29(5): 1163-1169.
Wang F, Sha Y J, Xia X H, et al. Distribution characteristics of phthalic acid esters in the wuhan section of the Yangtze River[J]. Environmental Science, 2008, 29(5): 1163-1169.
[45] 张彦鹏, 周爱国, 刘存富, 等. 长江流域武汉段水体中邻苯二甲酸酯含量研究[J]. 环境科学与技术, 2011, 34(11): 130-134.
Zhang Y P, Zhou A G, Liu C F, et al. Phthalic acid esters in wuhan section of Yangtze River[J]. Environmental Science & Technology, 2011, 34(11): 130-134. DOI:10.3969/j.issn.1003-6504.2011.11.027
[46] 朱冰清, 高占啟, 胡冠九, 等. 太湖重点区域水环境中邻苯二甲酸酯的污染水平及生态风险评价[J]. 环境科学, 2018, 39(8): 3614-3621.
Zhu B Q, Gao Z Q, Hu G J, et al. Contamination levels and ecological risk assessment of phthalate esters(paes) in the aquatic environment of key areas of Taihu Lake[J]. Environmental Science, 2018, 39(8): 3614-3621.
[47] Sha Y J, Xia X H, Yang Z F, et al. Distribution of PAEs in the middle and lower reaches of the Yellow River, China[J]. Environmental Monitoring and Assessment, 2007, 124(1-3): 277-287. DOI:10.1007/s10661-006-9225-6
[48] Wang J L, Liu P, Qian Y. Microbial degradation of di-n-butyl phthalate[J]. Chemosphere, 1995, 31(9): 4051-4056. DOI:10.1016/0045-6535(95)00282-D
[49] Staples C A, Peterson D R, Parkerton T F, et al. The Environmental fate of phthalate esters:a literature review[J]. Chemosphere, 1997, 35(4): 667-749. DOI:10.1016/S0045-6535(97)00195-1
[50] Hassanzadeh N, Esmaili Sari A, Khodabandeh S, et al. Occurrence and distribution of two phthalate esters in the sediments of the Anzali wetlands on the coast of the Caspian Sea (Iran)[J]. Marine Pollution Bulletin, 2014, 89(1-2): 128-135. DOI:10.1016/j.marpolbul.2014.10.017
[51] Chang C F, Man C Y. Magnetic photocatalysts of copper phthalocyanine-sensitized titania for the photodegradation of dimethyl phthalate under visible light[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 441: 255-261.
[52] Wu D L, Hu B L, Zheng P, et al. Anoxic biodegradation of dimethyl phthalate (DMP) by activated sludge cultures under nitrate-reducing conditions[J]. Journal of Environmental Sciences, 2007, 19(10): 1252-1256. DOI:10.1016/S1001-0742(07)60204-6
[53] Gao D W, Wen Z D. Phthalate esters in the environment:a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes[J]. Science of the Total Environment, 2016, 541: 986-1001. DOI:10.1016/j.scitotenv.2015.09.148
[54] 杨志豪, 何明靖, 杨婷, 等. 邻苯二甲酸酯在重庆市城市土壤中的污染分布特征及来源分析[J]. 环境科学, 2018, 39(7): 3358-3364.
Yang Z H, He M J, Yang T, et al. Occurrence and distribution of phthalate esters in urban soils of Chongqing City[J]. Environmental Science, 2018, 39(7): 3358-3364.
[55] Romero-Franco M, Hernández-Ramírez R U, Calafat A M, et al. Personal care product use and urinary levels of phthalate metabolites in Mexican women[J]. Environment International, 2011, 37(5): 867-871. DOI:10.1016/j.envint.2011.02.014
[56] Koniecki D, Wang R, Moody R P, et al. Phthalates in cosmetic and personal care products:Concentrations and possible dermal exposure[J]. Environmental Research, 2011, 111(3): 329-336. DOI:10.1016/j.envres.2011.01.013
[57] Zhang L F, Dong L, Ren L J, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China[J]. Journal of Environmental Sciences, 2012, 24(2): 335-342. DOI:10.1016/S1001-0742(11)60782-1
[58] Meng X Z, Wang Y, Xiang N, et al. Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake:implication for risk assessment of sludge applied to soil[J]. Science of the Total Environment, 2014, 476-477: 242-249. DOI:10.1016/j.scitotenv.2014.01.007
[59] Lin Z P, Ikonomou M G, Jing H W, et al. Determination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inlet[J]. Environmental Science & Technology, 2003, 37(10): 2100-2108.
[60] 林莉, 董磊, 李青云, 等. 三峡库区水体和底泥中多环芳烃和邻苯二甲酸酯类分布和来源[J]. 湖泊科学, 2018, 30(3): 660-667.
Lin L, Dong L, Li Q Y, et al. Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir[J]. Journal of Lake Science, 2018, 30(3): 660-667.
[61] Wang J, Luo Y M, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution, 2013, 180: 265-273. DOI:10.1016/j.envpol.2013.05.036
[62] Sun J T, Pan L L, Zhan Y, et al. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J]. Science of the Total Environment, 2016, 544: 670-676. DOI:10.1016/j.scitotenv.2015.12.012
[63] 国家统计局. 中国环境统计年鉴2017[M]. 北京: 中国统计出版社, 2018.
[64] van Wezel A P, van Vlaardingen P, Posthumus R, et al. Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties[J]. Ecotoxicology and Environmental Safety, 2000, 46(3): 305-321. DOI:10.1006/eesa.2000.1930
[65] Ecology Publication No. 03-09-043, Guidance on the development of sediment sampling and analysis plans meeting the requirements of the sediment management standards (Chapter 173-204 WAC)[S].
[66] 韩文辉, 赵颖, 党晋华, 等. 汾河流域邻苯二甲酸酯的分布特征及生态风险评价[J]. 环境化学, 2017, 36(6): 1377-1387.
Han W H, Zhao Y, Dang J H, et al. Distribution and ecological risk evaluation of phthalate esters in Fenhe River Basin[J]. Environmental Chemistry, 2017, 36(6): 1377-1387.
[67] 胡雄星, 韩中豪. 苏州河表层沉积物中邻苯二甲酸酯的分布特征及风险评价[J]. 环境监测管理与技术, 2011, 23(S1): 49-52.
Hu X X, Han Z H. Distribution of phthalic acid esters in surface sediments from Suzhou River and its risk evaluation[J]. Administration and Technique of Environmental Monitoring, 2011, 23(S1): 49-52.
[68] 张道来, 刘娜, 朱志刚, 等. 青岛市典型海岸带表层沉积物中邻苯二甲酸酯的组成、分布特征及生态风险评价[J]. 海洋环境科学, 2016, 35(5): 652-657.
Zhang D L, Liu N, Zhu Z G, et al. Distribution, chemical composition and ecological risk assessment of phthalic acid esters in surface sediments from typical coastal zones of Qingdao City[J]. Marine Environment Science, 2016, 35(5): 652-657.