环境科学  2020, Vol. 41 Issue (1): 205-212   PDF    
长江南京段水源水中有机磷酸酯的污染特征与风险评估
李栋1,2, 张圣虎2, 张芹2, 王博2, 卜元卿2, 赵欣2, 李辉3, 宋宁慧2, 郭瑞昕1     
1. 中国药科大学工学院, 南京 211198;
2. 生态环境部南京环境科学研究所, 南京 210042;
3. 北京百灵天地环保科技股份有限公司, 北京 100045
摘要: 为探究长江南京段水源水中有机磷酸酯(organophosphate esters,OPEs)的污染特征、时空分布、生态风险和健康风险,利用固相萃取-高效液相色谱-串联质谱法测定了13种OPEs.结果表明,除磷酸三(2,3-二溴丙基)酯外,其余12种OPEs均有不同程度的检出,总浓度范围为85.21~1557.96 ng·L-1,氯代烷基磷酸酯是主要化合物,其中检出浓度最高的是磷酸三(2-氯乙基)酯[tri(2-chloroethyl)phosphate,TCEP],高达447.08 ng·L-1.长江南京段水源水中OPEs呈现明显的季节变化特征,夏季总检出浓度为220~1557.96 ng·L-1,平均浓度是493.78 ng·L-1,是春秋季的1.7~2.6倍.生态风险评估显示磷酸三甲苯酯和2-乙基己基二苯基磷酸酯对有机体(藻类,甲壳类动物和鱼类)具有中或高等风险.高暴露浓度下,OPEs的总非致癌风险为4.41×10-3~2.91×10-2,均小于1,0~3个月的婴儿最高,总致癌风险值为5.88×10-7~3.89×10-6,其中TCEP和磷酸三(1,3-二氯-2-丙基)酯对儿童有潜在的致癌风险.长江南京段水源水中OPEs对儿童的长期暴露风险需引起高度重视.
关键词: 长江南京段      水源水      有机磷酸酯(OPEs)      污染特征      季节特征      生态风险      健康风险     
Occurrence and Risk Assessment of Organophosphate Esters in Source Water of the Nanjing Section of the Yangtze River
LI Dong1,2 , ZHANG Sheng-hu2 , ZHANG Qian2 , WANG Bo2 , PU Yuan-qing2 , ZHAO Xin2 , LI Hui3 , SONG Ning-hui2 , GUO Rui-xin1     
1. School of Engineering, China Pharmaceutical University, Nanjing 211198, China;
2. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China;
3. Beijing Larkworld Environmental Technology Incorporated Company, Beijing 100045, China
Abstract: We explored the pollution characteristics, spatial and temporal distribution, ecological risk, and human health risk of organophosphate esters (OPEs) in the source water of the Nanjing section of the Yangtze River. Thirteen OPEs were determined by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. The results showed that twelve OPEs were detected to different extents with total concentrations ranging from 85.21 to 1557.96 ng·L-1[excluding tris (2, 3-dibromopropyl) phosphate]. Chloroalkyl phosphate was the main compound and tris(2-chloroethyl) phosphate (TCEP) was the most abundant of the thirteen OPEs, which reached up to 447.08 ng·L-1. Seasonal variation of OPEs showed that the concentrations of OPEs in summer ranged from 220-1557.96 ng·L-1, with the average concentration of 493.78 ng·L-1 being 1.7-2.6 times higher than of that in spring and autumn. An ecological risk assessment showed that tricresyl phosphate and 2-ethylhexyl diphenyl phosphate were associated with moderate or high risks to organisms (algae, crustaceans, and fish). At a high exposure concentration, the total non-carcinogenic risk of OPEs in source water ranged from 4.41×10-3-2.91×10-2, with the highest risk being associated with children aged 0-3 months. The total cancer risk value was 5.88×10-7-3.89×10-6, among which TCEP and Tris(1, 3-dichloro-2-propyl) phosphate was associated with a potential risk for children. We conclude that the long-term exposure risk for children of OPEs in the source water of the Nanjing section of the Yangtze River deserve more attention.
Key words: Nanjing section of the Yangtze River      source water      organophosphate esters (OPEs)      pollution characteristics      seasonal variation      ecological risk      health risk     

有机磷酸酯(Organophosphate esters, OPEs), 因其良好的阻燃、润滑和增塑效果, 成为多溴联苯醚等溴代阻燃剂的主要替代品, 广泛应用于塑料制品、建筑材料、家装饰品、电子产品和纺织品等中[1~3], 其用量近几年大幅增长, 1992年全球OPEs消费量为10.2万t, 2013年增加到37万t, 2015年数据显示已经增至68万t[4~6].

由于OPEs主要以非化学键方式添加进产品, 在生产、使用和废弃过程中很容易通过挥发、磨损和渗出等方式进入水体[7~9], 而现阶段水处理技术对OPEs的去除效果并不明显[3, 10, 11], 因此很容易引起水环境污染.目前, 我国渤海[12]、太湖[13]、骆马湖[14]、松花江[15]和珠江[16]等水体中均检出了OPEs, 而毒理研究表明OPEs具有内分泌干扰、致癌和致基因突变等多种毒性[3, 5], 潜在影响饮用水源地水质安全.

长江是南京居民主要饮用水源, 水质安全格外重要, 但关于其有机磷酸酯的污染特征和风险评估鲜有报道.本研究通过分析长江南京段水源水中OPEs的浓度以及不同时期(丰水期、枯水期和平水期)水体中污染状况, 揭示OPEs的季节变化特征, 并评估在不同人群中OPEs对生态和人体健康的潜在风险, 以期为城乡饮用水安全和OPEs的风险控制提供参考依据.

1 材料与方法 1.1 仪器与试剂

高效液相色谱-串联质谱仪(HPLC-Agilent Technologies 1290 Infinity, 美国MS-ABSCIEX QTRAP 4500);旋转蒸发仪(R-300, 瑞士BUCHI公司);萃取小柱[Oasis HLB, 6 mL ·(500 mg)-1, 美国Waters公司];高速离心机(Centrifuge 5430R, 德国Eppendorf公司);超纯水仪(Milli-Q, 美国Millipore公司);电子天平(AG-285, 瑞士Mette公司).

13种OPEs标准品, 包括6种烷基磷酸酯:磷酸三(2-丁氧基乙基)酯[tri(2-butoxyethyl)phosphate, TBOEP, 95.0%]、磷酸三(2-乙基己基)酯[tri(2-ethylhexyl)phosphate, TEHP, 98.0%]、磷酸三乙酯(triethyl phosphate, TEP, 99.0%)、磷酸三甲酯(trimethyl phosphate, TMP, 99.0%)、磷酸三正丁酯(tri-n-butyl phosphate, TnBP, 99.0%)和磷酸三丙酯(tripropyl phosphate, TPrP, 99.0%);4种卤代烷基磷酸酯:磷酸三(2-氯乙基)酯[tri(2-chloroethyl)phosphate, TCEP, 97.0%]、磷酸三(2-氯异丙基)酯[tri(2-chloropropyl)phosphate, TCPP, 98.0%]、磷酸三(2, 3-二溴丙基)酯[tri(2, 3-dibromopropyl)phosphate, TDBPP, 98.0%]和磷酸三(1, 3-二氯-2-丙基)酯[tri(1, 3-dichloropropyl)phosphate, TDCPP, 95.0%];和3种芳香族磷酸酯:2-乙基己基二苯基磷酸酯(2-ethylhexyl diphenyl phosphate, EHDPP, 95.0%)、磷酸三甲苯酯(tricresyl phosphate, TCrP, 95.0%)和磷酸三苯酯(triphenyl phosphate, TPhP, 99.0%)均购于百灵威科技有限公司.替代物TnBP-d27和内标物TPhP-d15购于Cambridge Isotope Laboratories(Tewksbury, MA, USA).甲醇和乙酸乙酯(色谱纯)购于德国Merck公司, 甲酸(色谱纯)购自国药集团药业股份有限公司.

1.2 样品采集

分别于2018年8月(夏季, 丰水期)、2018年11月(秋季, 枯水期)和2019年3月(春季, 平水期), 采集长江南京段水源水表层水样, 选取16个采样点(S1~S16), 位置见图 1.使用有机玻璃水样采集器采集水样, 采集深度为0~1 m, 每个样点采集2 L, 置于棕色磨口塞玻璃瓶中, 尽快运回实验室, 4℃避光保存, 24 h内进行前处理.

图 1 长江南京段水源水采样点示意 Fig. 1 Sampling sites of source water in the Nanjing section of the Yangtze River

1.3 样品前处理

参照并优化本课题组建立的方法[17], 准确移取500 mL经0.45 μm玻璃纤维膜过滤后的水样, 加入10 ng的替代物TnBP-d27以校正预处理过程中目标物的损失.之后用固相萃取小柱进行富集.预先依次用5 mL乙酸乙酯、5 mL甲醇和5 mL超纯水对HLB小柱进行活化, 上样后, 用5 mL超纯水淋洗HLB小柱, 然后在真空负压条件下抽干30 min至小柱充分干燥;再用5 mL乙酸乙酯以1 mL ·L-1的流速洗脱2次.收集的洗脱液于40℃下经旋转蒸发浓缩至干, 最后用甲醇复溶至1 mL, 在HPLC-MS/MS分析前加入10 ng的内标物TPhP-d15以便后续进行定量分析.

1.4 仪器分析

高效液相测定条件:采用ZORBAX Eclipse Plus C18色谱柱(150 mm×2.1 mm, 3.5 μm, 美国Agilent公司);柱温设置为30℃;以体积分数为0.2%的甲酸(A)和乙腈(B)作为流动相, 梯度洗脱.程序为:0~8 min, 30%A;8~8.1 min, 30% ~5%A;8.1~16 min, 5.0% A;16~20 min, 5% ~30%A;流速为0.3 mL ·min-1, 进样体积为5 μL.

质谱检测条件:采用电喷雾离子源(ESI)、正离子MRM监测模式;离子源温度为500℃, 喷雾电压设置为5 500 V;气帘气, 喷雾气和辅助加热气的压力分别为35.0、55.0和60.0 kPa, 其他参数见表 1.

表 1 目标物的主要参数1) Table 1 Parameters of target compounds

1.5 质量控制与保证(QA/QC)

为保证结果的准确性, 在取样、运输、储存和提取过程中避免使用塑料和橡胶材料, 并依次进样溶剂、标准品和程序空白以检查背景污染.使用内标法定量, 标准曲线在0.1~500 mg ·L-1范围内线性良好, 相关系数(R2)均大于95%.以信噪比S/N=10计算定量限(LOQ), 13种OPEs的LOQ为0.37~265.33 ng ·L-1.在100 mL超纯水添加5 μg ·L-1的13种OPEs混合标准溶液, 同时设置空白对照试验, 各设置3个平行样, 各目标化合物的回收率为66.4% ~106.9%, 相对标准偏差为0.38% ~14.16%.

1.6 风险评价 1.6.1 生态风险评估

OPEs的生态风险常用风险熵(RQ)评估, 计算公式为[8, 18]

(1)

式中, MEC为环境实际测量浓度, PNEC为无效应浓度, 通常由急性和慢性毒性数据(半数致死浓度LC50、半数效应浓度EC50、最大无效应浓度NOEC等)除以评估因子(AF)得到[8, 13];当RQ < 0.1时, 风险较小或可忽略不计, 当0.1≤RQ < 1.0时具有中等风险, 而当RQ≥1.0时, 则认为具有高风险.

1.6.2 人体健康风险评估

采用美国环保署(US EPA)推荐的健康风险模型[19, 20], 评价长江南京段水源水中OPEs日摄入剂量, 并通过致癌风险和非致癌风险来分析OPEs对人体健康的影响.

OPEs的日均暴露量(ADD)按下式计算[10, 11]

(2)

式中, c为OPEs的浓度(ng ·L-1);IR为日均饮水量(L ·d-1);AP为饮水的吸收率, AP取100%;BW为平均体重(kg).中国人群暴露参数手册(成人卷)[21]提供了江苏成人平均体重BW为63.2 kg, 全年日均饮水量IR为2.33 L ·d-1, 其他参数采用US EPA和相关文献推荐值[22~24].

非致癌风险用危害商(HQ)表征, 计算公式如下[10, 13]:

(3)

式中, RfD为USPA建议的参考剂量;当HQ<1时, 非致癌风险较小或忽略不计; 当HQ>1时, 则表明具有非致癌风险.对多污染物暴露情形, 非致癌总风险即为各OPEs危害商HQ之和.

致癌风险(CR)是致癌物质的暴露剂量乘以相应的致癌斜率因子(SFO)得到, 计算如下[11, 14, 20]

(4)

当CR低于10-6, 致癌风险可以忽略不计, 当CR介于10-6~10-4之间, 表明具有潜在的致癌风险, 若CR值高于10-4, 则认为具有高风险, 各种致癌目标物致癌风险之和即为“总致癌风险”.相关参数见表 2.

表 2 健康风险计算参数 Table 2 Parameters for the calculation of human health risk

2 结果与讨论 2.1 水源水中OPEs的总体浓度水平

13种OPEs在长江南京段水源水中的检出情况见表 3, TMP、TEP、TnBP、TBOEP、TCEP、TCPP、TCrP和EHDPP 100%检出, TPrP检出率为7%, TDBPP无检出. 12种OPEs总浓度范围为85.21~1557.96 ng ·L-1, 中值浓度为283.80 ng ·L-1, 平均浓度为330.88 ng ·L-1, 氯代磷酸酯是最主要化合物, 占总体检出浓度的57.38%, 远高于烷基磷酸酯(38.50%)和芳香族磷酸酯(4.13%).

表 3 OPEs在水源水中的总体检出水平/ng ·L-1 Table 3 Summary of OPEs concentrations in the sampled source water/ng ·L-1

长江南京段水源水中平均浓度最高的单体是TCEP, 浓度范围为10.13~447.08 ng ·L-1, 最高比例为总浓度的67.93%, TCEP主要用作塑料制品、聚氨酯泡沫和纺织品的阻燃剂[4], 有研究发现, TCEP具有神经毒性、内分泌干扰性、基因突变性和致癌等多种毒性, 已被世界卫生组织(WHO)列为致癌物, 许多发达国家已严格限制TCEP在家居用品, 尤其是婴儿用品中的使用[9, 25].长江流域一带拥有众多企业, 尤其以化工、纺织、服装、电子通信设备、化纤橡胶和塑料等行业为主, 是阻燃剂生产和使用的集聚地, 本研究中TCEP检出浓度水平较高, 这可能与工业区仍然在产品中大量添加TCEP有关, 有报道指出[16, 26], TCEP具有较低的lg Kow(1.44)和较高的水溶解度(7 000 mg), 可经空气传输作用于大气环境, 通过干沉降或降雨、降雪等进入河流[5, 27, 28], 从而造成水源水中较高的水平.

与其他国家或地区相比, TMP和TEP的高检出率与高浓度在国内外其他河流中很少见[1, 8, 29].西班牙加利西亚的地表水发现TEP、TCEP、TCPP和TnBP的浓度为3~47 ng ·L-1[30], 德国莱茵河中OPEs总浓度为10~200 ng ·L-1[31], 都低于长江南京段水源水中OPEs, 英国艾尔河中所有样品中均检测到TCEP、TCPP、TDCPP和TPhP, 其中TCPP浓度最高, 为113~26 050 ng ·L-1, 远高于长江南京段含量水平.与国内部分河流湖泊相比, 本研究总体浓度水平与太湖(0.82~1 066.00 ng ·L-1)[14], 松花江(5~3 700 ng ·L-1)[15]相当;汇入渤海的40条主要河流中, 11种OPEs范围为9.60~1 549 ng ·L-1, 平均值为300 ng ·L-1, TCPP(4.6~921 ng ·L-1, 平均值:186 ng ·L-1)和TCEP(1.3~268 ng ·L-1, 平均值:80.2 ng ·L-1)是最丰富的OPEs, 含氯的3种OPEs(TCPP、TCEP、TDCPP)约占∑OPEs的91%[12];成都市母亲河——锦江的表层水中∑7OPEs的浓度范围为689.09~10 623.94 ng ·L-1(平均值3 747.58 ng ·L-1), TBOEP浓度最高, 占∑7OPEs的质量分数为36.50% ~95.90%[32];北京城市地表水中14种OPEs浓度为3.24~10 945 ng ·L-1(平均值954 ng ·L-1)[8], 比本研究高近1个数量级.从整体上来看, 长江南京段水体中OPEs浓度处于较低水平.

2.2 水源水中OPEs的时空分布

13种OPEs的时空变异如图 2所示. 2018年8月∑OPEs的浓度范围为220~1 557.96 ng ·L-1, 平均值为493.78 ng ·L-1, 2018年11月∑OPEs的浓度范围为85.21~354.34 ng ·L-1, 平均值为188.31 ng ·L-1, 2019年3月∑OPEs的浓度范围为149.11~446.48 ng ·L-1, 平均值为292.74 ng ·L-1, OPEs浓度随时间呈现明显变化趋势:8月(丰水期)>3月(平水期)>11月(枯水期);在季节变化方面, 主要污染物浓度为:夏季>春季>秋季, Shi等[8]对北京城市地表水(河流和湖泊水)中14种OPEs的发生, 空间分布和季节变化进行了调查, 发现OPEs浓度因季节而异, 夏季OPEs水平更高, 尤其是TCPP、TCEP、TMP和TEP, 这一结果与本研究的结果相似, 可见环境水体中OPEs浓度水平在不同时期分布特征不同.

图 2 OPEs在长江南京段水源水中的时空分布与变化 Fig. 2 Spatiotemporal variation of 13 OPEs in source water from the Yangtze River (Nanjing section)

11月(秋季)和3月(春季)浓度最高单体是TEP, 分别为4.44~99.47 ng ·L-1和42.34~242.39 ng ·L-1. 8月(夏季)主要的单体是TCEP, 平均值为239.26 ng ·L-1, 最高浓度出现在采样点S4, S4位于梅山江段, 污染可能来源周边较高使用量带来的排放;TEP为浓度第二高单体, 平均浓度为106.55 ng ·L-1, 其水平与3月相当, 最高浓度(1 090.63 ng ·L-1)出现在S1, 远远高于其他采样点, 可能此处存在点源污染.夏季TCEP、TEP和TCPP这3种单体浓度高, TEHP检出浓度相对低, 而TPrP仅在11月S14、3月S8和S11这3个采样点被检出, 这表明, 可能不同类型的OPEs在不同的季节有不同的使用.此外, 有研究发现, 当温度升高时, OPEs更易扩散释放到大气中[7], 目前在户外环境中, 如空气颗粒[33]和灰尘[34, 35], 已观察到较高水平的OPEs.南京属亚热带季风气候, 四季分明, 夏季气温高, 雨量充沛, TCEP, TEP和TCPP容易挥发, 更有可能从车辆和建筑中释放出来, 扩散到大气中, 而空气和灰尘中这些污染物很可能通过湿沉积或降雨释放到河流而富集[8, 9].相比氯代OPEs, 夏季水体中烷基磷酸酯类可以通过光照或微生物代谢快速分解[7, 26], 因此检出浓度相对较低.

2.3 水源水中OPEs风险评价 2.3.1 生态风险评估

本研究对长江南京段水源水中11种高检出的OPEs(检出率大于60%)进行了生态风险评估, 从文献[8, 13]可知, 获得藻类、甲壳类和鱼类的毒理学数据(LC50或EC50), 评估因子(AF)取1 000.在水中(表 4), 大多数OPEs的RQ低于0.1, 藻类和鱼类中RQ值最高的是TCrP, 分别为0.588和1.55, 具有中或高风险, 甲壳类中RQ值最高的是EHDPP, 值为1.72, 具有高风险.长江南京段水源水中的藻类、甲壳类和鱼类总RQ值分别为2.70×10-3~0.595、3.94×10-3~0.634和6.73×10-2~1.56;这些OPEs在水生环境中联合毒性风险较高.Shi等[8]在北京地表水中也发现OPEs对藻类、甲壳类和鱼类具有较低或中等风险.因此长江南京段水体中的OPEs对水生生物和生态环境的风险不可忽视.

表 4 11种OPEs毒理数据及生态风险 Table 4 Toxicity data and ecological risk of eleven OPEs

2.3.2 健康风险评估

本研究评估了长江南京段水源水中10种OPEs的非致癌风险, 包括TMP、TEP、TnBP、TBOEP、TEHP、TCEP、TCPP、TDCPP、TPhP和TCrP.由于缺乏可用的SFO值[8, 23], 仅有5种OPEs(TMP、TnBP、TEHP、TCEP和TDCPP)的致癌风险被讨论.为了更好地评估长江南京段水源水中OPEs的最大健康风险, 以每种OPEs的最大检出浓度计算HQ和CR.

在最高暴露浓度下, 如图 3所示, 10种OPEs的总非致癌风险∑HQ为4.41×10-3~2.91×10-2, 均小于1, 其中TCEP非致癌风险最高, HQ为1.31×10-2, TPhP风险最低, HQ为2.40×10-6.且随着年龄的增加, OPEs的HQ逐渐降低, 0~3岁婴儿HQ比成年人高将近一个数量级.

图 3 长江南京段水源水中10种OPEs的HQ Fig. 3 HQ of 10 OPEs in source water from the Yangtze River (Nanjing section)

对于致癌风险(图 4), 5种OPE的总致癌风险∑CR值介于5.88×10-7~3.89×10-6之间, 其中TCEP致癌风险最高, CR可达1.84×10-6, TnBP风险最低, CR为6.97×10-9.根据已有的报道[14, 20, 24], 单个化合物致癌风险的可接受水平为1.0×10-6, 可知TCEP和TDCPP对0~12个月的儿童有潜在的健康风险, 整体来说, 长江南京段水源水中的OPEs对人体的健康风险较低, 与浙江杭州饮用水[11]、山东潍坊滨海饮用水[20]、江苏太湖[13]、骆马湖[14]和北京城市地表水[8]所报道的健康风险基本一致, 但儿童的健康风险要高于成年人, 需引起高度重视.

图 4 长江南京段水源水中5种OPEs的CR Fig. 4 CR of five OPEs in source water from the Yangtze River (Nanjing section)

3 结论

(1) 长江南京段水源水中共检出了12种OPEs, 总浓度范围为85.21~1 557.96 ng ·L-1, TCEP检出浓度最高, 平均浓度为107.24 ng ·L-1, 其次为TEP和TCEP.

(2) OPEs在长江南京段水源水中呈现明显的时空分布特征, 丰水期∑OPEs浓度明显高于平水期和枯水期;夏季∑OPEs浓度明显高于春秋季.

(3) 长江南京段水源水中TCrP和EHDPP分别对藻类、鱼类和甲壳类有中或高生态风险;高暴露下, TCEP和TDCPP对0~12个月的儿童有潜在的健康风险, 应引起相关部门的重视.

参考文献
[1] Cristale J, Katsoyiannis A, Sweetman A J, et al. Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK)[J]. Environmental Pollution, 2013, 179: 194-200. DOI:10.1016/j.envpol.2013.04.001
[2] Lee S, Jeong W, Kannan K, et al. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea[J]. Water Research, 2016, 103: 182-188. DOI:10.1016/j.watres.2016.07.034
[3] 孙佳薇, 丁炜楠, 张占恩, 等. 污水处理厂中有机磷阻燃剂的污染特征[J]. 环境科学, 2018, 39(5): 2230-2238.
Sun J W, Ding W N, Zhang Z E, et al. Pollution characteristics of organophosphorus flame retardants in a wastewater treatment plant[J]. Environmental Science, 2018, 39(5): 2230-2238.
[4] Chen Y Q, Zhang Q, Luo T W, et al. Occurrence, distribution and health risk assessment of organophosphate esters in outdoor dust in Nanjing, China:urban vs. rural areas[J]. Chemosphere, 2019, 231: 41-50. DOI:10.1016/j.chemosphere.2019.05.135
[5] Li J, Tang J H, Mi W Y, et al. Spatial distribution and seasonal variation of organophosphate esters in air above the Bohai and Yellow Seas, China[J]. Environmental Science & Technology, 2018, 52(1): 89-97.
[6] Wang Y, Sun H W, Zhu H K, et al. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China[J]. Science of the Total Environment, 2018, 625: 1056-1064. DOI:10.1016/j.scitotenv.2018.01.013
[7] 高小中, 许宜平, 王子健. 有机磷酸酯阻燃剂的环境暴露与迁移转化研究进展[J]. 生态毒理学报, 2015, 10(2): 56-68.
Gao X Z, Xu Y P, Wang Z J. Progress in environment exposure, transport and transform of organophosphorus flame retardants[J]. Asian Journal of Ecotoxicology, 2015, 10(2): 56-68.
[8] Shi Y L, Gao L H, Li W H, et al. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China[J]. Environmental Pollution, 2016, 209: 1-10. DOI:10.1016/j.envpol.2015.11.008
[9] 李静, 王俊霞, 许婉婷, 等. 道路灰尘中有机磷阻燃剂污染特征及人体暴露[J]. 环境科学, 2017, 38(10): 4220-4227.
Li J, Wang J X, Xu Y T, et al. Contamination characteristics and human exposure to organophosphate flame retardants in road dust from Suzhou city[J]. Environmental Science, 2017, 38(10): 4220-4227.
[10] Li J, Yu N, Zhang B, et al. Occurrence of organophosphate flame retardants in drinking water from China[J]. Water Research, 2014, 54: 53-61. DOI:10.1016/j.watres.2014.01.031
[11] Ding J J, Shen X L, Liu W P, et al. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China[J]. Science of the Total Environment, 2015, 538: 959-965. DOI:10.1016/j.scitotenv.2015.08.101
[12] Wang R M, Tang J H, Xie Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China[J]. Environmental Pollution, 2015, 198: 172-178. DOI:10.1016/j.envpol.2014.12.037
[13] Liu Y H, Song N H, Guo R X, et al. Occurrence and partitioning behavior of organophosphate esters in surface water and sediment of a shallow Chinese freshwater lake (Taihu Lake):implication for eco-toxicity risk[J]. Chemosphere, 2018, 202: 255-263. DOI:10.1016/j.chemosphere.2018.03.108
[14] Xing L Q, Zhang Q, Sun X, et al. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China[J]. Science of the Total Environment, 2018, 636: 632-640. DOI:10.1016/j.scitotenv.2018.04.320
[15] Wang X W, Liu J F, Yin Y G. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J]. Journal of Chromatography A, 2011, 1218(38): 6705-6711. DOI:10.1016/j.chroma.2011.07.067
[16] 刘静, 何丽雄, 曾祥英, 等. 珠江主干和东江河流表层沉积物中有机磷酸酯阻燃剂/增塑剂分布[J]. 生态毒理学报, 2016, 11(2): 436-443.
Liu J, He L X, Zeng X Y, et al. Occurrence and distribution of organophosphorus flame retardants/plasticizer in surface sediments from the Pearl River and Dongjiang River[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 436-443.
[17] 陈玫宏, 徐怀洲, 宋宁慧, 等. 高效液相色谱-串联质谱法同时测定水体和沉积物中12种有机磷酸酯类化合物[J]. 分析化学, 2017, 45(7): 987-995.
Chen M H, Xu H Z, Song N H, et al. Simultaneous determination of 12 kinds of organophosphates in water and sediment by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2017, 45(7): 987-995.
[18] Yadav I C, Devi N L, Li J, et al. Concentration and spatial distribution of organophosphate esters in the soil-sediment profile of Kathmandu Valley, Nepal:implication for risk assessment[J]. Science of the Total Environment, 2018, 613-614: 502-512. DOI:10.1016/j.scitotenv.2017.09.039
[19] Li J F, He J H, Li Y, et al. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO)[J]. Water Research, 2019, 154: 84-93. DOI:10.1016/j.watres.2019.01.035
[20] 董政, 马玉龙, 李珺琪, 等. 潍坊滨海经济技术开发区饮用水中有机磷酸酯的水平及人体暴露风险评估[J]. 环境科学, 2017, 38(10): 4212-4219.
Dong Z, Ma Y L, Li J Q, et al. Occurrence and human exposure risk assessment of organophosphate esters in drinking water in the Weifang Binhai economic-technological Development Area[J]. Environmental Science, 2017, 38(10): 4212-4219.
[21] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013.
[22] US EPA (Environmental Protection Agency). Guidance on selecting age groups for monitoring and assessing childhood exposures to environmental contaminants[EB/OL]. https://www.epa.gov/sites/production/files/2013-09/documents/agegroups.pdf, 2017-06-26.
[23] Li J F, Zhang Z Z, Ma L Y, et al. Implementation of USEPA RfD and SFO for improved risk assessment of organophosphate esters (organophosphate flame retardants and plasticizers)[J]. Environment International, 2018, 114: 21-26. DOI:10.1016/j.envint.2018.02.027
[24] Li W H, Shi Y L, Gao L H, et al. Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China[J]. Environmental Pollution, 2018, 241: 566-575. DOI:10.1016/j.envpol.2018.05.092
[25] Mizouchi S, Ichiba M, Takigami H, et al. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses[J]. Chemosphere, 2015, 123: 17-25. DOI:10.1016/j.chemosphere.2014.11.028
[26] 杨婷, 何明靖, 杨志豪, 等. 模拟三峡库区消落带土壤有机磷酸酯淹水释放特征[J]. 环境科学, 2018, 39(12): 5487-5493.
Yang T, He M J, Yang Z H, et al. Simulation of the migration and release characteristics of organophosphate esters in fluctuation zone soil of the Three Gorges reservoir during flooding[J]. Environmental Science, 2018, 39(12): 5487-5493.
[27] Cao Z G, Xu F C, Covaci A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure[J]. Environmental Science & Technology, 2014, 48(15): 8839-8846.
[28] 印红玲, 李世平, 叶芝祥, 等. 成都市大气PM2.5中有机磷阻燃剂的污染水平及来源[J]. 环境科学, 2015, 36(10): 3566-3572.
Yin H L, Li S P, Ye Z X, et al. Pollution level and sources of organic phosphorus esters in Airborne PM2.5 in Chengdu city[J]. Environmental Science, 2015, 36(10): 3566-3572.
[29] Cristale J, García Vázquez A, Barata C, et al. Priority and emerging flame retardants in rivers:occurrence in water and sediment, Daphnia magna toxicity and risk assessment[J]. Environment International, 2013, 59: 232-243. DOI:10.1016/j.envint.2013.06.011
[30] Rodil R, Quintana J B, Concha-Graña E, et al. Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain)[J]. Chemosphere, 2012, 86(10): 1040-1049. DOI:10.1016/j.chemosphere.2011.11.053
[31] Bollmann U E, Möller A, Xie Z Y, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters[J]. Water Research, 2012, 46(2): 531-538. DOI:10.1016/j.watres.2011.11.028
[32] 吴迪, 印红玲, 李世平, 等. 成都市锦江表层水和沉积物中有机磷酸酯的污染特征[J]. 环境科学, 2019, 40(3): 1245-1251.
Wu D, Yin H L, Li S P, et al. Pollution characteristics of OPEs in the surface water and sediment of the Jinjiang river in Chengdu city[J]. Environmental Science, 2019, 40(3): 1245-1251. DOI:10.3969/j.issn.1000-6923.2019.03.042
[33] Ren G F, Chen Z, Feng J L, et al. Organophosphate esters in total suspended particulates of an urban city in East China[J]. Chemosphere, 2016, 164: 75-83. DOI:10.1016/j.chemosphere.2016.08.090
[34] Khan M U, Li J, Zhang G, et al. New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan[J]. Environmental Pollution, 2016, 216: 662-674. DOI:10.1016/j.envpol.2016.06.030
[35] Fromme H, Lahrz T, Kraft M, et al. Organophosphate flame retardants and plasticizers in the air and dust in German daycare centers and human biomonitoring in visiting children (LUPE 3)[J]. Environment International, 2014, 71: 158-163. DOI:10.1016/j.envint.2014.06.016