环境科学  2019, Vol. 40 Issue (12): 5302-5308   PDF    
浙江省H市供水系统消毒副产物及其健康风险评价
刘俊萍1, 于建全1, 李青松2, 马晓雁1, 杨玉龙3, 贾佳4     
1. 浙江工业大学建筑工程学院, 杭州 310014;
2. 厦门理工学院水资源环境研究所, 福建省农村污水处理与用水安全工程研究中心, 厦门 361005;
3. 浙江大学建筑工程学院, 杭州 310058;
4. 浙江省环境工程技术评估中心, 杭州 310000
摘要: 以浙江省H市供水系统为调查对象,采用配有电子捕获器的气相色谱(GC-ECD)检测2座水厂及相应供水管网中18种消毒副产物(DBPs)的含量,深入探讨了DBPs导致的饮用水健康风险及前体物指标与各类DBPs的相关性.结果发现H市饮用水中检出三卤甲烷(THMs)、卤乙酸(HAAs)、卤乙腈(HANs)和三氯硝基甲烷(HNMs)等类消毒副产物,THMs含量最高,HAAs次之.CX水厂出水和供水管网中THMs分别为7.70~32.73μg·L-1和9.00~51.42μg·L-1,HAAs分别为3.05~21.30μg·L-1和6.00~26.79μg·L-1.TH水厂出水和供水管网中THMs分别为8.65~38.76μg·L-1和12.09~42.04μg·L-1,HAAs分别为2.42~14.79μg·L-1和2.80~33.40μg·L-1,2家水厂出厂水和供水管网中消毒副产物浓度均符合《生活饮用水卫生标准》(GB 5749-2006).采用溶解性有机碳(DOC)和UV254表征水样有机物,分析有机物与DBPs的相关性,发现管网水中三氯甲烷(TCM)与DOC和UV254呈显著负相关性.基于EPA推荐的健康风险评价模型对经口摄取途径时氯消毒副产物的致癌和非致癌风险进行计算,发现H市出厂水和管网水中消毒副产物引起的致癌风险分别为5.94×10-6~4.76×10-5和5.94×10-6~5.56×10-5,非致癌风险分别为0.91×10-2~4.20×10-2和1.26×10-2~4.72×10-2.致癌风险主要来自THMs,一溴二氯甲烷(BDCM)贡献了最高的致癌风险,非致癌风险主要来自TCM.
关键词: 饮用水      消毒副产物(DBPs)      前体物      相关性分析      健康风险     
Disinfection By-products and the Relevant Health Risk in the Water Supply System in H City of Zhejiang Province
LIU Jun-ping1 , YU Jian-quan1 , LI Qing-song2 , MA Xiao-yan1 , YANG Yu-long3 , JIA Jia4     
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China;
2. Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China;
3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
4. Technological Assessment Center of Environmental Engineering of Zhejiang Province, Hangzhou 310000, China
Abstract: The occurrence of 18 types of disinfection by-products (DBPs) in two waterworks and the corresponding water supply networks of H City in Zhejiang Province was determined by gas chromatography coupled with electron capture detector (GC-ECD). The correlation between DBPs and organic precursors, and health risks caused by DBPs, were discussed. Results showed that the disinfection by-products detected in drinking water in H City mainly include trihalomethanes (THMs), haloacetic acid (HAAs), haloacetonitrile (HANs) and trichloronitromethane (HNMs), with highest concentrations of THMs followed by HAAs. In the finish water of CX Waterworks and tap water supplied by CX Water works, concentrations of THMs ranged from 7.70 to 32.73μg·L-1and 9.00 to 51.42μg·L-1, respectively, and those of HAAs 3.05 to 21.30μg·L-1 and 6.00 to 26.79μg·L-1, respectively. The THMs in finished water and tap water of TH Waterworks were in the range 8.65-38.76μg·L-1 and 12.09-42.04μg·L-1, respectively, and those of HAAs were 2.42-14.79μg·L-1 and 2.80-33.40μg·L-1, respectively. The DBPs in the finished and tap water of the two waterworks were at lower levels than the limitations regulated by the Sanitary Standard for Drinking Water (GB 5749-2006). The index of dissolved organic carbon (DOC) and UV254 were adopted to describe the organic compounds, and it was found that trichloromethane (TCM) was significantly negatively correlated with DOC and UV254in tap water. Based on the EPA recommended health risk assessment model, the carcinogenic and non-carcinogenic risks of chlorine disinfection by-products in the oral intake route were calculated. It was found that the carcinogenic risks caused by the disinfection by-products in the finished water and tap water of H City were 5.94×10-6-4.76×10-5 and 5.94×10-6-5.56×10-5, respectively, while the non-carcinogenic risks were 0.91×10-2-4.20×10-2 and 1.26×10-2-4.72×10-2, respectively. The carcinogenic risk is mainly from THMs:bromodichloromethane (BDCM) contributes the highest cancer risk, and the non-carcinogenic risk is mainly from TCM.
Key words: drinking water      disinfection by-products(DBPs)      precursors      correlation analysis      health risks     

氯消毒能有效杀灭病原微生物, 保障供水安全.消毒副产物(disinfection by-product, DBPs)是指水中有机前体物与消毒剂反应生成的化合物[1], 如三卤甲烷类(trihalomethanes, THMs)、卤乙酸类(haloacetic, HAAs)、卤乙腈(haloacetonitrile, HANs)、卤代酮(halogenated, HKs)和卤代硝基甲烷(halogenated nitromethane, HNMs)等.自1974年Rook[2]首次发现DBPs至今, 饮用水中已经确定800余种DBPs[3~5].

国内饮用水消毒副产物的调查显示, THMs和HAAs为饮用水中主要消毒副产物, 内陆地区总浓度范围分别为未检出ND~92.8μg·L-1和ND~59.6 μg·L-1[6~8], 中位浓度为10.53μg·L-1和12.67 μg·L-1[9], 而中国台湾地区THMs含量有时会超过100 μg·L-1[10].另外, 含氮消毒副产物(nitrogenous-disinfection by-products, N-DBPs)在各地区的饮用水中均不同程度检出, 其中主要为HANs和HNMs, 其检测中位浓度为1.11μg·L-1和0.05μg·L-1, 沿海城市N-DBPs水平高于内陆城市, 且南方城市高于北方城市[11, 12], 可能是因为中国南方的水源低浊度、高藻类和高有机物等污染更严重[8].饮用水中DBPs的产生受多种因素的影响, 其中原水水质是最重要的因素.有研究表明, 饮用水中THMs、HAAs、HANs和HKs与DOC和UV254都有显著相关性[13, 14]. HNMs的形成与NO2--N等含氮离子有显著相关性, 高Br-浓度原水会产生更多溴化消毒副产物[15~17].

饮用水是人体赖以生存的必需品, 长期低剂量暴露于饮用水DBPs中是否会对人群健康产生危害成为当前世界各国学者关注的热点.有研究表明, THMs具有致癌效应[18~20], HAAs具有潜在致癌、致突变性以及生殖发育毒性[20~22], HANs、HNMs和卤代乙酰胺(HAcAm)等N-DBPs, 据报道比含碳消毒副产物(carbonaceous-disinfection by-product, C-DBPs)具有更高的遗传毒性和细胞毒性[23~25].此外, 在口服、皮肤接触和吸入这3种接触DBPs途径中, 通过口服摄入DBPs的致癌风险高于其他2种途径.

本文以浙江省H市典型饮用水供水系统为目标, 展开常规及深度饮用水处理工艺对应饮用水中DBPs种类和分布水平调查, 深入剖析DBPs与水体理化指标关系, 结合风险评估系统数据, 评估该地区饮用水中的DBPs在经口服摄入后对人群的健康风险, 以期为获取饮用水供水安全信息及水厂优化处理工艺提供数据基础.

1 材料与方法 1.1 主要仪器与试剂

岛津GC-2014型气相色谱, 附ECD检测器、HP-5毛细管色谱柱(30 m×0.25 μm×0.25 μm)和10 μL微量进样针, 耶拿multi N/C2100 TOC仪和普析TU-1901紫外分光光度计. 4种三卤甲烷混标[三氯甲烷(TCM)、一溴二氯甲烷(DCBM)、二溴一氯甲烷(DBCM)和三溴甲烷(TBM)]、二氯乙酸(DCAA)、三氯乙酸(TCAA)、溴乙酸(BAA)、二溴乙酸(DBAA)、溴氯乙酸(BCAA)、二氯乙腈(DCAN)、三氯乙腈(TCAN)、二溴乙腈(DCBN)、溴氯乙腈(BCAN)、碘乙腈(IAN)、二氯乙酰胺(DcAcm)、三氯乙酰胺(TcAcm)和三氯硝基甲烷(TCNM)等标准品, 均购自上海安谱实验科技有限公司.

1.2 样品的采集与保存

2017年12月~2018年11月期间分别对H市2家市政水厂的水源水、出厂水和相应管网水进行样品的采集和检测, 水厂和采样点位置见图 1. CX水厂采用混凝、沉淀、过滤和消毒的常规水处理工艺, TH水厂采用深度处理工艺, 包括预臭氧、混凝、沉淀、砂滤、后臭氧、活性炭滤池和消毒, 2个水厂均采用液氯消毒, 其中CX水厂有2个水源, 分别为L水库和T河.为获得较为准确和具有可比性的监测数据, 相同月份的样品均于同一天采集.所有水样均在4℃以下保存, 并立即带回实验室分析.

图 1 H市采样点位置示意 Fig. 1 Sample sites of H City

1.3 实验方法

有机物指标采用UV254和TOC, UV254采用紫外分光光度法测定, TOC采用有机碳分析仪测定. THMs、HANs、HAcAm和HNMs采用叔丁基甲醚(MTBE)为萃取剂进行液液萃取, 取上部有机相进样GC-ECD检测. GC检测条件为进样口温度200℃, 不分流进样;升温程序为初始温度35℃, 保持1 min, 以10℃·min-1升至70℃, 以20℃·min-1升至120℃, 以10℃·min-1升至200℃, 以20℃·min-1升至240℃, 保留5 min. ECD温度250℃.载气为高纯氮, 总流量为50 mL·min-1, 吹扫流量3.6 mL·min-1.

HAAs采用液液萃取联合酸性甲醇酯化法. GC检测条件为进样口温度210℃, 不分流进样, 载气为高纯氮, 总流量50 mL·min-1, 吹扫流量3.6 mL·min-1;升温程序为初始温度35℃保持8 min, 以8℃·min-1升到200℃, 保留15 min. ECD温度280℃.

为控制检测质量, 每次测样均设平行样及空白对照, 从而确保检测的准确性, 对检测结果过高或过低的样品进行复查.

1.4 相关性分析

SPSS(statistical product and service solutions), 即“统计产品与服务解决方案”, 主要用于分析不同变量元素之间的关系.基于SPSS平台进行水质参数与消毒副产物之间的相关性分析, 由于数据为非正态分布, 因此采用Spearman相关分析.

1.5 健康风险模型 1.5.1 致癌风险

基于测量的DBPs水平, 评估经口服摄取途径时潜在DBPs摄取量.根据H市居民的生活方式和管网水中DBPs分布情况, 确定饮用人群的暴露源、暴露途径、暴露的程度、持续时间和暴露率.癌症风险评估公式如下[26]

式中, R表示终生超额患癌风险度;CDIoral表示人体每日口服摄入量, mg·(kg·d)-1;SForal表示致癌物的致癌斜率因子(kg·d)·mg-1.

式中, CW代表饮用水中DBPs浓度(mg·L-1);IR为饮用水摄入率(L·d-1);EF为暴露频率(d·a-1);ED为暴露持续时间, 根据中国人口数据, 假设男性为74 a, 女性为78 a[27];BW为体重, 男性平均为67.7 kg, 女性平均为59.6 kg[27], AT为平均暴露时间, 经计算为25550 d[28].

1.5.2 非致癌风险

DBPs对人体的非致癌风险通常用危害指数HI[26]表示:

式中, RfD为化学物质非致癌参考量, mg·(kg·d)-1.

1.5.3 参考剂量

饮用水中各DBPs致癌性分级、致癌斜率因子SF和非致癌参考量见表 1.

表 1 DBPs致癌性分级、致癌斜率因子及非致癌参考剂量1) Table 1 DBPs carcinogenic classification, slopefactor, and reference dose for non-cancer risk

2 结果与讨论 2.1 常规受控与非受控DBPs的种类和存在水平

H市2家水厂出厂水和对应供水管网中DBPs共检出13种, 常规受控DBPs检出类别为TCM、BDCM、DBCM、TBM、DCAA和TCAA, 非常规受控DBPs检出类别为BAA、DBAA、BCAA、DCAN、DBAN、BCAN和TCNM, 均未超过国家标准, 部分水源水存在DBPs背景值. H市供水管网中DBPs分布见图 2, DBPs具体的含量水平见表 2.

图 2 H市2水厂对应供水管网中DBPs分布 Fig. 2 Distribution of DBPs in tap water of two water plants in H City

表 2 H市饮用水中DBPs检测结果1) Table 2 Occurrence of DBPs in tap water of H City

图 2可见, 与CX水厂和TH水厂相关的供水管网中DBPs以THMs和HAAs为主, CX水厂对应供水管网中THMs、HAAs、HANs和TCNM的存在水平分别为9.00~51.42、6.00~26.79、1.51~13.82和0.11~0.60μg·L-1, 其中位浓度分别为18.23、20.50、4.49和0.22μg·L-1. TH水厂对应供水管网中THMs、HAAs、HANs和TCNM的存在水平分别为12.09~42.04、2.80~33.40、1.89~10.15和ND~0.31μg·L-1, 中位浓度分别为36.80、12.83、3.80和0.14μg·L-1. H市供水系统的DBPs总量高于全国平均水平[9].

表 2可见, 除CX水厂对应供水管网中TBM检出率较小外, 其它5种常规受控DBPs在2家水厂出水及管网水中均100%检出, HANs检出类别为DCAN、DBAN和BCAN, 其中DCAN检出率最高, TCAN和IAN未检出, TCNM在2家水厂出厂水及管网水中均有检出. CX水厂出厂水及管网水THMs以TCM为主, 平均检测浓度为10.24μg·L-1, HAAs以DCAA和TCAA为主, 平均检测浓度分别为3.45μg·L-1和8.67μg·L-1, 3种HANs的检测含量最高值为4.27μg·L-1(DBAN), TCNM在管网中平均浓度为0.26μg·L-1. TH水厂出水及管网水THMs中BDCM和DBCM含量较高, 平均检测浓度分别为13.15μg·L-1和13.24μg·L-1, 这可能是由2方面原因造成的, 一是TH水厂水源水T湖中溴化物含量偏高[29], 二是因为TH水厂采用臭氧活性炭工艺, 臭氧活性炭工艺会减少THMs前体物的生成, 但同时会生成溴酸盐与水中有机物发生卤代反应, 导致溴代烷烃含量的上升[30]. HAAs以DCAA和TCAA为主, 平均浓度分别为3.99μg·L-1和4.52μg·L-1, HANs的检测最高值为6.41μg·L-1(BCAN), TCNM在管网中的平均浓度为0.15μg·L-1. 2家水厂HANs总量均未超过WHO的暂时性指导值(70μg·L-1), 总N-DBPs的检测浓度高于广州和深圳等城市[11]. TH水厂C-DBPs和N-DBPs含量总体低于CX水厂, 主要是因为TH水厂采用预臭氧和臭氧生物活性炭工艺, 该工艺可提高对氨氮、DOC、UV254和高锰酸盐指数的去除, 从而减少该类DBPs的产生.

2.2 水样理化指标与DBPs的相关性

分别对H市2个水厂对应管网水的水温、pH、游离余氯、DOC和UV254进行检测, 结果见表 3, 游离余氯的合格率分别为CX水厂96.8%和TH水厂100%.对2家水厂管网水理化指标与DBPs进行相关性分析, 其结果见表 4表 5.

表 3 H市2水厂管网水理化指标 Table 3 Physicochemical parameters of drinking water in H City

表 4 CX水厂管网水DBPs浓度与水体理化指标的相关性分析1) Table 4 Relationship between DBPs and physicochemical parameters of drinking water in CX water plant

表 5 TH水厂管网水DBPs浓度与水体理化指标的相关性分析 Table 5 Relationship between DBPs and physicochemical parameters of drinking water in TH water plant

表 4表 5可见, CX水厂和TH水厂对应管网水TCM与DOC和UV254均有显著相关性(P < 0.05), 这与Hong等[14]的研究结果一致, 因为DOC和UV254能反映水中天然有机物(NOM)的量, 氯会与NOM反应形成TCM.对于总三卤甲烷(T-THMs), CX水厂管网水T-THMs与DOC和UV254有显著相关性, 而TH水厂管网水T-THMs与DOC和UV254并没有呈现良好相关性, 这可能是由于CX水厂管网水T-THMs的贡献主要来自TCM, TH水厂管网水的T-THMs则主要来自BDCM和DBCM, 这2类DBPs受到水中溴离子的存在水平的影响[31].此外2家水厂管网水中DCAA、TCAA和DCAN等与DOC和UV254没有呈现明显相关性, 这表明DOC和UV254不是这些DBPs前体物的良好指标.管网中余氯与前体物接触时间的增加会导致更多DBPs的产生[32], 例如THMs和TCAA, 以及剩余氯量的减少, 因此本研究中管网水中剩余氯量与THMs和TCAA呈负相关.温度的升高会加速反应, 水温和大部分DBPs呈显著的正相关关系. TH水厂管网水数据显示pH值对THMs的形成有促进作用, 而CX水厂管网水pH和THMs并没有呈现显著相关性, 这可能是由于2家水厂的原水有机物种类差异较大.

2.3 DBPs健康风险评估

通过健康风险评价模型, 可分别评价经口摄取途径时水中化学致癌物质的健康风险和化学非致癌物质的健康风险. H市2家水厂的出厂水及管网水中不同DBPs的致癌风险和非致癌风险如表 6表 7所示.

表 6 H市2家水厂出厂水和管网水的致癌风险 Table 6 Cancer risk in finished water and tap water in H City

表 7 H市2家水厂出厂水和管网水的非致癌风险 Table 7 Non-carcinogens risk in finished water and tap water in H City

表 67可见, H市CX水厂的出厂水和管网水中DBPs通过饮水途径的致癌风险分别为(5.94~31.52)×10-6和(9.42~35.81)×10-6, HI值分别为(1.19~4.01)×10-2和(1.26~4.32)×10-2. TH水厂的出厂水和管网水中DBPs通过饮水途径的致癌风险分别为(6.93~47.57)×10-6和(1.40~5.56)×10-5, HI值分别为(0.91~4.20)×10-2和(1.27~4.72)×10-2. 2家水厂出水和管网水致癌风险均高于EPA规定的最低或可忽略风险水平(1×10-6), 但在EPA规定的监管范围内(1×10-6~1×10-4). 4种THMs中, 2家水厂出厂水和管网水的BDCM均表现出最高的致癌风险, 最高达到3.14×10-6, 尽管在CX水厂出水和管网水中TCM含量更高, 这与Lee等[33]和Viana等[34]的研究结果类似, 主要是因为BDCM具有较高的口服致癌斜率因子.对于HAAs, TCAA的致癌风险贡献明显大于DCAA, 这是因为TCAA具有较高的浓度水平和口服斜率因子[35].由于水厂出水进入管网后DBPs含量会继续升高, 因此可以看出管网水DBPs致癌风险普遍高于出厂水. 2家水厂的出厂水和管网水非致癌风险主要来自TCM, 其HI最高值达2.29×10-2.此外据报道, 同浓度下溴化HAAs比氯化HAAs更有毒性[36], 含氮消毒副产物HANs和HNMs等虽然在水中浓度低, 但其致癌性却是C-DBPs的几倍[23, 37].然而由于尚未获得这些物质的癌症效力, 因此无法具体得出其致癌风险.

3 结论

(1) THMs和HAAs是H市2家水厂饮用水中主要氯消毒副产物类型, 此外含氮DBPs包括DCAN、DBAN、BCAN和TCNM亦有检出;臭氧深度处理工艺可能导致含溴消毒副产物比例较高, 2家水厂水样均未发现水体中DBPs超标的现象, 但DBPs总量高于全国平均水平.

(2) 饮用水中DBPs的生成受到水中污染物种类、污染水平影响. TH水厂和CX水厂出水TCM均与DOC和UV254呈显著负相关性, 余氯与THMs和TCAA呈负相关关系, 温度和pH均与部分DBPs有显著相关性.

(3) H市饮用水中6种DBPs(TCM、BDCM、DBCM、TBM、TCAA和DCAA)通过饮水途径所引起的致癌风险相当, 其中BDCM贡献最大, 非致癌风险则主要来自TCM.致癌风险虽在美国环保署可接受的风险范围内, 但不容忽视, 建议加强水环境的保护, 从源头上控制污染物的排放, 水厂应采用深度处理工艺更有效去除DBPs前体物, 管网可采用多级加氯方式, 从而减少DBPs的生成.

参考文献
[1] Sohn J, Amy G, Cho J, et al. Disinfectant decay and disinfection by-products formation model development:chlorination and ozonation by-products[J]. Water Research, 2004, 38(10): 2461-2478. DOI:10.1016/j.watres.2004.03.009
[2] Rook J J. Formation of haloforms during chlorination of natural waters[J]. Water Treatment Examination, 1974, 23: 234-243.
[3] Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a new generation of disinfection byproducts[J]. Environmental Science & Technology, 2006, 40(23): 7175-7185.
[4] Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:a review and roadmap for research[J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1-3): 178-242. DOI:10.1016/j.mrrev.2007.09.001
[5] Čulin J, Mustać B. Environmental risks associated with ballast water management systems that create disinfection by-products (DBPs)[J]. Ocean & Coastal Management, 2015, 105: 100-105.
[6] 邓瑛, 魏建荣, 鄂学礼, 等. 中国六城市饮用水中氯化消毒副产物分布的研究[J]. 卫生研究, 2008, 37(2): 207-210.
Deng Y, Wei J R, E X L, et al. Study for distribution level of disinfection byproducts in drinking water from six cities in China[J]. Journal of Hygiene Research, 2008, 37(2): 207-210. DOI:10.3969/j.issn.1000-8020.2008.02.022
[7] Zhang H, Chang S, Wang L B, et al. Estimating and comparing the cancer risks from THMs and low-level arsenic in drinking water based on disability-adjusted life years[J]. Water Research, 2018, 145: 83-93. DOI:10.1016/j.watres.2018.08.012
[8] Gan W H, Guo W H, Mo J M, et al. The occurrence of disinfection by-products in municipal drinking water in China's Pearl River Delta and a multipathway cancer risk assessment[J]. Science of the Total Environment, 2013, 447: 108-115. DOI:10.1016/j.scitotenv.2012.12.091
[9] Sun X F, Chen M, Wei D B, et al. Research progress of disinfection and disinfection by-products in China[J]. Journal of Environmental Sciences, 2019, 81: 52-67. DOI:10.1016/j.jes.2019.02.003
[10] Chang H H, Tung H H, Chao C C, et al. Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan[J]. Environmental Monitoring and Assessment, 2010, 162(1-4): 237-250. DOI:10.1007/s10661-009-0792-1
[11] 董蕾, 王海燕, 蔡宏铨, 等. 我国六城市饮用水中含氮消毒副产物的现状调查[J]. 环境与健康杂志, 2016, 33(3): 232-235.
Dong L, Wang H Y, Cai H Q, et al. Investigation on nitrogenous disinfection by-products in drinking water in six cities, China[J]. Journal of Environment and Health, 2016, 33(3): 232-235.
[12] Ding L, Deng H P, Wu C, et al. Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin[J]. Chemical Engineering Journal, 2012, 181-182: 360-370. DOI:10.1016/j.cej.2011.11.096
[13] Chowdhury S, Champagne P, McLellan P J. Models for predicting disinfection byproduct (DBP) formation in drinking waters:a chronological review[J]. Science of the Total Environment, 2009, 407(14): 4189-4206. DOI:10.1016/j.scitotenv.2009.04.006
[14] Hong H C, Song Q Y, Mazumder A, et al. Using regression models to evaluate the formation of trihalomethanes and haloacetonitriles via chlorination of source water with low SUVA values in the Yangtze River Delta region, China[J]. Environmental Geochemistry and Health, 2016, 38(6): 1303-1312. DOI:10.1007/s10653-016-9797-1
[15] Shah A D, Mitch W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines:a critical review of nitrogenous disinfection byproduct formation pathways[J]. Environmental Science & Technology, 2012, 46(1): 119-131.
[16] Hong H C, Qian L Y, Xiao Z Q, et al. Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin[J]. Journal of Hydrology, 2015, 531: 802-809. DOI:10.1016/j.jhydrol.2015.10.046
[17] Hong H C, Yan X Q, Song X H, et al. Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values[J]. Science of the Total Environment, 2017, 590-591: 720-728. DOI:10.1016/j.scitotenv.2017.03.032
[18] Minashree K, Gupta S K. Age dependent adjustment factor (ADAF) for the estimation of cancer risk through trihalomethanes (THMs) for different age groups-A innovative approach[J]. Ecotoxicology and Environmental Safety, 2018, 148: 960-968. DOI:10.1016/j.ecoenv.2017.11.067
[19] Regli S, Chen J, Messner M, et al. Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters[J]. Environmental Science & Technology, 2015, 49(22): 13094-13102.
[20] Villanueva C M, Cantor K P, Cordier S, et al. Disinfection byproducts and bladder cancer:a pooled analysis[J]. Epidemiology, 2004, 15(3): 357-367. DOI:10.1097/01.ede.0000121380.02594.fc
[21] Hunter III E S, Rogers E H, Schmid J E, et al. Comparative effects of haloacetic acids in whole embryo culture[J]. Teratology, 1996, 54(2): 57-64. DOI:10.1002/(SICI)1096-9926(199606)54:2<57::AID-TERA1>3.0.CO;2-1
[22] Stacpoole P W, Henderson G N, Yan Z M, et al. Pharmacokinetics, metabolism, and toxicology of dichloroacetate[J]. Drug Metabolism Reviews, 1998, 30(3): 499-539. DOI:10.3109/03602539808996323
[23] Muellner M G, Wagner E D, McCalla K, et al. Haloacetonitriles vs. regulated haloacetic acids:are nitrogen-containing DBPs more toxic?[J]. Environmental Science & Technology, 2007, 41(2): 645-651.
[24] Plewa M J, Wagner E D, Jazwierska P, et al. Halonitromethane drinking water disinfection byproducts:chemical characterization and mammalian cell cytotoxicity and genotoxicity[J]. Environmental Science & Technology, 2004, 38(1): 62-68.
[25] Liviac D, Creus A, Marcos R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro[J]. Environmental Research, 2009, 109(3): 232-238. DOI:10.1016/j.envres.2008.12.009
[26] Office of Emergency and Remedial Response. Risk assessment guidance for superfund volume Ⅰ human health evaluation manual (Part A)[EB/OL]. https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf, 2019-01-05.
[27] 中国统计年鉴.中国国家统计局按地区划分的人口预期寿命[EB/OL]. http://www.stats.gov.cn/tjsj/ndsj/yb2004-c/indexch.htm, 2004-01-01.
[28] Wang G S, Deng Y C, Lin T F. Cancer risk assessment from trihalomethanes in drinking water[J]. Science of the Total Environment, 2007, 387(1-3): 86-95. DOI:10.1016/j.scitotenv.2007.07.029
[29] Hong H C, Qian L Y, Xiong Y J, et al. Use of multiple regression models to evaluate the formation of halonitromethane via chlorination/chloramination of water from Tai Lake and the Qiantang River, China[J]. Chemosphere, 2015, 119: 540-546. DOI:10.1016/j.chemosphere.2014.06.084
[30] 林涛, 陈卫, 王磊磊. 臭氧-生物活性炭对南方河网典型污染物的去除特性[J]. 环境科学, 2009, 30(5): 1397-1401.
Lin T, Chen W, Wang L L. Removal characters of ozone-biological activated carbon process for typical pollutants in southern brooky regions of China[J]. Environmental Science, 2009, 30(5): 1397-1401. DOI:10.3321/j.issn:0250-3301.2009.05.024
[31] Bond T, Huang J, Graham N J D, et al. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water-A case study[J]. Science of the Total Environment, 2014, 470-471: 469-479. DOI:10.1016/j.scitotenv.2013.09.106
[32] Hong H C, Xiong Y J, Ruan M Y, et al. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine[J]. Science of the Total Environment, 2013, 444: 196-204. DOI:10.1016/j.scitotenv.2012.11.086
[33] Lee S C, Gu H, Lam S M J, et al. Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong[J]. Environmental Research, 2004, 94(1): 47-56. DOI:10.1016/S0013-9351(03)00067-7
[34] Viana R B, Cavalcante R M, Braga F M G, et al. Risk assessment of trihalomethanes from tap water in Fortaleza, Brazil[J]. Environmental Monitoring and Assessment, 2009, 151(1-4): 317-325. DOI:10.1007/s10661-008-0273-y
[35] Pan S L, An W, Li H Y, et al. Cancer risk assessment on trihalomethanes and haloacetic acids in drinking water of China using disability-adjusted life years[J]. Journal of Hazardous Materials, 2014, 280: 288-294. DOI:10.1016/j.jhazmat.2014.07.080
[36] Richardson S D. Richardson. Disinfection by-products and other emerging contaminants in drinking water[J]. TrAC Trends in Analytical Chemistry,, 2003, 22(10): 666-684. DOI:10.1016/S0165-9936(03)01003-3
[37] Karanfil T, Krasner S W, Westerhoff P, et al. Occurrence, formation, health effects and control of disinfection by-products in drinking water[M]. Washington, DC: American Chemical Society, 2008: 36-50.