
2. 北京市农林科学院北京农业生物技术研究中心, 北京 100097





2. Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
抗生素作为抗感染药物, 在治疗人畜感染性疾病、促进动物生长方面发挥着重要作用, 但其大量不规范使用引起环境中抗生素与耐药菌富集, 已成为人类健康的潜在威胁.我国每年约使用16.2万t抗生素, 约占世界用量的一半, 其中52%为兽用[1].进入动物体内的抗生素有30%~90%以原药或初级代谢产物的形式通过排泄物释放到环境中[2].据2013年统计, 中国每年向环境中释放的抗生素约5.38万t, 兽用中广泛应用的四环素类、磺胺类以及喹诺酮类抗生素占释放总量的44%[3].已有研究表明, 污水处理厂污泥中磺胺甲基嘧啶的含量高达139 mg·kg-1, 液态猪粪中磺胺类抗生素的质量浓度达0.05~38.4 mg·kg-1 [4, 5].
关于磺胺类抗生素的环境行为研究, 主要集中在磺胺类抗生素及相关抗性基因在土壤、水体、动植物中的残留与分布特征分析[6~10], 各种磺胺类抗生素在土壤中的吸附迁移分析[8], 降解菌株筛选[11, 12], 以及对土壤微生物生物量的作用[13]等.然而不同浓度的磺胺类抗生素污染对土壤微生物多样性与抗生素抗性基因的影响是否存在一定差异, 仍缺乏系统研究.
针对上述问题, 本文选择磺胺类抗生素中应用广泛、且半衰期较长的磺胺甲
于2018年5月中旬至9月在北京市农林科学院玻璃温室内进行盆栽实验.室温20.8~35.4℃, 自然光照.用塑料盆(230×180 mm)装2.5 kg过2 mm筛的农田土壤(取自河北滦平县涝洼乡).实验共设4个处理:空白对照(SC)、低浓度(SL)、中浓度(SM)与高浓度(SH)磺胺甲
取0.25 g土壤, 用试剂盒PowerSoil DNA Isolation Kit(Mobio, USA)提取土壤微生物基因组DNA.用Qubit® assays分析DNA浓度.应用Illumina HiSeq平台(诺禾致源生物信息公司, 北京)对细菌16S rRNA V3-V4区(引物341F/518R, 341F: 5′-CCTACGGGAGGCAGCAG-3′; 518R: 5′-ATTACCGCGGCTGCTGG-3′)和真菌ITS区(引物ITS1F/ITS2R, ITS1F: 5′-CTTGGTCATTTAGAGGAA GTAA-3′; ITS2R: 5′-GCTGCGTTCTTCATCGATGC-3′)进行高通量测序, 分析磺胺甲
应用普通PCR对不同处理土壤中的喹诺酮类、磺胺类、甲氧苄啶、红霉素、四环素以及多黏菌素这6种抗生素的64个抗性基因亚型进行普通PCR分析, 抗生素抗性基因PCR的引物依据文献[14]设定.依据普通PCR结果, 对检测阳性且条带清晰的11种抗生素抗性基因亚型, 包括磺胺抗性基因(sul1、sul2)、四环素抗性基因[tetM、tetA/P、tet(34)、tetG1、tetG2]和喹诺酮抗性基因(qnrS1、qnrS2、cmlA1、floR)进行定量检测.抗性基因的定量检测采用微滴数字PCR(Droplet digital PCR, ddPCR)(Bio-Rad, USA). ddPCR反应条件为:94℃预变性5 min、94℃变性30 s、60℃退火30 s、72℃延伸1 min, 39个循环, 72℃延伸10 min.以土壤基因组DNA为模板, 用无菌水为阴性对照, 反应体系包含12.5 μL EverGreen Supermix(Bio-Rad, USA), 正向和反向引物各0.25 μL, 1.25 μL DNA模板, 最后无菌水补充至25 μL.采用自动微滴生成仪(QX200 droplet generator, Bio-Rad, USA)生成微滴.设置程序进行PCR扩增后, 将96孔板置入微滴读取仪MyCycler Thermocycler中读取信号, 分析数据, 获得绝对定量结果.
1.4 数据分析处理对Illumina高通量测序的数据进行过滤、质控获得高质量的测序数据, 将其与SILVA的SSU rRNA数据库比对进行物种注释分析, 得到所有OTU代表序列的微生物系统发育地位.通过Mothur计算香农指数、辛普森指数与覆盖率, 以评估测序深度是否足以反映样品中微生物的组成, 比较不同处理中微生物多样性的差异.采用R语言vegan软件包绘制非度量型多维尺度(NMDS)图, 分析不同处理中总的微生物组成的差异.利用R语言pheatmap软件包绘制热图, 对比分析不同处理中优势微生物种属差异.采用R语言TukeyHSD方法对不同处理是否存在差异进行统计分析.应用Origin绘图软件进行柱形图、箱型图与散点图的绘制.
2 结果与讨论 2.1 磺胺甲
各处理土壤样品细菌与真菌测序的覆盖率在99.2%~99.8%, 表明测序结果可以反映土壤的微生物组成(表 1).对不同浓度磺胺甲
![]() |
表 1 不同浓度磺胺甲![]() |
2.1.2 土壤微生物的群落结构
依据不同处理土壤样品的OTUs组成, 对样品进行NMDS分析.由细菌NMDS分析可以看出, 空白组与施加磺胺甲
![]() |
图 1 不同浓度磺胺甲![]() |
从门的分类水平看, 各处理土壤中的优势细菌类群为放线菌门(Actinbacteria)占44.3%~50.6%, 变形菌门(Proteobacteria)占14.5%~16.3%, 厚壁菌门(Firmicutes)占9.9%~11.5[图 2(a)].土壤中的优势真菌为子囊菌门(Ascomycota)占60%~75%, 担子菌门(Basidiomycota)占5%~30%, 接合菌门(Zygomycota)占9%~19%. SH处理组中担子菌门的相对丰度明显高于SC空白对照组, 而子囊菌门与结合菌门低于SC空白对照组[图 2(b)].以上结果表明, 土壤受磺胺甲
![]() |
图 2 不同磺胺甲![]() |
为进一步分析磺胺甲
![]() |
(a)细菌菌属;(b)真菌菌属
图 3 不同磺胺甲![]() |
对土壤微生物优势属对比分析发现, 3个磺胺甲

为明确不同浓度的磺胺甲
![]() |
表 2 不同处理中土壤中抗生素抗性基因的定性分析1) Table 2 Qualitative analysis of antibiotic resistance genes (ARGs) in soil under the different treatments |
2.2.2 抗生素抗性基因的丰度
土壤中抗生素抗性基因的丰度可以反映土壤中抗生素抗性组的变化, 磺胺甲
![]() |
图 4 磺胺甲![]() |
![]() |
图 5 磺胺甲![]() |
抗生素污染对环境中的抗性基因具有一定的选择性压力, 土壤中检测到抗生素浓度高的土层, 抗性基因的丰度也较高[28, 29].本研究也显示磺胺甲
(1) 温室盆栽实验模拟土壤磺胺甲
(2) 高浓度磺胺甲
(3) 磺胺甲
[1] | Jechalke S, Kopmann C, Rosendahl I, et al. Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs[J]. Applied and Environmental Microbiology, 2013, 79(5): 1704-1711. DOI:10.1128/AEM.03172-12 |
[2] | Zhang X X, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across china and other global locations[J]. Environmental Science and Technology, 2011, 45(7): 2598-2604. DOI:10.1021/es103672x |
[3] | Yan M T, Xu C, Huang Y M, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 631-632: 840-848. DOI:10.1016/j.scitotenv.2018.03.085 |
[4] | García-Galán M J, Díaz-Cruz S, Barceló D. Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography-electrospray-quadrupole linear ion trap mass spectrometry[J]. Journal of Chromatography A, 2013, 1275: 32-40. DOI:10.1016/j.chroma.2012.12.004 |
[5] | Hölzel C S, Harms K S, Küchenhoff H, et al. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides[J]. Journal of Applied Microbiology, 2010, 108(5): 1642-1656. DOI:10.1111/j.1365-2672.2009.04570.x |
[6] | Ben Y J, Fu C X, Hu M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment:A review[J]. Environmental Research, 2019, 169: 483-493. DOI:10.1016/j.envres.2018.11.040 |
[7] | Conde-Cid M, Álvarez-Esmorís C, Paradelo-Núñez R, et al. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain)[J]. Journal of Cleaner Production, 2018, 197: 491-500. DOI:10.1016/j.jclepro.2018.06.217 |
[8] |
胡亚茹, 姜蕾, 张天阳, 等. 华东地区某饮用水源地中磺胺类抗性基因的分布特征[J]. 环境科学, 2018, 39(9): 4222-4228. Hu Y R, Jiang L, Zhang T Y, et al. Distribution characteristics of sulfonamide antibiotic resistance genes in a drinking water source in east China[J]. Environmental Science, 2018, 39(9): 4222-4228. |
[9] |
花莉, 李璐, 杨春燕. 制革废水处理过程中磺胺类抗生素和抗性细菌的分布特征[J]. 环境科学, 2018, 39(9): 4229-4235. Hua L, Li L, Yang C Y. Distribution characteristics of sulfonamides and sulfamethoxazole-resistant bacteria in Tannery wastewater treatment processes[J]. Environmental Science, 2018, 39(9): 4229-4235. |
[10] | Park J Y, Huwe B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils[J]. Environmental Pollution, 2016, 213: 561-570. DOI:10.1016/j.envpol.2016.01.089 |
[11] | Yang C W, Tsai L L, Chang B V. Fungi extracellular enzyme-containing microcapsules enhance degradation of sulfonamide antibiotics in mangrove sediments[J]. Environmental Science and Pollution Research, 2018, 25(1): 10069-10079. |
[12] | Chen J F, Xie S G. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms[J]. Science of the Total Environment, 2018, 640-641: 1465-1477. DOI:10.1016/j.scitotenv.2018.06.016 |
[13] | Li X D, Yu H X, Xu S S, et al. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage[J]. Ecotoxicology and Environmental Safety, 2013, 92: 297-302. DOI:10.1016/j.ecoenv.2013.03.010 |
[14] | Su J Q, Wei B, Ou-Yang W Y, et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting[J]. Environmental Science and Technology, 2015, 49(12): 7356-7363. DOI:10.1021/acs.est.5b01012 |
[15] | Uddin M, Chen J W, Qiao X L, et al. Bacterial community variations in paddy soils induced by application of veterinary antibiotics in plant-soil systems[J]. Ecotoxicology and Environmental Safety, 2019, 167: 44-53. DOI:10.1016/j.ecoenv.2018.09.101 |
[16] | Wood W B, Austrian R. Studies on the antibacterial action of the sulfonamide drugs[J]. Journal of Experimental Medicine, 1942, 75(4): 383-394. DOI:10.1084/jem.75.4.383 |
[17] | Gallego V, Sánchez-Porro C, García M T, et al. Massilia aurea sp. nov., isolated from drinking water[J]. International Journal of Systematic and Evolutionary Microbiolog, 2006, 56: 2449-2453. DOI:10.1099/ijs.0.64389-0 |
[18] | Li S, Jochum C C, Yu F, et al. An antibiotic complex from Lysobacter enzymogenes strain C3:antimicrobial activity and role in plant disease control[J]. Phytopathology, 2008, 98(6): 695-701. DOI:10.1094/PHYTO-98-6-0695 |
[19] | Panthee S, Hamamoto H, Paudel A, et al. Lysobacter species:a potential source of novel antibiotics[J]. Archives of Microbiology, 2016, 198(9): 839-845. DOI:10.1007/s00203-016-1278-5 |
[20] | Montero-Calasanz M C D, Göker M, Broughton W J, et al. Geodermatophilus tzadiensis sp. Nov., a UV radiation-resistant bacterium isolated from sand of the saharan desert[J]. Systematic and Applied Microbiology, 2003, 36(3): 177-182. DOI:10.1046/j.1472-765X.2003.01290.x |
[21] | Shirsalimian M S, Sepahy A A, Amoozegar M A, et al. Isolation of two radiation resistant and desiccation tolerant bacteria, Modestobacter sp. A2 and Maritalea sp. B9, from gandom beryan hill in the lut desert of iran[J]. Microbiology, 2018, 87(3): 363-371. DOI:10.1134/S0026261718030104 |
[22] | Lorentz R H, Artico S, Da Silveira A B, et al. Evaluation of antimicrobial activity in Paenibacillus spp. strains isolated from natural environment[J]. Letters in Applied Microbiology, 2010, 43(5): 541-547. |
[23] | Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions[J]. Molecular Microbiology, 2010, 56(4): 845-857. |
[24] | Ren Y H, Strobel G, Sears J, et al. Geobacillus sp., a thermophilic soil bacterium producing volatile antibiotics[J]. Microbial Ecology, 2010, 60(1): 130-136. DOI:10.1007/s00248-009-9630-9 |
[25] | Martin-Laurent F, Marti R, Waglechner N, et al. Draft genome sequence of the sulfonamide antibiotic-degrading Microbacterium sp. strain c448[J]. Genome Announcements, 2014, 2(1): e01113-13. DOI:10.1128/genomeA.01113-13 |
[26] | Zhang C C, Hsu H J, Li C M. Brevundimonas vesicularis bacteremia resistant to trimethoprim-sulfamethoxazole and ceftazidime in a tertiary hospital in southern Taiwan[J]. Journal of Microbiology, Immunology and Infection, 2012, 45(6): 448-452. DOI:10.1016/j.jmii.2012.01.010 |
[27] | De Menezes A B, Richardson A E, Thrall P H. Linking fungal-bacterial co-occurrences to soil ecosystem function[J]. Current Opinion in Microbiology, 2017, 37: 135-141. DOI:10.1016/j.mib.2017.06.006 |
[28] | Lin H, Sun W C, Zhang Z L, et al. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system[J]. Environmental Pollution, 2016, 211: 332-337. DOI:10.1016/j.envpol.2016.01.007 |
[29] | Tang J, Wang L L, Xi Y F, et al. A three-year survey of the antimicrobial resistance of microorganisms at a Chinese hospital[J]. Experimental and Therapeutic Medicine, 2016, 11(3): 731-736. DOI:10.3892/etm.2016.2983 |
[30] | Zhu S C, Chen H, Li J N. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake basin, Eastern China[J]. Ecotoxicology and Environmental Safety, 2013, 96: 154-159. DOI:10.1016/j.ecoenv.2013.06.033 |
[31] | Su H C, Pan C G, Ying G G, et al. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale[J]. Science of the Total Environment, 2014, 490: 708-714. DOI:10.1016/j.scitotenv.2014.05.060 |