2. 中国科学院南京土壤研究所, 土壤与农业可持续发展国家重点实验室, 南京 210008
2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
农田生态系统中氮肥的大量施加在提高农作物产量的同时也带来了一系列的环境问题:施入土壤中的铵态氮肥通过硝化作用被氧化为硝酸盐, 易于从土壤中淋失; 硝化作用为反硝化作用提供底物, 也增加了温室气体排放的风险[1, 2].因此氨氧化作用作为硝化作用的限速步骤, 其推动者——氨氧化微生物被认为在维持农田生态系统平衡以及环境管理中扮演十分重要的角色.
氨氧化细菌(ammonia-oxidizing bacteria, AOB)和氨氧化古菌(ammonia-oxidizing archaea, AOA)是典型的氨氧化微生物, 具有编码催化氨氧化作用的氨单加氧酶(AMO)基因[3, 4].氨单加氧酶亚基A(amoA)在氨氧化微生物中广泛存在并可以作为氨氧化微生物的特异性标记.前人利用amoA可以特异性标记的特性进行研究, 表明AOA可能主导了土壤中的硝化作用[5]. Jia等[6]曾用DNA稳定性同位素核酸探针技术(DNA/RNA-based stable isotope probing, DNA/RNA-SIP)证明在中性土壤中AOB主导了土壤中的硝化作用.大量研究结果表明硝化作用对pH高度敏感[7, 8], 在pH为4.8~8.5的土壤中进行实验, 结果表明较高的pH可以刺激硝化作用[9], 对微生物的培养实验也得到了同样的结果[10]. pH可以影响硝化作用的底物从而影响土壤硝化速率[11].当pH较低时氨分子趋向转变为铵离子, 氨氧化作用的底物含量降低, 从而使硝化速率减慢. pH对土壤中氨氧化微生物的丰度和群落结构有显著的影响[12, 13].相比于AOB, AOA对pH有更强的适应力[14], 有研究表明, 酸性土壤中AOA主导土壤中自养氨氧化过程[15~18]; 在中性或碱性土壤中, 则是由AOB主导[6, 19, 20].
虽然通常认为在中性及碱性的土壤环境中硝化作用是由AOB主导, 但是在中酸性(5≤pH < 7)和碱性(pH>7)土壤中AOA都有特别高的丰度, 并且随着pH的增加AOA的丰度及多样性也有所增加和变化[12].宏基因组分析表明在在酸性土壤中的硝化作用由Nitrosotalea AOA[21]或Nitrososphaera AOA主导[22], 且中性及碱性土壤中Nitrososphaera AOA在数量上占优势.目前大部分硝化微生物的活性都是通过测定AOA和AOB丰度推测得到, 但是存在部分氨氧化微生物基因有可能没有表达或者酶失活的情况, 所以丰度并不能表明AOA和AOB对硝化作用的相对贡献.在原位条件下诠释AOA和AOB对硝化作用的相对贡献是一个难题.
DNA-SIP是通过利用稳定性同位素在分子水平对由微生物驱动的过程进行研究, DNA-SIP是将功能与复杂环境中活性微生物的分类联系起来的有力手段[23]. DNA-SIP的成功完全依赖于基因组复制和需要在标记的底物上生长的目标微生物的主动繁殖, 微生物可利用稳定性同位素生长繁殖从而利用同位素来示踪活性微生物. DNA-SIP为验证活性微生物的存在提供了确凿的证据. DNA-SIP实验已经证明了在pH>6.5的土壤中AOB在硝化作用中发挥作用, 但目前仍不清楚丰度很高的Nitrososphaera AOA在中性紫色土壤中是否发挥着重要作用[24, 25].有研究表明在西南地区中性紫色土中AOA和AOB共存且可能共同推动硝化作用的进行[26, 27], 但没有确凿的证据.因此, 在本实验中采用DNA-SIP技术结合克隆文库分析方法, 对中国西南农业地区中性紫色土的活性硝化微生物群落进行了研究, 探究AOA及AOB对中性紫色土硝化作用的贡献.
1 材料与方法 1.1 样地描述及样品采集供试土壤采自重庆市永川区(N29°23′, E105°59′), 该地区属于亚热带季风气候, 全年平均气温18.7℃, 平均降水量为1 380 mm.取土前首先去除土壤表层的植被及腐殖质层, 按5点取样法钻取0~20 cm耕层土样, 去除枯枝落叶及根系等杂物后自然风干.一部分土壤过2 mm筛后储存于4℃冰箱用于培养实验; 另一部分过1 mm筛用于土壤理化性质的测定[28].土壤的基本理化性质: pH为7.2, 有机质为12.90 g·kg-1, 全氮为0.97 g·kg-1, 全磷为8.91 g·kg-1, 铵态氮为1.08 mg·kg-1, 硝态氮为16.50 mg·kg-1.
1.2 土壤样品培养与测定本实验利用稳定性同位素核酸探针技术(DNA/RNA-based stable isotope probing, DNA/RNA-SIP)[28], 在120 mL的培养瓶中放入8 g干重的风干土壤样品并调节土壤含水量至土壤田间最大持水量的60%, 并设置12CO2、13CO2和13CO2+C2H2(100 Pa) (对照)这3种处理, 调节CO2体积分数为5%.所有处理每周均加入100 μg·g-1铵态氮(尿素)并在28℃的避光培养箱中培养8周(56 d).每个瓶子每周打开一次, 以便添加N源和进行空气交换以保持有氧条件.通过添加灭菌水补偿水分损失, 在瓶中重新密封后, 更换13CO2、12CO2和C2H2气体.
在第0 d和第56 d破坏性采样, 每个处理3个重复, 每个重复约2 g土壤.将一部分土样立即储存在-80℃冰箱中用于提取土壤DNA. DNA提取采用Fast DNA spin kit for soil (MP Biomedicals, Cleveland, OH, USA)试剂盒, 称取0.5 g土样并按照试剂盒操作步骤进行提取的DNA被用于后续的分层离心和amoA基因的定量.其余土壤采用紫外分光光度计方法测定铵态氮及硝态氮含量.
1.3 超高速离心分层以及分层DNA的回收纯化约3.0 μg的总DNA与CsCl溶液彻底混匀, 以达到1.725 g·mL-1的初始CsCl浮力密度, 并放置于5.1 mL的超高速离心管中.上机进行超高速离心(Beckman Coulter, Palo Alto, CA, USA), 超高速离心结束后, 用取代法去离子水以注入离心试管内, 依次获得不同浮力密度DNA, 离心液共分为15层, 测定每一层溶液的折光率并计算浮力密度[29]. DNA回收纯化按照Jia等[6]的方法溶解在30 μL的离心管中.
1.4 定量PCR分析按照说明书使用SYBR Premix Ex Taq TM试剂盒并在CFX96 Optical Real-Time PCR System扩增仪上进行分析, PCR反应总体系为20 μL, 包含模板DNA、上下游引物[30, 31]和Taq DNA聚合酶[29].反应条件参考文献[28].
1.5 AOB和AOA amoA基因克隆测序对中性紫色土培养0 d 12C标记的轻浮力密度梯度带和培养56 d 13C标记的重浮力密度梯度带进行构建氨氧化古菌及氨氧化细菌的克隆文库.以0 d 12C标记的轻层DNA和56 d 13C标记的重层DNA为模板并分别采用相应的引物Arch-amoA-F/R和amoA-1F/2R扩增.再将其PCR产物按照说明书使用pEASY-T3 Cloning Kit(Trans Gen Biotech)进行克隆测序:①配置好培养基离心管及PCR管的灭菌; ②PCR扩增及产物的纯化; ③链接和转化; ④阳性重组子的鉴定和测序, 获得目标基因序列[27].
在NCBI(National Center for Biotechnology Information)的数据库中搜索并进行Blast比对, 获得高度相近的同源基因序列; 采用MEGA软件进行分析, 将序列进行分类并建立系统发育树, 根据序列在系统进化树中的位置和遗传距离判定测序克隆的系统发育地位[29].
序列遗传信息已上传NCBI数据库, AOA和AOB的序列查询号分别为KY950303-KY950330和KY950331-KY950348.
1.6 数据分析本研究中釆用SPSS 18.0进行统计分析, 分析方法为one-way ANOVA; 硝态氮、铵态氮的含量, AOA及AOB amoA功能基因拷贝数, AOA、AOB在每个Subcluster/Cluster上的相对丰度等在Excel中处理; 采用Origin 8.6作铵态氮及硝态氮的含量及AOA和AOB的丰度图; 克隆测序序列通过NCBI-Blast进行比对, 系统发育树作图采用Mega 4.0.
2 结果与分析 2.1 硝化活性0 d时NO3--N含量为12.6 mg·kg-1, 56 d时12CO2和13CO2处理的NO3--N含量分别增加到536 mg·kg-1和572 mg·kg-1(图 1).经过计算中性紫色土的净硝化速率为9.68mg·(kg·d)-1, 而加入C2H2处理的硝化作用明显被抑制.在3种处理中明显观察到NH4+-N的积累, 但是12CO2和13CO2处理中NH4+-N的含量没有显著差异, 在13CO2+C2H2处理中NH4+-N含量达到了738 mg·kg-1.
![]() |
图 1 中性紫色土中土壤铵态氮和硝态氮含量的变化 Fig. 1 Changes in concentrations of soil ammonium and nitrate in neutral purple soil |
培养初期(0 d)和培养56 d土壤样品的AOA和AOB功能基因(amoA)拷贝数变化如图 2所示.培养初期AOA amoA基因拷贝数(以干土计, 下同)为3.05×107 g-1, 经过56 d的培养12CO2和13CO2标记处理的AOA amoA基因拷贝数分别增加到1.75×108 g-1和1.65×108 g-1. 56 d 13CO2+C2H2处理的AOA amoA基因拷贝数与0 d相比没有显著差异.
![]() |
图 2 中性紫色土氨氧化古菌(AOA)及氨氧化古菌(AOB)amoA基因拷贝数 Fig. 2 Copy number of archaeal and bacterial amoA genes in neutral purple soil |
对于AOB amoA基因拷贝数来说, 培养初期AOB amoA基因拷贝数为2.40×107 g-1, 经过56 d的培养, 12CO2和13CO2标记处理的AOB amoA基因拷贝数分别增加到4.60×107 g-1和4.87×107 g-1, 13CO2+C2H2减小到6.99×106 g-1(P < 0.05).
2.3 13CO2-活性氨氧化微生物DNA标记根据DNA的不同浮力密度把13C-DNA和12C-DNA分开, 利用荧光定量PCR对AOA及AOB的amoA基因进行定量(图 3).被13C标记上的AOA或AOB被认为是活性氨氧化微生物[6]. 图 3中12CO2处理均为单峰, 都处于轻层. 13CO2处理中AOA及AOB在重层均有一峰, 说明在培养过程中AOA及AOB amoA功能基因被成功标记.以上结果表明在中性紫色土中AOA和AOB都参与氨氧化过程.
![]() |
图 3 中性紫色土各处理分层后氨氧化古菌(AOA)amoA和氨氧化细菌(AOB)amoA功能基因拷贝数比例分布 Fig. 3 Quantitative distribution of the archaeal and bacterial amoA genes across the entire buoyant density gradient of the DNA fractions in the neutral purple soil |
从AOA和AOB克隆文库中均随机挑选了40个单菌送去测序, 对测得的基因序列进行相似性分析. 0 d和56 d中性紫色土AOA克隆测序分析分别得到34个和28个可用序列, 按照>97%相似性进行OUT分类分别得到17个和11个OUT(图 4); 0 d和56 d中性紫色土AOB克隆测序分析分别得到40个和23个可用序列, 按照>97%相似性进行OUT分类分别得到8个和10个OUT(图 5).从系统发育树上可以看出, 发挥活性的AOA均属于group Ⅰ.1b-Nitrososphaera, 而发挥活性的AOB均属于Nitrosospira.
![]() |
图 4 中性紫色土0 d 12C标记处理及56 d 13C标记处理氨氧化古菌(AOA)amoA功能基因系统发育树 Fig. 4 Phylogenetic analysis of the archaeal amoA genes from the 12CO2-labeled microcosms at 0 d and the 13CO2-labeled microcosms at 56 d of incubation in the neutral purple soil |
![]() |
图 5 中性紫色土0 d 12C标记处理及56 d 13C标记处理氨氧化细菌(AOB)amoA功能基因系统 Fig. 5 Phylogenetic analysis of the bacterial amoA genes from the 12CO2-labeled microcosms at 0 d and the 13CO2-labeled microcosms at 56 d of incubation in the neutral purple soil |
从0 d和56 d AOA amoA功能基因系统发育来看(图 4), 有5个Nitrososphaera Subclusters.如图 6所示, Nitrososphaera Subcluster 3.2/3.3的相对丰度由0 d时的9%增长到56 d的40%, 成为了SIP培养后的主导Subcluster, 且在Nitrososphaera Subcluster 3.2/3.3中增长最多的序列(18%)与从水稻根际中获得的paddy soil DGGE band(HQ012652)有密切的亲缘关系.在第0 d Nitrososphaera Subcluster 9 (38%)和Nitrososphaera Subcluster 8.1/8.2 (32%)的相对丰度占比较高, 起到主导作用.但是经过8周的培养Nitrososphaera Subcluster 9和Nitrososphaera Subcluster 8.1/8.2的相对丰度分别下降了1.4倍和3.2倍, 分别下降为23%和10%.下降程度最大的Nitrososphaera Subcluster 8.1/8.2与在土壤中发现的uncultured ammonia-oxidizing archaeon clone (KM402412)有密切的亲缘关系. Nitrososphaera Subcluster 2.1在0 d(18%)和56 d(17%)的相对丰度没有显著的变化.与河岸土壤中发现的environmental clone (GQ906648)有密切亲缘关系的Nitrososphaera Subcluster 4.1, 在0 d AOA amoA功能基因的相对丰度为3%, 而在56 d并没有发现该序列.与之相反的是与N. viennensis EN76 (FR773159)有密切亲缘关系的Nitrososphaera Subcluster 1.1在0 d并没有检测到, 而在56 d的标记培养后, 其相对丰度达到了10%.
![]() |
图 6 中性紫色土中氨氧化古菌(AOA)及氨氧化细菌(AOB)的amoA基因在0 d及56 d每个Cluster/Subcluster的相对丰度 Fig. 6 Distribution of archaeal and bacterial amoA Subclusters/Clusters retrieved at 0 d and 56 d in the neutral purple soil |
经过56 d的标记培养后, AOB的群落结构也发生了一系列的变化(图 5和图 6). 0 d与Nitrosospira multiformis(X0822)有密切亲缘关系的Nitrosospira Cluster 3a.2的相对丰度为25%, 在经过56 d的13C标记培养实验后显著增加到了78%.与Nitrosospira sp.24C (AJ298685)有密切亲缘关系的Nitrosospira Cluster 10的相对丰度由0 d的10%增加到了56 d的18%. Nitrosospira Cluster 3a.1与Nitrosospira sp. Nsp2 (AJ298719)有密切的亲缘关系, 在0 d时占主导地位, 但56 d培养后, 该Cluster 3a.1 AOB消失了. Nitrosospira Cluster 9在培养初期占AOB相对丰度的22.5%, 而在培养结束后降低到了4%.
总之AOA和AOB在56 d的SIP培养后群落结构均发生了变化.对AOA来说, 在第0 d占主导的为Nitrososphaera Subcluster 8.1/8.2和Nitrososphaera Subcluster 9, 但是经过56 d的培养后, 占主导的AOA为Nitrososphaera Subcluster 3.2/3.3;对AOB而言, 在0 d占主导的为与Nitrosospira sp. Nsp2有密切亲缘关系的Cluster 3a.1, 培养后占主导的AOB为与Nitrosospira multiformis有密切亲缘关系的Cluster 3a.2.
3 讨论本研究结果为AOA和AOB在中性紫色土中共同催化自养硝化作用提供了充足的证据.就目前所了解到的, 这是第一次报道13C标记的Nitrososphaera-like AOA在好氧中性紫色土的硝化作用中发挥活性.
中性紫色土(pH=7.2)的平均净硝化速率为9.68 mg·(kg·d)-1, 且在培养期间AOA及AOB的丰度也增加. 13CO2标记实验表明在培养期间AOA及AOB被同时标记(图 3)表明中性紫色土中, AOA及AOB共同参与了硝化作用. AOA和AOB在不同的生境中的氨氧化过程中发挥着不同的作用, 例如pH[18]、温度[32]、含水量[33]及溶解氧浓度[34].有研究表明, 在酸性土壤环境中AOA主导氨氧化作用, 并且在pH低于5.5的情况下AOA有可能是氨氧化作用的唯一驱动者[16, 28].虽然AOA和AOB对pH有选择适应性, 但它并不能使AOA和AOB产生分离[12, 16].有研究表明AOA的丰度和群落多样性随着pH的升高而增加[12], 这也暗示了部分AOA可能在中性或者碱性土壤中也可能有活性.在本研究中AOA/AOB在未培养中性土中的比例为1.27, 表明AOA与AOB在中性环境中共存.随着硝化作用的进行, 在56 d的13CO2标记培养后AOA和AOB的amoA基因同时被标记, 这有力地证明了AOA和AOB都在这种中性紫色土硝化作用中具有活性.
培养初期(0 d)Nitrosospira Cluster 3a.1的相对丰度最高, 而Nitrosospira Cluster 3a.2的相对丰度只占AOB amoA基因丰度的1/4.经过56 d的培养后Nitrosospira Cluster 3a.2取代了Nitrosospira Cluster 3a.1, 成为主导的AOB Cluster.在培养初期(0d)AOA在数量上占优势的是Nitrososphaera Subcluster 9, 但经过培养后, 占优势的变为Nitrososphaera Subcluster 3.2/3.3. AOA和AOB的群落结构在培养过程中发生了变化.这表明Nitrososphaera Subcluster 9和Nitrososphaera Subcluster 8.1/8.2在中性紫色土氨氧化作用中起到的作用不大.因此氨氧化微生物amoA基因丰度并不等同于活性, 这也进一步证实了并不是所有含有amoA基因的氨氧化微生物都具有活性从而参与氨氧化过程. AOA或AOB谱系的多样性可能是基于对土壤pH值或其他环境因素的特定适应性而演变的结果, 从而显示出生态位的特异性分化.例如, 在酸性高山土壤中[25]和强酸性土壤中[35]发现了活性AOA Group I.1a-associated(Nitrosotalea Cluster)的存在.而在pH较高的环境中则是Nitrososphaera有更高的丰度[36~39].在酸性土壤中, 隶属于Nitrosospira Cluster 10、11及12的AOB占主导地位, 而在pH较高的环境中则是Nitrosomonas cluster 6、7及Nitrosospira Cluster 3a.1、3a.2的AOB类群[35].其他的影响因素例如氮肥的增施[40]、含水量[33]及土地利用方式[41]也会对AOA及AOB的群落结构组成产生一定的影响. AOA或AOB只能根据长期的进化变化来发展它们的″多样性″, 以适应不同的环境, 并且它们也可能在短期环境压力下变成“休眠”状态[42].休眠微生物能够解释和响应与生长和繁殖有利条件相关的信号[43].在本研究中, 与N. viennensis EN76 (FR773159)有密切亲缘关系的Nitrososphaera Subcluster 1.1在培养初期土壤中并没有被发现, 但是56 d培养后Nitrososphaera Subcluster 1.1被13CO2标记的amoA基因的相对丰度达到了10%.在这项研究中观察到的现象可能表明, 当底物变得更加丰富时, 一些表型从休眠状态中变得有活性.在澳大利亚的旱地土壤中, 硝化作用没有进行同时也没有发现有活性氨氧化微生物.然而Nitrosopumilus和Nitrosotalea的amoA基因在加入水之后被13CO2标记, 表明有活性且有了明显的硝化作用[31].当环境因子发生变化时, 例如施加氮肥[40]或者不同的土地利用方式[41]会使AOA或AOB的群落结构发生变化, 从而改变AOA或AOB的活性.
4 结论标记培养实验结果表明在pH=7.2的中性紫色土中AOA和AOB共同推动氨氧化作用的进行.系统发育分析结果表明, 通过培养占有活性优势的AOA和AOB分别是Nitrososphaera Subcluster 3.2/3.3和Nitrosospira Cluster 3a.2, 与培养初期的氨氧化微生物群落结构不同.
[1] | Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296. DOI:10.1038/nature06592 |
[2] | Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2 O):The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. DOI:10.1126/science.1176985 |
[3] | Hyman M R, Arp D J. 14C2H2-and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase[J]. The Journal of Biological Chemistry, 1992, 267(3): 1534-1545. |
[4] | Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12): 1985-1995. DOI:10.1111/j.1462-2920.2005.00906.x |
[5] | Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809. DOI:10.1038/nature04983 |
[6] | Jia Z J, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658-1671. DOI:10.1111/emi.2009.11.issue-7 |
[7] | Allison S M, Prosser J I. Urease activity in neutrophilic autotrophic ammonia-oxidizing bacteria isolated from acid soils[J]. Soil Biology and Biochemistry, 1991, 23(1): 45-51. DOI:10.1016/0038-0717(91)90161-C |
[8] | Bruns M A, Stephen J R, Kowalchuk G A, et al. Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils[J]. Applied and Environmental Microbiology, 1999, 65(7): 2994-3000. |
[9] | Ste-Marie C, Paré D. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands[J]. Soil Biology and Biochemistry, 1999, 31(11): 1579-1589. DOI:10.1016/S0038-0717(99)00086-3 |
[10] | Cheng Y, Wang J, Mary B, et al. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada[J]. Soil Biology and Biochemistry, 2013, 57: 848-857. DOI:10.1016/j.soilbio.2012.08.021 |
[11] | Suzuki I, Dular U, Kwok S C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts[J]. Journal of Bacteriology, 1974, 120(1): 556-558. |
[12] | Gubry-Rangin C, Hai B, Quince C, et al. Niche specialization of terrestrial archaeal ammonia oxidizers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21206-21211. DOI:10.1073/pnas.1109000108 |
[13] | Hu B L, Liu S, Wang W, et al. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils[J]. FEMS Microbiology Ecology, 2014, 90(1): 290-299. |
[14] | He J Z, Shen J P, Zhang L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9(9): 2364-2374. DOI:10.1111/emi.2007.9.issue-9 |
[15] | Nicol G W, Leininger S, Schleper C, et al. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J]. Environmental Microbiology, 2008, 10(11): 2966-2978. DOI:10.1111/emi.2008.10.issue-11 |
[16] | Prosser J I, Nicol G W. Archaeal and bacterial ammonia-oxidisers in soil:the quest for niche specialisation and differentiation[J]. Trends in Microbiology, 2012, 20(11): 523-531. DOI:10.1016/j.tim.2012.08.001 |
[17] | Offre P, Prosser J I, Nicol G W. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene[J]. FEMS Microbiology Ecology, 2009, 70(1): 99-108. |
[18] | Gubry-Rangin C, Nicol G W, Prosser J I. Archaea rather than bacteria control nitrification in two agricultural acidic soils[J]. FEMS Microbiology Ecology, 2010, 74(3): 566-574. DOI:10.1111/j.1574-6941.2010.00971.x |
[19] | Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009, 2(9): 621-624. DOI:10.1038/ngeo613 |
[20] | Xiang X J, He D, He J S, et al. Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland[J]. Soil Biology and Biochemistry, 2017, 107: 218-225. DOI:10.1016/j.soilbio.2017.01.012 |
[21] | Pester M, Rattei T, Flechl S, et al. AmoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14(2): 525-539. DOI:10.1111/j.1462-2920.2011.02666.x |
[22] | Wang B Z, Zheng Y, Huang R, et al. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon[J]. Applied and Environmental Microbiology, 2014, 80(5): 1684-1691. DOI:10.1128/AEM.03633-13 |
[23] | Radajewski S, McDonald I R, Murrell J C. Stable-isotope probing of nucleic acids:a window to the function of uncultured microorganisms[J]. Current Opinion in Biotechnology, 2003, 14(3): 296-302. DOI:10.1016/S0958-1669(03)00064-8 |
[24] | Alves R J E, Wanek W, Zappe A, et al. Nitrification rates in arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea[J]. The ISME Journal, 2013, 7(8): 1620-1631. DOI:10.1038/ismej.2013.35 |
[25] | Wang X L, Chen H, Zhang J B, et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China[J]. Soil Biology and Biochemistry, 2015, 84: 28-37. DOI:10.1016/j.soilbio.2015.02.013 |
[26] | Wang Z H, Meng Y, Zhu-Barker X, et al. Responses of nitrification and ammonia oxidizers to a range of background and adjusted pH in purple soils[J]. Geoderma, 2019, 334: 9-14. DOI:10.1016/j.geoderma.2018.07.038 |
[27] |
王梅, 王智慧, 石孝均, 等. 长期不同施肥量对全程氨氧化细菌丰度的影响[J]. 环境科学, 2018, 39(10): 4727-4734. Wang M, Wang Z H, Shi X J, et al. Long-term fertilization effects on the abundance of complete ammonia oxidizing bacteria (Comammox Nitrospira) in a neutral paddy soil[J]. Environmental Science, 2018, 39(10): 4727-4734. |
[28] | Jiang X J, Hou X Y, Zhou X, et al. pH regulates key players of nitrification in paddy soils[J]. Soil Biology and Biochemistry, 2015, 81: 9-16. DOI:10.1016/j.soilbio.2014.10.025 |
[29] |
闫小娟.三种紫色土硝化作用及其硝化微生物的研究[D].重庆: 西南大学, 2016. Yan X J. Research on nitrification and nitrifying microoganisms of three purple soils[D]. Chongqing: Southwest University, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01043799 |
[30] | Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712. |
[31] | Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683-14688. DOI:10.1073/pnas.0506625102 |
[32] | Avrahami S, Conrad R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures[J]. Applied and Environmental Microbiology, 2003, 69(10): 6152-6164. DOI:10.1128/AEM.69.10.6152-6164.2003 |
[33] | Hu H W, Macdonald C A, Trivedi P, et al. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems[J]. Environmental Microbiology, 2015, 17(2): 444-461. DOI:10.1111/1462-2920.12481 |
[34] | Santoro A E, Francis C A, de Sieyes N R, et al. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary[J]. Environmental Microbiology, 2008, 10(4): 1068-1079. DOI:10.1111/j.1462-2920.2007.01547.x |
[35] | Zhang L M, Hu H W, Shen J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal, 2012, 6(5): 1032-1045. DOI:10.1038/ismej.2011.168 |
[36] | Wang B Z, Zhao J, Guo Z Y, et al. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils[J]. The ISME Journal, 2015, 9(5): 1062-1075. DOI:10.1038/ismej.2014.194 |
[37] | Pratscher J, Dumont M G, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 4170-4175. DOI:10.1073/pnas.1010981108 |
[38] | Xia W W, Zhang C X, Zeng X W, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. The ISME Journal, 2011, 5(7): 1226-1236. DOI:10.1038/ismej.2011.5 |
[39] | Zhao J, Wang B Z, Jia Z J. Phylogenetically distinct phylotypes modulate nitrification in a paddy soil[J]. Applied and Environmental Microbiology, 2015, 81(9): 3218-3227. DOI:10.1128/AEM.00426-15 |
[40] | Zhong W H, Bian B Y, Gao N, et al. Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vegetable soil[J]. Soil Biology and Biochemistry, 2016, 93: 150-159. DOI:10.1016/j.soilbio.2015.11.003 |
[41] | Bertagnolli A D, McCalmont D, Meinhardt K A, et al. Agricultural land usage transforms nitrifier population ecology[J]. Environmental Microbiology, 2016, 18(6): 1918-1929. DOI:10.1111/1462-2920.13114 |
[42] | Lennon J T, Jones S E. Microbial seed banks:the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology, 2011, 9(2): 119-130. DOI:10.1038/nrmicro2504 |
[43] | Kaprelyants A S, Gottschal J C, Kell D B. Dormancy in non-sporulating bacteria[J]. FEMS Microbiology Reviews, 1993, 10(3-4): 271-285. |