环境科学  2019, Vol. 40 Issue (5): 2240-2248   PDF    
上海市郊道路地表径流多环芳烃污染特征对比及源解析
吴杰1, 熊丽君2, 吴健2, 沙晨燕2, 唐浩2, 林匡飞1, 李大雁2, 沈城2     
1. 华东理工大学资源与环境工程学院, 国家环境保护化工过程环境风险评价与控制重点实验室, 上海 200237;
2. 上海市环境科学研究院, 上海 200233
摘要: 随着城市化发展,我国城市地表径流污染问题日益突出,交通道路地表径流多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染受到广泛关注.以上海中心城区(漕宝路)和郊区(嘉金高速)交通道路为研究对象,采集2017~2018年7场降雨地表动态径流水样,分析道路地表径流多环芳烃的质量浓度特征及组成比例,并采用特征比值法和正定矩阵因子法(positive matrix factorization,PMF)进行PAHs源解析,从而明确交通道路地表径流PAHs的污染特征及来源差异.结果表明,郊区嘉金高速Σ16PAHs的几何均值(5539.2 ng·L-1)高于市区漕宝路(548.1ng·L-1)10倍以上,与嘉金高速货车比例大且清扫频率相对较低有关.两个点位的苯并[a]芘[benzo(a)pyrene,BaP]均超过国家排放标准,尤其嘉金高速超标21倍.漕宝路和嘉金高速径流PAHs组分比例差异不大,均以4~6环为主,占比约80%.通过特征比值法定性源解析发现,漕宝路PAHs主要来自燃煤源和交通源;嘉金高速PAHs主要来自石油、煤等燃烧源和交通源.PMF定量源解析表明,漕宝路径流PAHs来源以燃气、燃煤源为主,占48.6%,其次为交通排放源和石油源,分别占29.8%和21.7%;嘉金高速道路径流PAHs来源贡献比从大到小依次为交通排放源、燃煤源、石油源以及炼焦源,其贡献率分别为38.5%、34.6%、14.6%和12.6%.市、郊道路的PAHs来源及贡献率存在显著差异,燃气、燃煤源是市区漕宝路地表径流PAHs主要来源,与其所在徐汇区人口密度大、燃气使用量相对较多有关;交通排放源是郊区嘉金高速地表径流PAHs主要来源,与其客、货车流量相对较大、其排放PAHs远高于轿车有关;另外嘉金高速PAHs来源还存在炼焦源,与青浦区工业煤炭使用量较大有关.
关键词: 交通道路      地表径流      多环芳烃(PAHs)      源解析      PMF模型     
Comparison and Source Apportionment of PAHs Pollution of Runoff from Roads in Suburb and Urban Areas of Shanghai
WU Jie1 , XIONG Li-jun2 , WU Jian2 , SHA Chen-yan2 , TANG Hao2 , LIN Kuang-fei1 , LI Da-yan2 , SHNE Cheng2     
1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. Shanghai Academy of Environmental Sciences, Shanghai 200233, China
Abstract: Rapid urbanization has driven surface runoff pollution in urban areas to a serious state. In particular, polycyclic aromatic hydrocarbons(PAHs)from road surface runoff has attracted wide attention. Two traffic roads in Shanghai (Caobao Road in an urban central area, and Jiajin Expressway in the suburbs) were identified as research objects. Runoff samples from these two traffic roads were collected for 7 rainfall events between 2007 and 2018. Then, the concentration characteristics and composition ratio of PAHs were analyzed. The differences in pollution sources of runoff PAHs from two types of traffic roads were identified based on characteristic ratio method and positive matrix factorization(PMF). The results showed that the geometric mean value (5539.2 ng·L-1) of 16 PAHs of runoff from Jiajin Expressway in the suburbs was 10 times greater than that from Caobao Road (548.1 ng·L-1), which was related to a higher truck traffic and a lower cleaning frequency on Jiajin Expressway. The benzo(a)pyrene(BaP)concentration on both roads exceeded the national emission standard, and the amount in the Jiajin Expressway was up to 21 times higher than the standard. There was no significant difference in the composition of PAHs of runoff between Caobao Road and Jiading Expressway, and 4-6 ring were dominant and responsible for 80% of total PAHs loads in both sites. Based on the analysis of the characteristic ratio method, the PAHs of runoff from Caobao Road mostly came from coal-fired sources and traffic sources, while that from Jiajin Expressway were mostly from fossil fuels, coal, and other traffic sources. Quantitative source analysis through PMF method showed that the primary sources of PAHs were gas and coal, accounting for 48.6%, followed by traffic emission sources (29.8%), and oil sources (21.7%). The contribution ratios of PAHs sources of runoff from Jiajin Expressway, sorted in descending order, are:traffic emission sources (38.5%), coal-fired sources (34.6%), oil sources (14.6%), and coking sources (12.6%). PAHs sources and contribution rates between urban and suburban roads are completely different. Gas and coal were the main sources of PAHs of runoff from Caobao Road, which was related to the high population density and relatively large gas consumption in the Xuhui District. Traffic emission was the main source of PAHs from surface runoff on Jiajin Expressway, which was related to the massive flow of coaches and trucks, and their higher PAHs emission compared to small cars. In addition, there are still coking sources of PAHs of runoff from Jiajin Expressway, which can be related to the massive industrial coal consumption in the Qingpu District.
Key words: traffic roads      surface runoff      polycyclic aromatic hydrocarbons(PAHs)      source analysis      positive matrix factorization(PMF)model     

地表径流污染是影响地表水环境质量的主要因素之一[1].由于汽车尾气排放、轮胎磨损、油品泄漏、路面老化、大气沉降等原因, 道路积累了重金属、营养盐、PAHs等污染物质[2], 这些污染物随着降雨径流进入受纳水体对水环境质量造成威胁[3]. PAHs在环境中广泛存在并且对人类具有致癌、致畸、致突变的“三致效应”[4], 受到国内外研究者的关注.随着城市化发展, 我国城市地表径流污染问题日益突出, 是PAHs等有机污染物进入地表水体的重要途径[5].

有研究者发现不同下垫面的径流多环芳烃(polycyclic aromatic hydrocarbons, PAHs)污染存在差异, 如谢继锋等[6]发现交通道路径流PAHs污染负荷明显高于广场和草地; 武子澜等[7]发现道路地表径流中PAHs的质量浓度最大, 高于校园、小区路面和小区屋面; 吴巧花等[8]发现不同下垫面径流中PAHs的污染负荷大小排序为沥青>水泥>草地.在交通道路地表径流PAHs来源方面, 研究者发现大部分以燃煤源和交通源为主, 如Zhang等[9]发现北京市机动车道路径流PAHs来源于机动车排放和煤炭燃烧; 武子澜等[7]用因子分析法对交通路面径流PAHs来源进行解析, 发现燃煤/燃油源占来源贡献率53%.

现有报道主要以城市道路为研究对象, 分析其地表径流PAHs污染特征及污染情况, 对市区和郊区道路地表径流PAHs的差异及来源对比分析较少.另外郊区道路沿线大多分布农田, 上海市土地利用数据分析表明, 农田占全市用地的29.4%, 郊区道路地表径流PAHs对沿线农田造成的生态风险应当引起足够重视[10].因此, 本文以上海市区和郊区道路为研究对象, 利用特征比值法和正定矩阵因子分解法对降雨径流PAHs的来源进行解析, 对比市区和郊区道路径流PAHs污染特征及来源差异, 以期为降雨径流多环芳烃污染控制和农田生态健康风险评估提供借鉴.

1 材料与方法 1.1 监测点概况

上海属于高密度城区, 不透水面积比例高, 城市道路为除屋顶外的主要不透水下垫面, 地表径流污染问题突出[7].以上海市徐汇区漕宝路和青浦区嘉金高速为研究对象, 分别代表市区和郊区道路(表 1).漕宝路位于上海市徐汇区漕宝路和钦州路交叉口, 经纬度(31.174 574°N, 121.437 148°E), 附近遍布居民区和商业区.嘉金高速位于上海市青浦区华新镇华益路桥旁, 经纬度(31.259 281°N, 121.249 207°E), 监测点附近0.5 km内无居住区, 监测点20 m外为农田(图 1).两条道路所属的徐汇区和青浦区人口密度和燃料使用组成见表 2.

表 1 地表径流采样点概况 Table 1 Sampling points of surface runoff

图 1 上海市区漕宝路与郊区嘉金高速采样点位置示意 Fig. 1 Sampling location of Caobao Road and Jiajin Expressway

表 2 徐汇区、青浦区人口密度和燃料使用组成情况[11] Table 2 Population density and fuel types in Xuhui and Qingpu District

1.2 样品采集

2017~2018年雨季共监测7场道路降雨径流, 采用便携式采样器采集径流样品, 共38个, 其中漕宝路2017年8~10月采集3场降雨径流, 场次降雨量在6.1~15.9 mm; 嘉金高速2017年10月~2018年4月采集4场降雨径流, 场次降雨量在6.5~49.4 mm. 7场降雨的特征及降雨期间机动车平均流量见表 3.

表 3 7场降雨的特征参数 Table 3 Characteristic parameters of 7 rainfall events

1.3 样品处理与分析

将当天采集的径流样品在4℃下保存并送至实验室分析, 运用气相色谱-质谱联用仪(Agilent 7890/5975C, GC-MS)分析测定美国EPA公布的16种优先控制的PAHs, 即萘(NAP)、苊(ACY)、苊烯(ACE)、芴(FLO)、菲(PHE)、蒽(ANT)、荧蒽(FLA)、芘(PYR)、苯并[a]蒽(BaA)、(CHR)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)、茚并[1, 2, 3-c, d]芘(IcdP)、二苯并[a, h]蒽(DahA)、苯并[g, h, i]苝(BghiP).分别分析溶解相和颗粒相PAHs.样品采用称重并450℃灼烧4 h的玻璃纤维GF/F(WhatmanUSA)过滤, 滤出液用干净、干燥的棕色玻璃瓶保存后进行固相萃取, 滤膜冷冻干燥后称重.

固相萃取柱(SPE)用二氯甲烷净化后依次用甲醇、超纯水各5 mL活化平衡.滤出液萃取后用体积比3 :7的二氯甲烷和正己烷溶液进行洗脱, 接收的洗脱液经无水硫酸钠层析柱脱水后旋转蒸发至1 mL, 用10 mL正己烷进行置换, 再次浓缩至1 mL, 转移至GC样品瓶中待测.冷冻干燥后的滤膜剪碎与无水硫酸钠及少量铜粉一起进行索氏提取, 提取液经旋蒸浓缩后过硅胶-氧化铝层析柱净化.再用体积比3 :7的二氯甲烷和正己烷溶液进行洗脱收集, 旋蒸洗脱液至1 mL, 用10 mL正己烷进行置换, 再次浓缩至1 mL, 转移至GC样品瓶中待测.

利用方法空白、空白加标和样品平行样进行质量保证和质量控制.颗粒相的回收率为76.9%~116.1%, 溶解相的回收率为76.3%~115.7%, 样品平行样相对标准差在20%以下.空白样品中均未检出目标化合物.用内标法分析样品中PAHs的浓度.

1.4 计算评价方法 1.4.1 特征比值法

特征比值法是PAHs源解析常用的方法, 其原理是根据互为同分异构体的PAHs浓度比值来判断主要来源, 多用于定性分析.特征比值法常用Fla/(Fla+ Pyr)、BaA/(BaA + Chr)以及IcdP/(IcdP + BghiP)比值来解释PAHs的可能来源[12], 其判断原则[13]表 4.

表 4 PAHs的特征比值和来源类型 Table 4 Characteristic ratios and source types of PAHs load

1.4.2 正定矩阵因子分解法

正定矩阵因子分解法(PMF)经过不断发展完善, 已成为美国环保署(USEPA)推荐的污染物源解析方法.本研究采用EPA PMF5.0模型对道路径流PAHs来源进行定量分析. PMF基本原理[14]为:将X矩阵分解为贡献比率矩阵G, 以及成分谱的分布矩阵F和模型的残差矩阵E, 其基本方程为:

(1)

残差矩阵中的元素由公式(2)得到:

(2)

PMF分析时将对每个数据进行不确定性的加权, 目标方程是将值最小化, 这可认为是PMF模型的一个重要判据, 即:

(3)

式中, sij为第i个样品中第j种化合物的不确定度, 其计算方法如下:

(4)

式中, RSD是化合物浓度值得相对标准偏差, LMDL为方法检出限.

2 结果与讨论 2.1 地表径流PAHs的污染特征 2.1.1 地表径流PAHs质量浓度特征

漕宝路和嘉金高速道路地表径流中PAHs的最大值、最小值、几何均值、∑16PAHs(16种PAHs的总浓度)、∑6PAHs(6种具有明确致癌性的PAHs即BaA、BbF、BkF、BaP、IcdP、DahA的总浓度)见图 2.

图 2 市、郊交通道路地表径流PAHs浓度对比 Fig. 2 Comparison of PAHs concentration of runoff from urban and suburban traffic roads

从∑16PAHs质量浓度来看, 两个样点动态径流∑16PAHs和∑6PAHs的质量浓度范围有较大差异, 其中漕宝路∑16PAHs为152.4~1 441.0 ng ·L-1(几何均值548.1ng ·L-1)、嘉金高速为481.2~34 790.0 ng ·L-1(几何均值5 539.2 ng ·L-1). ∑6PAHs的浓度范围漕宝路为76.7~689.0 ng ·L-1(几何均值331.9ng ·L-1), 小于嘉金高速238.5~16 369.0 ng ·L-1(几何均值5 539.2ng ·L-1).武子澜等[7]的研究发现上海市沪闵路和龙吴路降雨径流∑16PAHs的质量浓度范围分别为1 245.60~4 986.48 ng ·L-1和223.46~10 364.32 ng ·L-1, ∑6PAHs的质量浓度范围分别247.64~2 471.35 ng ·L-1和983.80~2 671.00 ng ·L-1; 韩景超等[15]监测发现温州交通干道∑16PAHs和∑6PAHs的浓度范围分别为919.9~4 026.3 ng ·L-1和383.9~2 324.6 ng ·L-1.漕宝路∑16PAHs和∑6PAHs低于两位研究者监测的范围, 而嘉金高速高于该范围.漕宝路和嘉金高速两个样点PAHs浓度存在较大差异, 主要与两条道路区域位置有关, 嘉金高速属于上海郊区高速公路, 大客车货车等柴油车辆居多, 尾气排放对路面PAHs的累积有着较大贡献[16]; 漕宝路为市区交通道路, 路面清扫频率高于嘉金高速.相对于漕宝路, 嘉金高速污染物更易在路面累积, 因此PAHs浓度相对较高.

我国现阶段规定污水中BaP的排放标准为30 ng ·L-1(GB 18918-2002), 还没有对其他单体或总的PAHs排放进行规定, 漕宝路和嘉金高速BaP几何均值分别为56.5 ng ·L-1和656.7 ng ·L-1, 采用该标准评价可知均超过国家的排放标准, 尤其嘉金高速超标21倍, 应当引起重视.

2.1.2 地表径流组成比例特征

7场降雨的地表径流中PAHs各组分百分比(质量分数)见表 5. 7场降雨径流中PAHs负荷中高环占比较高, 其中4环占比24.6%~42.6%, 5~6环占比39.8%~69.7%, 低环占比较低, 2~3环仅占4.1%~24.9%, 其中2环的萘因挥发性较强所以在检测中值很低, 仅占∑16PAHs的8%以下. Smith等[17]的研究认为低环(2~3环)PAHs主要以气态形式存在, 中环(4环)PAHs以气态或颗粒态形式存在, 高环(5~6环)PAHs大部分以颗粒态形式存在, 说明中高环的PAHs更易吸附于颗粒物表面而在道路沉积, 低环由于结合力较小易扩散[18].两个采样点地表径流PAHs各组分比例规律差异不大, 均为4~6环占比较大, 在80%左右.

表 5 市、郊交通道路地表径流PAHs负荷组分百分比/% Table 5 Percentage of PAHs load component of runoff from urban and suburban traffic roads/%

2.2 地表径流PAHs来源解析 2.2.1 特征比值法解析

图 3为漕宝路和嘉金高速道路地表径流PAHs的特征比值分析结果.漕宝路BaA/(BaA + Chr)主要集中在0. 2~0. 35, 说明部分PAHs来自燃煤源, Fla/(Fla + Pyr)主要在0.5~0.9, 说明部分PAHs来自煤炭、生物质燃料燃烧, IcdP/(IcdP + BghiP)主要集中在0. 2~0. 5, 表示部分PAHs来自交通源.漕宝路属于市区道路, 附近无工业区, 机动车车排放是PAHs的一个重要来源, 因此, 漕宝路PAHs主要来自燃煤源和交通源.嘉金高速BaA/(BaA + Chr)主要集中在0.35~0.5, 说明部分PAHs来自燃煤源, Fla/(Fla + Pyr)主要在0.4~0.7, 说明部分PAHs来自石油、煤和生物质燃烧. IcdP/(IcdP + BghiP)主要集中在0. 2~0. 5, 表明部分PAHs来自于交通源, 因此, 嘉金高速PAHs主要来自石油、煤等燃烧源和交通源.两个采样点特征比值法定性分析显示市区漕宝路地表径流PAHs主要来源与郊区的嘉金高速有一定的相似性, 燃煤源、石油燃烧源以及交通源是两个采样点的主要来源.

图 3 市、郊交通道路地表径流PAHs特征比值 Fig. 3 Characteristic ratios of PAHs of runoff from urban and suburban traffic roads

2.2.2 正定矩阵因子分解法(PMF)解析

利用EPA PMF5.0对漕宝路和嘉金高速采集的径流样品中PAHs进行定量源解析.本研究采用PAHs浓度测量值的10%作为不确定度[19], 在3~7之间调整因子数, 采用Robust模式运行20次, 选择残差集中在-3.0~3.0之间的结果[20], 运行结果显示漕宝路和嘉金高速的最优因子数分别是3个和4个, r2较大, 说明模型拟合结果较好.漕宝路和嘉金高速的PAHs来源分别见图 4图 5.

图 4 嘉金高速PMF模型解析成分谱图 Fig. 4 Spectrogram of PAHs analytical component of Jiajin Expressway by PMF model

图 5 漕宝路PMF模型解析成分谱图 Fig. 5 Spectrogram of PAHs analytical components of Caobao Road by PMF model

漕宝路PMF源解析成分谱图显示(图 4), 因子1中BaA、PYR是主要的载荷元素, PLA、CHR所占比重也较大, 说明因子1与燃烧源密切相关的特点.有研究表明BaA是天然气燃烧的指示物[21~23], 而高载荷的PYR、PLA、CHR是典型的燃煤源指示物[24~26], 由此推断因子1代表燃气、燃煤源.因子2中的主要载荷元素是BkF、BaP、BbF、IcdP、BghiP, 高环组分PAHs具有较高载荷与石油类物质燃烧有关[27], 且BaP、BbF是汽油燃烧的重要化合物, 是典型的交通排放源指示物[27, 28]; BkF、IcdP具有较高载荷与柴油发动机尾气排放有关[27, 29]; BghiP主要为汽油或柴油机的排放物, 被认为是汽车尾气的示踪剂[29, 30], 综上分析表明因子2代表交通排放源.因子3中主要载荷元素是NAP, 其次ACY、ACE等低环PAHs所占比重也较大, 有研究指出NAP与未燃烧的石油有关[31, 32]; ACY、ACE主要来源于石油的开采、加工以及运输[33], 因此可以确定因子3代表的污染源是石油源.

嘉金高速PMF源解析成分谱图(图 5)显示, 因子1中主要载荷元素是BghiP、IcdP、DahA、BaP、BbF, 均为高环组分PAHs, 是典型的交通排放源指示物[27], 该因子主要载荷元素与漕宝路因子2的主要载荷元素相似, 代表交通排放源; 与漕宝路相比, 嘉金高速的BghiP、IcdP在因子中所占比例更高, 说明嘉金高速柴油车尾气排放对交通排放源的贡献率高于漕宝路.因子2中主要载荷元素是ANT、FLA、PHE、PYR, 有研究指出ANT、PHE是燃煤的主要污染物[28], PYR、FLA也是漕宝路因子2中的主要载荷元素, 为燃煤源指示物[34], 由此可以推断嘉金高速因子2代表燃煤源.因子3中主要载荷元素是NAP, 这与漕宝路因子3的主要荷载元素一致, NAP主要来自石油源, 所以嘉金高速因子3代表石油源.因子4中主要载荷元素是FLO, 有研究表明FLO是焦炉排放的主要多环芳烃之一[21, 28, 35], 因而因子4可代表炼焦源.

采用PMF模型得到漕宝路和嘉金高速道路径流PAHs的来源贡献率, 见图 6表 6.漕宝路道路径流PAHs来源以燃气、燃煤源为主, 占48.6%, 其次为交通排放源和石油源, 分别占29.8%和21.7%;嘉金高速道路径流PAHs来源为交通排放源、燃煤源、石油源以及炼焦源, 其贡献率分别为38.5%、34.6%、14.6%和12.6%, 这与两个采样点采用特征比值法分析的结论基本一致.然而, 两个采样点来源及贡献率有所差异:首先, 漕宝路燃气、燃煤源是地表径流PAHs主要来源之一, 与所属徐汇区人口密度大、燃气使用量相对较多有关, 徐汇区人口密度是青浦区的11倍, 燃气年使用量是青浦区的2倍, 漕宝路附近人口密集, 居民生活和附近商业餐饮使用较多天然气等燃料产生PAHs[36], 而嘉金高速附近居民较少, 燃气源贡献率低, 燃气源不是嘉金高速PAHs主要来源; 其次, 嘉金高速交通排放源贡献率高于漕宝路, 与嘉金高速属于郊区道路, 客、货车较多, 排放的PAHs远高于小轿车[35]有关, 从两个点位实时监测的车流量可以看出, 漕宝路以轿车为主, 占81.8%, 嘉金高速以客、货车为主, 占68.2%.最后, 嘉金高速PAHs来源中有炼焦源, 与郊区炼焦工业污染物迁移有关, 青浦区工业较多, 煤炭年使用量达658万t, 远高于徐汇区.

图 6 市、郊交通道路地表径流16种PAH源贡献率 Fig. 6 16 PAH source contribution rates of surface runoff from urban and suburban traffic roads

表 6 市、郊交通道路道路径流PAHs的来源及贡献率 Table 6 PAHs sources and contribution rates of runoff from urban and suburban traffic roads

3 结论

(1) 上海市的市区漕宝路和郊区嘉金高速道路径流中∑16PAHs浓度范围分别为152.4~1 441.0 ng ·L-1(几何均值548.1ng ·L-1)和481.2~34 790.0 ng ·L-1(几何均值5 539.2 ng ·L-1), 嘉金高速PAHs平均质量浓度高于漕宝路10倍以上, 主要因为嘉金高速货车居多且清扫频率低于漕宝路.漕宝路和嘉金高速BaP几何均值分别为56.5 ng ·L-1, 656.7 ng ·L-1, 均超过国家的排放标准, 尤其嘉金高速超标21倍, 存在生态风险, 应当引起重视.

(2) 两个采样点降雨径流PAHs中高环占比较高, 其中4环占比24.6%~42.6%, 5~6环占比39.8%~69.7%; PAHs组分比例差异不大, 均为4~6环占比较大, 在80%左右.

(3) 通过特征比值法和PMF模型对PAHs来源进行解析发现, 漕宝路径流PAHs来源以燃气、燃煤源为主, 占48.6%, 其次为交通排放源和石油源, 分别占29.8%和21.7%.嘉金高速道路径流PAHs来源为交通排放源、燃煤源、石油源以及炼焦源, 其贡献率分别为38.5%、34.6%、14.6%和12.6%.漕宝路在市区, 人口密集, 居民生活和商业餐饮产生的PAHs是燃气源的主要来源; 嘉金高速货车较多, 排放的PAHs远高于小轿车, 交通排放源高于漕宝路; 炼焦源也是嘉金高速PAHs来源的其中之一, 与郊区工业污染物迁移有关.

参考文献
[1] Deletic A B, Maksimovic C T. Evaluation of water quality factors in storm runoff from paved areas[J]. Journal of Environmental Engineering, 1998, 124(9): 869-879. DOI:10.1061/(ASCE)0733-9372(1998)124:9(869)
[2] Deletic A, Orr D W. Pollution buildup on road surfaces[J]. Journal of Environmental Engineering, 2005, 131(1): 49-59. DOI:10.1061/(ASCE)0733-9372(2005)131:1(49)
[3] Perdikaki K, Mason C F. Impact of road run-off on receiving streams in eastern England[J]. Water Research, 1999, 33(7): 1627-1633. DOI:10.1016/S0043-1354(98)00396-0
[4] 张玉凤, 宋永刚, 田金, 等. 辽东湾大气中多环芳烃的含量组成及气粒分配[J]. 环境科学, 2018, 39(4): 1527-1536.
Zhang Y F, Song Y G, Tian J, et al. Occurrence and gas-particle partitioning of polycyclic aromatic hydrocarbons in the air of Liaodong Bay[J]. Environmental Science, 2018, 39(4): 1527-1536.
[5] Beasley G, Kneale P. Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses[J]. Progress in Physical Geography, 2002, 26(2): 236-270. DOI:10.1191/0309133302pp334ra
[6] 谢继锋, 李静静, 窦月芹, 等. 不同下垫面类型对地表径流中多环芳烃污染特征的影响分析[J]. 环境化学, 2015, 34(4): 733-740.
Xie J F, Li J J, Dou Y Q, et al. Pollution characteristics of PAHs in urban runoffs on different types of underlying surfaces[J]. Environmental Chemistry, 2015, 34(4): 733-740.
[7] 武子澜, 杨毅, 刘敏, 等. 城市不同下垫面降雨径流多环芳烃(PAHs)分布及源解析[J]. 环境科学, 2014, 35(11): 4148-4156.
Wu Z L, Yang Y, Liu M, et al. Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in urban rainfall runoff[J]. Environmental Science, 2014, 35(11): 4148-4156.
[8] 吴巧花, 陈步峰, 裴男才, 等. 广州不同地表下垫面对暴雨径流PAHs含量的影响特征[J]. 生态环境学报, 2018, 27(4): 736-743.
Wu Q H, Chen B F, Pei N C, et al. The influence characteristics of the polycyclic aromatic hydrocarbons (PAHs) content of rainstorm runoff in different surface in Guangzhou city[J]. Ecology and Environmental Sciences, 2018, 27(4): 736-743.
[9] Zhang W, Zhang S C, Wan C, et al. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall[J]. Environmental Pollution, 2008, 153(3): 594-601. DOI:10.1016/j.envpol.2007.09.004
[10] 李大雁.交通道路沿线农田土壤多环芳烃的分布特征和生态风险研究[D].上海: 华东理工大学, 2018.
Li D Y. Distribution and ecological risk assessmennt of polycyclic aromatic hydrocarbons (PAHs) in agricultural soil of roadside[D]. Shanghai: East China University of Science and Technology, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10251-1018225640.htm
[11] 上海统计年鉴局. 2017年上海统计年鉴[M]. 北京: 中国统计出版社, 2017.
[12] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin:A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. DOI:10.1016/S0146-6380(02)00002-5
[13] 李嘉康, 宋雪英, 魏建兵, 等. 沈北新区土壤中多环芳烃污染特征及源解析[J]. 环境科学, 2018, 39(1): 379-388.
Li J K, Song X Y, Wei J B, et al. Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in soils of Shenyang North New Area[J]. Environmental Science, 2018, 39(1): 379-388.
[14] 李嘉康, 宋雪英, 崔小维, 等. 土壤中多环芳烃源解析技术研究进展[J]. 生态科学, 2017, 36(5): 223-231.
Li J K, Song X Y, Cui X W, et al. Research advances in source apportionment of polycyclic aromatic hydrocarbons in soil[J]. Ecological Science, 2017, 36(5): 223-231.
[15] 韩景超, 毕春娟, 陈振楼, 等. 城市不同下垫面径流中PAHs污染特征及源辨析[J]. 环境科学学报, 2013, 33(2): 503-510.
Han J C, Bi C J, Chen Z L, et al. Pollution characteristics and source identification of PAHs in urban runoff from different surfaces[J]. Acta Scientiae Circumstantiae, 2013, 33(2): 503-510.
[16] Lee B K, Dong T T T. Effects of road characteristics on distribution and toxicity of polycyclic aromatic hydrocarbons in urban road dust of Ulsan, Korea[J]. Journal of Hazardous Materials, 2010, 175(1-3): 540-550. DOI:10.1016/j.jhazmat.2009.10.039
[17] Smith D J T, Harrison R M. Concentrations, trends and vehicle source profile of polynuclear aromatic hydrocarbons in the U.K. atmosphere[J]. Atmospheric Environment, 1996, 30(14): 2513-2525. DOI:10.1016/1352-2310(95)00474-2
[18] Ashley J T F, Baker J E. Hydrophobic organic contaminants in surficial sediments of baltimore harbor:Inventories and sources[J]. Environmental Toxicology and Chemistry, 1999, 18(5): 838-849. DOI:10.1002/etc.v18:5
[19] Norris G, Vedantham R, Wade K, et al. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide[M]. Washington, DC: Environmental Protection Agency, 2008.
[20] Yakovleva E, Hopke P K, Wallace L. Receptor modeling assessment of particle total exposure assessment methodology data[J]. Environmental Science & Technology, 1999, 33(20): 3645-3652.
[21] Simcik M F, Eisenreich S J, Lioy P J, et al. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan[J]. Atmospheric Environment, 1999, 33(30): 5071-5079. DOI:10.1016/S1352-2310(99)00233-2
[22] Yang F, Zhai Y B, Chen L, et al. The seasonal changes and spatial trends of particle-associated polycyclic aromatic hydrocarbons in the summer and autumn in Changsha city[J]. Atmospheric Research, 2010, 96(1): 122-130. DOI:10.1016/j.atmosres.2009.12.004
[23] Khalili N R, Scheff P A, Holsen T M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions[J]. Atmospheric Environment, 1995, 29(4): 533-542. DOI:10.1016/1352-2310(94)00275-P
[24] Tian F L, Chen J W, Qiao X L, et al. Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China:Factor analysis with non-negative constraints combined with local source fingerprints[J]. Atmospheric Environment, 2009, 43(17): 2747-2753. DOI:10.1016/j.atmosenv.2009.02.037
[25] Harrison R M, Smith D J T, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K[J]. Environmental Science & Technology, 1996, 30(3): 825-832.
[26] 苗迎, 孔祥胜, 李成展. 重工业城市岩溶地下水中多环芳烃污染特征及来源[J]. 环境科学, 2019, 40(1): 239-247.
Miao Y, Kong X S, Li C Z. Distribution and sources of polycyclic aromatic hydrocarbons in a karst groundwater system in a Strongly industrial city[J]. Environmental Science, 2019, 40(1): 239-247.
[27] Larsen R K, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:A comparison of three methods[J]. Environmental Science & Technology, 2003, 37(9): 1873-1881.
[28] Li J, Zhang G, Li X D, et al. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China[J]. Science of the Total Environment, 2006, 355(1-3): 145-155. DOI:10.1016/j.scitotenv.2005.02.042
[29] Lee J H, Gigliotti C L, Offenberg J H, et al. Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed[J]. Atmospheric Environment, 2004, 38(35): 5971-5981. DOI:10.1016/j.atmosenv.2004.07.004
[30] Kavouras I G, Koutrakis P, Tsapakis M, et al. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods[J]. Environmental Science & Technology, 2001, 35(11): 2288-2294.
[31] Dong Trang T T, Lee B K. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea[J]. Chemosphere, 2009, 74(9): 1245-1253. DOI:10.1016/j.chemosphere.2008.11.035
[32] Khairy M A, Lohmann R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt[J]. Chemosphere, 2013, 91(7): 895-903. DOI:10.1016/j.chemosphere.2013.02.018
[33] Marr L C, Kirchstetter T W, Harley R A, et al. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions[J]. Environmental Science & Technology, 1999, 33(18): 3091-3099.
[34] Tian F L, Li F Y, Wang D G, et al. Source apportionment of polycyclic aromatic hydrocarbons in sediment by the application of non-negative factor analysis:A case study of Dalian Bay[J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 761. DOI:10.3390/ijerph15040761
[35] Wang C H, Wu S H, Zhou S L, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing:Concentration, source, spatial distribution, and potential human health risk[J]. Science of the Total Environment, 2015, 527-528: 375-383. DOI:10.1016/j.scitotenv.2015.05.025
[36] 边璐, 李田, 侯娟. PMF和PCA/MLR法解析上海市高架道路地表径流中多环芳烃的来源[J]. 环境科学, 2013, 34(10): 3840-3846.
Bian L, Li T, Hou J. Source apportionment of polycyclic aromatic hydrocarbons using two mathematical models for runoff of the Shanghai elevated inner highway, China[J]. Environmental Science, 2013, 34(10): 3840-3846.