环境科学  2019, Vol. 40 Issue (5): 2101-2114   PDF    
我国七大流域水体多环芳烃的分布特征及风险评价
范博1, 王晓南2, 黄云1, 李霁2, 高祥云2, 李雯雯1, 刘征涛2     
1. 南昌大学资源环境与化工学院, 鄱阳湖环境与资源利用教育部重点实验室, 南昌 330031;
2. 中国环境科学研究院环境基准与风险评估国家重点实验室, 国家环境保护化学品生态效应与风险评估重点实验室, 北京 100012
摘要: 对我国七大流域水体中16种美国环保署(US EPA)优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的质量浓度及其空间分布特征进行了系统地分析和总结,应用物种敏感度分布法(species sensitivity distribution,SSD)评价了8种单体PAHs对水生生物的急性生态风险,分别应用浓度加和模型与效应加和模型评价了ΣPAH8混合物对水生生物的急性联合生态风险,利用人体暴露风险系数法对PAHs饮水途径健康风险进行评价.结果表明,我国七大流域水体中4环以下的PAHs浓度较高,ΣPAH16浓度均值为2596.25 ng·L-1,高于国外绝大多数水体中ΣPAHs浓度水平;国内外水体中PAHs的组成特征和来源相似;北方水体中ΣPAH16污染比南方水体严重.七大流域水体中萘、苊、芴、菲、荧蒽、芘、蒽对水生生物的潜在影响比例(potential affected fraction,PAF)小于4%.除海河、长江流域外,其它几大流域水体中苯并(a)芘对水生生物的PAF值已超过5%,表明苯并(a)芘对水生生物具有较高的急性生态风险.浓度加和模型不适用于PAHs的水生态风险评价,应用效应加和模型进行的风险评价结果显示,除海河流域外,其它几大流域水体中ΣPAH8混合物对水生生物的累计潜在影响比例(multisubstance PAF,msPAF)均高于5%,说明ΣPAH8混合物对水生生物存在较高的急性联合生态风险.七大流域水体中致癌类PAHs的饮水途径健康风险处于10-5水平,高于US EPA推荐的对致癌物质最大可接受风险水平(10-6),非致癌类PAHs的饮水途径健康风险处于10-9水平,远低于US EPA规定的阈值1,表明我国七大流域水体中PAHs可通过饮水对人体健康产生潜在的致癌风险.
关键词: 多环芳烃(PAHs)      七大流域      物种敏感度分布(SSD)      生态风险      健康风险     
Distribution and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Water Bodies in Seven Basins of China
FAN Bo1 , WANG Xiao-nan2 , HUANG Yun1 , LI Ji2 , GAO Xiang-yun2 , LI Wen-wen1 , LIU Zheng-tao2     
1. Key Laboratory of Poyang Lake Environment and Resources Utilization, Ministry of Education, School of Resources Environment & Chemical Engineering, Nanchang University, Nanchang 330031, China;
2. State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: The concentrations and spatial distribution characteristics of 16 US EPA priority Polycyclic Aromatic Hydrocarbons (PAHs) in water bodies in seven basins in China were systematically analyzed and summarized. The acute ecological risks of 8 PAHs to aquatic organisms were evaluated by means of species sensitivity distribution (SSD). The joint acute ecological risks of ΣPAH8 to aquatic organisms were evaluated by concentration addition model and response addition model. The health risks of PAHs ingestion were estimated by hazard quotients. The results showed that the 2-, 3-, and 4 ringed-PAHs had higher-than-average concentrations in the water bodies from the seven basins, and the mean concentration of ΣPAH16 was 2596.25 ng·L-1, which is higher than in most foreign water bodies. The composition characteristics and sources of PAHs in water bodies of China and other countries were similar. The pollution of ΣPAH16 in northern water bodies was more serious compared with that of southern water bodies. The potentially affected fraction (PAF) values of naphthalene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, and anthracene to aquatic organisms in the seven basins were less than 4%. Except for the Haihe River and Yangtze River basins, the PAF values of benzo (a) pyrene to aquatic organisms exceeded 5%, which indicates that benzo (a) pyrene had high acute ecological risks to aquatic organisms. The concentration addition model was not suitable for water ecological risk assessments of PAHs. The results of risk assessments based on response addition model showed that except for the Haihe River, the multisubstance PAF (msPAF) values of ΣPAH8 to aquatic organisms in other basins exceeded 5%, which indicates that ΣPAH8 constitutes high joint acute ecological risks to aquatic organisms. The health risks through ingestion of carcinogenic PAHs from water bodies of the seven basins were at 10-5 level, which is higher than the baseline value of acceptable risk (10-6) from the US EPA. The health risks through the ingestion of non-carcinogenic PAHs were at 10-9 level, which is far lower than the baseline value of acceptable risk. The results indicate that there are potential carcinogenic risks to human health through ingestion of PAHs from seven basins in China.
Key words: polycyclic aromatic hydrocarbons(PAHs)      seven basins      species sensitivity distribution(SSD)      ecological risk      health risk     

多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一类由两个或两个以上苯环按照线性、角状或者簇状方式相连组成的中性或非极性挥发性有机化合物[1].环境中的PAHs主要来自煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧或热降解产物, 是重要的环境和食品污染物[2~4].迄今已发现包括萘、菲、蒽、芘等10 000多种PAHs, 其中16种PAHs已被美国环保署(US EPA)和欧盟列为优先控制污染物[5, 6], 我国将7种PAHs列为水中优先控制污染物[7], 世界卫生组织(WHO)和国际癌症研究机构(IARC)编制的权衡化学物质致癌性可靠程度的分类体系将6种PAHs归为极可能致癌物, 其中苯并(a)芘已经被确认是强致癌性物质[8].

多环芳烃广泛分布于各种环境介质中, 国内大部分地表水体已普遍遭受PAHs污染[9~15], 而且与世界其他地区相比污染水平较高[16~18]. PAHs在环境中具有半挥发性、长距离迁移性和生物富集性等化学特性, 使PAHs可通过食物链而不断富集和放大, 进而对水环境中的生物个体和群落造成严重威胁, 如在水生生态系统中存在有致癌性的PAHs, 会损伤鱼类的免疫系统[19, 20], 水环境中的植物、动物(无脊椎动物、两栖动物、鱼类)等均可能产生畸形, 甚至发生癌变[20, 21], 最终导致水生生态系统存在发生衰变和退化的潜在危害.环境介质中的PAHs可以通过饮食、呼吸和皮肤暴露等途径进入人体[22], 人若长期处于PAHs污染的环境中, 可引起急性或慢性危害. PAHs是导致肺癌发病率上升的重要原因[23], 也能导致鼻咽癌和胃癌[24].因此, 有必要对水体PAHs的污染特征、水生生态风险及人体健康风险进行深入研究.

本研究系统地分析和总结了在我国七大流域水体中16种US EPA优控PAHs的浓度和分布特征, 应用物种敏感度分布法(SSD)评价了毒性数据较充足的8种单体PAHs的生态风险, 并利用人体暴露风险系数法对16种优控PAHs的饮水健康风险进行评价, 以期为我国水体PAHs的环境管理和风险评价提供科学的理论依据.

1 材料与方法 1.1 数据收集

收集了近10年以来我国七大流域16种优控PAHs的浓度数据, 包括萘(Nap)、苊烯(Acy)、苊(Ace)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Flua)、芘(Pye)、苯并(a)蒽(BaA)、(Chry)、苯并(b)荧蒽(BbF)、苯并(k)荧蒽(BkF)、苯并(a)芘(BaP)、二苯并(a, h)蒽(DBA)、苯并(ghi)苝(BgP)和茚并(1, 2, 3-cd)芘(InP).数据的收集和筛选原则如下:PAHs的测定方法优先选择USEPA推荐的标准方法, 检测方法使用气相色谱/质谱(GC/MS)或高效液相色谱(HPLC)/紫外检测器或荧光检测器; 分析方法遵行质量保证和控制程序(QA/QC), 使用空白、重复和标准物质对测试的精度进行控制, 试验回收率应该符合US EPA标准[25].

由于多数PAHs缺乏水生生物毒性数据, 尤其缺乏慢性毒性数据, 并且急/慢性转换技术尚不成熟, Duboudin等使用ACT(acute to chronic transformation)急慢性数据转换方法, 将急性数据转换成慢性数据并应用于SSD构建, 发现ACT方法使得SSD曲线向左移动并产生一个旋转, 数据均值和标准差均发生了明显改变[26].因此本研究收集了8种PAHs(Nap、Ace、Flu、Phe、Ant、Flua、Pye、BaP)的急性毒性(LC50/EC50)数据, 毒性数据主要来源于ECOTOX毒性数据库(https://cfpub.epa.gov/ecotox/)、中国知网(http://www.cnki.net/)和其他公开发表的文献, 受试生物选择能代表我国水生生态系统的生物或分类学相似的生物[27].参照美国水生生物基准毒性数据筛选原则[28], 溞类(或其他枝角类)、摇蚊幼虫的急性毒性试验终点是48h-LC50或EC50; 鱼、虾、贝、蟹等生物的试验终点是96h-LC50或EC50; 谨慎使用同一物种对同种污染物差异在5倍以上的急性毒性数据; 当同一个物种或同一个终点有多个毒性值可用时, 使用其几何平均值[29, 30].

1.2 PAHs的生态风险评价 1.2.1 PAHs的生态风险评价方法

生态风险评价是指对一种或多种内部或外界因素导致的不利生态影响所进行的评估[31].在水生态风险评价方法体系中较常用的有阈值法、概率风险评价法、物种敏感度分布法.阈值法是通过水环境污染物暴露浓度与环境基准的商值衡量水体或沉积物的风险[32], 阈值法计算得出的风险商不是一个风险概率的统计值, 其计算存在着很多不确定性, 在水生态系统的风险评价中, 阈值法只能用于风险的初步评价[33].概率风险评价法是将表征污染物环境暴露浓度和毒性数据的概率密度曲线置于同一坐标系下, 通过曲线重叠面积的计算得出以概率表示的生态风险[34].概率风险评价法需要大量的数据支撑, 主要是针对某一区域进行评估, 在多种污染物的联合风险估算上不够完善.物种敏感度分布法(SSD)是基于污染物环境暴露浓度和物种敏感度分布曲线, 通过样点环境浓度在曲线上的位置直接获得该点的物种受影响比例, 并且可以根据污染物毒性机制的异同选择合适的模型计算联合生态风险, 在一定程度上弥补了概率方法的缺陷[35].

1.2.2 单体PAHs生态风险评价

基于生物急性毒性数据, 应用物种敏感度分布(SSD)法评价环境污染物生态风险.首先将8种单体PAHs(Nap、Ace、Flu、Phe、Ant、Flua、Pye和BaP)的急性毒性数据进行对数转换, 利用参数拟合方法Log-logistic进行拟合, 得到8种单体PAHs的SSD曲线, 再将环境水体中PAHs的浓度代入公式(1)计算潜在影响比例(PAF), 即PAHs环境浓度超过生物毒理终点值的物种比例, PAHs浓度在SSD曲线上对应的累积概率即为PAF.

(1)

式中, x为PAHs环境浓度(ng·L-1), ab为模型的两个参数.

1.2.3 ΣPAH8联合生态风险评价

SSD方法的优势在于可计算多种污染物的累计潜在影响比例(msPAF), 从而进行多种污染物联合生态风险评价.根据污染物对生物毒性作用方式(toxicmode of action, TMoA)相同或不同, 分别采用浓度加和(concentration addition, CA)或效应加和(response addition, RA)模型计算msPAF[36].

(2)

式中, msPAFCA为应用浓度加和模型计算的累计潜在影响比例, σTMoA为具有相似毒性效应的8种PAHs的急性毒理数据对数的标准偏差的算数均值, 为各单体PAHs的毒害单位(hazard unit, HU), 通过公式(3)计算:

(3)

式中, cTMoA, i为各单体PAHs的环境浓度(ng·L-1), μi为各单体PAHs毒理数据对数的均值.

(4)

式中, msPAFRA为应用效应加和模型计算的累计潜在影响比例, PAF为单体PAHs的潜在影响比例.由于PAHs对生物的毒性作用方式相似[37, 38], 故该研究首先采用浓度加和模型计算msPAF.

1.3 PAHs人体健康风险评价 1.3.1 PAHs人体健康风险评价方法

传统的人体健康评价方法是比较污染物在环境介质中的暴露浓度和最大允许浓度, 这种半定量方法虽然操作简单, 但评价的结果不充分也不准确, 而US EPA推荐的人体暴露风险系数法是通过监测环境介质中污染物浓度, 基于不同人口特征人群在不同环境介质中的暴露频率和时间来估算人群一生摄取污染物的剂量, 从而评价污染物对人体健康所造成的风险[39].此方法具有浓度监测费用高而且耗时长的缺点, 但是数学模拟技术与统计模型的应用弥补了这一缺点, 并可得到较为直观的风险评价结果, 能更加准确地计算暴露的不确定性[40].所以目前普遍采用人体暴露风险系数法评价水体中多环芳烃对人体产生的非致癌性以及致癌性风险[41~43].

1.3.2 非致癌与致癌PAHs人体健康风险评价

对于非致癌风险, 其风险可用某一特定时间内(如终生)对污染物的暴露水平对比相同时间内的参考剂量来评估, 这一比值称为危害商数, 一般认为生物体对非致癌物的反应有剂量阈值, 只有高于阈值才会对健康产生不利影响[44], 用公式(5)计算[45, 46].

(5)

评价某一致癌物对人体的致癌风险, 常用其对人体产生的终生致癌风险增量模型作为度量指标, 即一定时间内(这里指终生), 人体暴露于一定剂量的致癌物而引起的癌症发病率[45, 46], 用公式(6)计算.

(6)
(7)

式中, HQ、ILCR为人体暴露某污染物的健康风险, 无量纲; ADD为污染物的日均暴露剂量, mg·(kg·d)-1; RfD为污染物在某种暴露途径下的参考剂量, mg·(kg·d)-1; CSF为致癌斜率系数, kg·d·mg-1; c为某环境介质中污染物的浓度, mg·L-1; IR为饮水摄入量; EF为暴露频率; ED为暴露时间, a; BW为体重, kg; AT为平均暴露时间, d.

由于PAHs的毒性作用机制相似, 在计算各致癌PAHs混合终生致癌风险时, 将环境中各致癌PAHs的浓度转化成BaP的等效浓度(TEQ), 根据TEFs可以求出7种典型致癌PAHs相对BaP的毒性当量TEQBaP, 计算公式如下:

(8)

式中, ci为第i个PAHs单体在水中的浓度; TEFi为第i个PAHs单体的毒性当量因子.

本研究中饮水摄入量(IR)为2.2 L·d-1; 暴露频率(EF)为365 d·a-1; 暴露时间(ED)为70 a; 体重(BW)为60 kg; 平均暴露时间(AT)为25 550 d; BaP对人的致癌斜率系数为7.3 kg·d·mg-1; 非致癌类PAHs经口的参考剂量RfDi[47]与致癌类PAHs的毒性当量因子TEFi[48~51]表 1所示.

表 1 非致癌类PAHs经口的参考剂量与致癌类PAHs的毒性当量因子 Table 1 Reference dose of non-carcinogenic PAHs andtoxicityequivalency factor of carcinogenic PAHs

2 结果与讨论 2.1 PAHs浓度及空间分布特征

由我国七大流域水体中16种PAHs的浓度(表 2)及组成特征[图 1(a)]可知, 在七大流域水体中4环以下的PAHs(NaP、Acy、Ace、Flu、Phe、Ant、Pye、Flua、BaA和Chry)的浓度较高, 尤其2和3环PAHs浓度最高. 4环以上的PAHs(BbF、BkF、BaP、DBA、BgP和InP)在水体中浓度相对较低, 主要是因为4环以下的低分子量PAHs主要来源于石油类污染及木材、煤等在低至中温范围内的燃烧, 4环以上高分子量的多环芳烃主要来源于化石燃料的高温燃烧[52], 低环PAHs的产生来源明显比高环PAHs广泛, 并且高环PAHs的疏水性较强, 低环PAHs在水中的溶解度较高[53], 最终导致水体中低环PAHs浓度较高.另外, US EPA地面水水质标准EPA822-Z-99-001中苯并(a)芘的标准限值为4.4 ng·L-1, 我国环境保护标准GHZB1-1999地表水环境质量标准中苯并(a)芘的标准限值为2.8 ng·L-1, 而我国七大流域水体中苯并(a)芘均值为40.57 ng·L-1, 远超出中美地表水中苯并(a)芘标准.

表 2 我国七大流域水体中PAHs浓度及分布/ng·L-1 Table 2 Concentrations and distributions of PAHs in seven basins in China/ng·L-1

图(b)的数据来源见表 3 图 1 我国七大流域和国外地表水中PAHs的组成特征 Fig. 1 Composition characteristics of PAHs in surface water of seven Chinese basins and other countries

七大流域水体中ΣPAH16浓度有较大差异.七大流域水体中ΣPAH16浓度排序为:松花江流域(9 180.05 ng·L-1)>辽河流域(2 516.00 ng·L-1)>淮河流域(2 795.25 ng·L-1)>珠江流域(1 314.94 ng·L-1)>黄河流域(950.18 ng·L-1)>长江流域(329.69 ng·L-1)>海河流域(104.78 ng·L-1).总体上而言, 北方区域水体的ΣPAH16污染比南方区域严重, 尤其是位于东北的松花江流域、辽河流域ΣPAH16污染最严重; 在南方区域, 珠江流域水体中ΣPAH16浓度最高; 七大流域中海河流域的ΣPAH16浓度最低, 污染最轻. PAHs主要来源于工业生产和加工过程中煤炭燃烧、生产排出的废气、废水以及有机物的不完全燃烧, 而我国北方区域重工业密集, 尤其是燃煤消耗巨大的钢铁行业较发达[54].另外, 北方区域冬季燃煤取暖也是PAHs的重要来源[55], 所以导致北方区域地表水中ΣPAH16浓度普遍高于南方地区.

国外地表水水体中除了西班牙内陆浅水湖和埃及尼罗河PAHs污染较严重, 其他水体污染相对较轻(表 3).与国外水体中ΣPAHs浓度相比, 我国七大流域水体中ΣPAH16浓度总体偏高, 主要因为我国人口庞大, 煤碳、石油等能源消耗巨大[56], 直接导致PAHs过量排放.另外, 大部分国外水体中4环以下PAHs的浓度较高[图 1(b)], 和我国七大流域水体中PAHs组成特征相似, 说明国外水体PAHs污染的主要来源是草木、煤燃烧及石油污染, 而PAHs污染较严重的西班牙内陆浅水湖和埃及尼罗河水体中的PAHs主要是5环和6环PAHs, 说明其污染源主要是化石燃料的高温燃烧.特别关注的是, 南极内陆湖、北极中表层海水、珠穆朗玛峰上的湖泊均检测出多种PAHs, 姚瑶[57]发现南极洲科考站附近的内陆湖湖水中的PAHs主要来源于当地人类活动产生的石油泄漏, Polkowska等[58]发现中纬度地区人类活动产生的污染物通过大气传输到北极是北极地区水体中的PAHs来源的主要途径, Loewen等[59]发现喜马拉雅山区水体中的PAHs主要来源于亚洲地区的大气颗粒物沉降, 说明人类活动产生的PAHs能直接或间接地威胁到极地及高海拔地区, PAHs引发的环境问题必须引起重视.

表 3 国外地表水体中PAHs浓度1)/ng·L-1 Table 3 Concentrations of PAHs in surface water of other countries/ng·L-1

2.2 PAHs生态风险评价

8种PAHs的敏感度曲线(图 2)的相关系数R2均在0.9以上(Ace除外, 表 4), 表明参数拟合法Log-logistic对PAHs毒性数据的拟合度较好.利用SSD方法计算了我国七大流域水体中8种单体PAHs(Nap、Ace、Flu、Phe、Ant、Flua、Pye和BaP)的急性生态风险以及急性联合生态风险, 结果见表 5.我国七大流域水体中Nap、Ace、Flu、Phe、Flua和Pye对淡水生物的影响比例均小于0.5%, 说明这6种PAHs对淡水水生生物的生态风险较低, 尤其是Nap、Ace、Flu和Phe的PAF值极低, 生态风险基本可忽略.松花江、辽河流域水体中Ant对淡水生物的影响比例均大于1%, 尤其辽河流域Ant的PAF值达到3.3416%, 接近于5%, 在对辽河流域水体PAHs的监测工作中应密切关注Ant的浓度变化.值得注意的是, 松花江、辽河、淮河、黄河、珠江流域水体中BaP对淡水生物的影响比例均超过了5%, 特别是松花江和珠江流域水体中BaP的PAF值超过了10%, 有非常高的生态风险.海河、长江流域水体中BaP的PAF值很接近5%, 其生态风险不可忽视.尽管水体中Nap、Ace、Flu、Phe的浓度较高, 但是对淡水生物的危害比其他PAHs低, BaP和Ant在水体中浓度较低, 但是生态风险却很高, 这与PAHs对水生生物的毒性大小密切相关.如表 4所示, 通过比较HC5值可以得到8种单体PAHs对水生生物的毒性效应顺序为BaP>Ant>Flua>Pye>Phe>Flu>Ace>Nap, 其中BaP对水生生物的毒性最大, Ant次之.如图 2所示, 在8种PAHs的SSD曲线中, 最靠近y轴的是BaP和Ant, 与其他PAHs相比, BaP和Ant的生态风险最大.

图 2 8种PAHs物种敏感度曲线 Fig. 2 Species sensitivity distribution curves for 8 PAHs

表 4 8种单体PAHs的SSD曲线参数与HC51) Table 4 SSD parameters and HC5of 8 PAHs

表 5 七大流域8种PAHs生态风险评价/% Table 5 Ecological risks of 8 PAHs in seven basins/%

本研究发现应用浓度加和模型计算ΣPAH8的msPAF值明显低于部分单体PAHs(如BaP、Ant)的PAF值(表 5), 说明应用浓度加和模型计算ΣPAH8的msPAF存在一定的问题.应用浓度加和模型计算多种污染物的msPAF是基于这几种化学物质具有相似的毒性效应, 所以将各污染物的环境浓度转化为无量纲的毒害单位(HU), 也就是说各污染物的毒性数据应该具有相似的分布模式和相同的标准差[36], 然而8种PAHs的毒性数据的标准差(见表 4)具有很大差异, 原因可能如下:首先, 各PAHs在水系统中毒性作用方式可能不同, 所以浓度加和模型不适用于PAHs水生态风险评价; 其次, 缺乏充足的毒性数据构建完整的物种敏感度分布曲线[120].

应用效应加和模型计算ΣPAH8的msPAF值却得到较为可信的结果(见表 5).除海河流域外, 其它6个流域水体中ΣPAH8对淡水生物的msPAF值均超过5%, 表明七大流域水体中ΣPAH8具有联合生态风险.北方区域的辽河流域和松花江流域及南方区域的珠江流域的ΣPAH8联合生态风险较高, 这主要与流域重工业活动导致水体中PAHs浓度较高有关, 辽河流域、松花江流域都是我国重要的钢铁、机械、建材、石油和化工基地[121, 122], 而珠江流域轻重工业发达, 人口密集, 大量工业废水、生活污水、废气未经有效处理将导致流域水体污染严重[123].海河流域水体ΣPAH8联合生态风险最低, 主要与水体中PAHs浓度较低有关.

2.3 PAHs人体健康风险评价

根据健康风险评价模型计算我国七大流域水体中PAHs通过饮水造成的健康危害风险见表 6表 7.由表 6可见, 七大流域致癌类PAHs通过饮水途径产生的总健康风险为5.31×10-7~2.73×10-4, 其中DBA导致的饮水途径健康风险最高, 最高值达到2.53×10-4, 出现在淮河流域; BaP饮水健康风险较高, 致癌风险范围为2.59×10-7~3.14×10-5, 最高值比DBA低一个数量级, 出现在松花江流域; 其他PAHs通过饮水途径造成的健康危害风险相对较小.不同PAHs的健康风险不仅与其在环境中的浓度有关, 还与毒性当量因子TEF值密切相关, 比如同分异构体BbF与BkF在各大流域水体中的浓度相近, 但BbF的毒性当量因子TEF值比BkF大一个数量级(见表 1), 导致BbF的健康风险比BkF大一个数量级, 水体中浓度相近的同分异构体Chry与BaA因为TEF值的差异导致健康风险差异两个数量级.我国七大流域致癌类PAHs通过饮水途径产生的总健康风险排序为淮河流域>松花江流域>珠江流域>黄河流域>辽河流域>长江流域>海河流域, 此排序主要受各大流域水体中DBA、BaP浓度的影响, 在水体污染物环境监测工作中需重点关注这两种PAHs.由表 7可知, 非致癌类PAHs通过饮水途径造成的非致癌危害同浓度分布一致, 均存在一定的空间分布特征, 表现为:非致癌类PAHs的HQ较高的流域为北方区域的松花江、辽河、淮河流域以及南方区域的珠江流域, 最高HQ值出现在松花江流域, 最低HQ值出现在海河流域, 与非致癌类PAHs在水体中的浓度空间分布一致.

表 6 致癌类PAHs污染物饮水途径的健康风险 Table 6 Health risks through the drinking ingestion of carcinogenic PAHs

表 7 非致癌类PAHs污染物饮水途径的健康风险 Table 7 Health risks through the drinking ingestion of non-carcinogenic PAHs

表 6发现, 松花江流域、辽河流域、黄河流域、淮河和珠江流域的致癌类PAHs通过饮水途径产生的总健康风险处于10-5水平, 高于US EPA推荐的对致癌物质最大可接受风险水平(10-6), 因此具有较高的健康风险.长江流域、海河流域的致癌PAHs的饮水总健康风险分别处于10-6、10-7水平, 高于英国皇家协会和荷兰建设与环境部推荐的可忽略风险水平(分别为10-7和10-8), 表明我国七大流域水体中致癌类PAHs的饮水健康风险需引起重视.由表 7可知, 非致癌类PAHs的HQ值为4.57×10-13~2.73×10-9, 远低于US EPA规定的阈值1.张荧等分析和评价了西江水系源头至河口的水体中PAHs的浓度及健康风险, 发现西江流域水体中致癌性PAHs的健康风险远大于非致癌PAHs所致风险[124], 王若师等通过检测和分析东江流域典型乡镇饮用水源地六大类有机污染物, 发现研究区域有机污染物的主要健康风险为致癌风险[125].综上所述, 我国七大流域水体中致癌类PAHs是需要优先处理的污染物, 应采取相应措施降低水中PAHs浓度, 以保证水流域的居民饮水健康.

3 结论

(1) 本研究分析总结了我国七大流域地表水体中16种优控PAHs的浓度及空间分布特征.研究结果表明, 我国七大流域水体中4环以下的PAHs(Nap、Acy、Ace、Flu、Phe、Ant、Pye、Flua、BaA、Chry)的浓度较高, PAHs污染较严重为北方区域的松花江、辽河、淮河流域以及南方区域的珠江流域, 海河流域PAHs污染最轻.总体上来说, 北方区域的PAHs污染比南方严重.

(2) 应用SSD方法评价了七大流域水体中的8种单体PAHs对淡水水生生物的急性生态风险, 分别使用浓度加和模型和效应加和模型评价了ΣPAH8混合物对淡水水生生物的急性联合生态风险.结果表明水体中Nap、Ace、Flu、Phe、Flua、Pye对淡水生物的生态风险较低, 但Ant、BaP的生态风险较高, 尤其松花江和珠江流域水体中BaP对水生生物的影响比例已超过10%.相比浓度加和模型, 应用效应加和模型计算得出的msPAF值可信度较高, ΣPAH8混合物对水生生物的联合风险最高的是松花江流域, 最低的是海河流域.除了海河流域, 其他6个流域水体的msPAF值均超过5%, 说明七大流域水体中存在单体PAHs急性生态风险, 有较高的急性联合生态风险.

(3) 利用人体暴露风险系数法对七大流域水体中7种致癌PAHs和9种非致癌PAHs的饮水健康风险进行评价.我国七大流域水体中PAHs通过饮水造成的人体健康风险主要为致癌风险, 大部分流域水体中致癌类PAHs通过饮水途径产生的总健康风险达到10-5水平, 高于US EPA推荐的对致癌物质最大可接受风险水平(10-6), 而非致癌类PAHs的HQ值处于10-9水平, 远低于US EPA规定的阈值1.总体上来说, 我国七大流域水体中致癌类PAHs通过饮水方式产生潜在的人体健康风险.

参考文献
[1] Logan D T. Perspective on ecotoxicology of PAHs to fish[J]. Human and Ecological Risk Assessment:An International Journal, 2007, 13(2): 302-316. DOI:10.1080/10807030701226749
[2] Wang Y L, Xia Z H, Liu D, et al. Multimedia fate and source apportionment of polycyclic aromatic hydrocarbons in a coking industry city in Northern China[J]. Environmental Pollution, 2013, 181: 115-121. DOI:10.1016/j.envpol.2013.06.015
[3] Xu S S, Liu W X, Tao S. Emission of polycyclic aromatic hydrocarbons in China[J]. Environmental Science & Technology, 2006, 40(3): 702-708.
[4] Li Y L, Liu J L, Cao Z G, et al. Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River basin, China[J]. Environmental Monitoring and Assessment, 2010, 163(1-4): 1-13. DOI:10.1007/s10661-009-0811-2
[5] USEPA. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons (EPA/600/R-93/089)[R]. Washington DC: United State Environmental Protection Agency, Office of Research and Development, 1993.
[6] Bech S. Regionally based assessment of persistent toxic substances (GF/3100-98-07)[R]. Kenya: UNEP, 2003. 125-158.
[7] 周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单[J]. 中国环境监测, 1990, 6(4): 1-3.
[8] Complete list of agents evaluated and their classification[EB/OL]. https: //monographs.iarc.fr/agents-classified-by-the-iarc, 2019-02-22.
[9] 吴兴让, 尹平河, 赵玲, 等. 珠江广州段水体微表层与次表层中多环芳烃的分布与组成[J]. 环境科学学报, 2010, 30(4): 868-873.
Wu X R, Yin P H, Zhao L, et al. Distribution and composition of polycyclic aromatic hydrocarbons in the surface microlayer and the subsurface microlayer from the Guangzhou section of the Pearl River[J]. Acta Scientiae Circumstantiae, 2010, 30(4): 868-873.
[10] Zhang L F, Dong L, Ren L J, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River delta, China[J]. Journal of Environmental Sciences, 2012, 24(2): 335-342. DOI:10.1016/S1001-0742(11)60782-1
[11] Sun J H, Wang G L, Chai Y, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan reach of the Yellow River, middle China[J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1614-1624. DOI:10.1016/j.ecoenv.2008.05.010
[12] 陈讯.新型磁性固相萃取材料性能及其在淮河流域有机物检测中应用研究[D].南京: 南京大学, 2016.
Chen X. Research on extraction performance of novel magnetic solid-phase-extraction microspheres and application in detection of organic compounds in the Huaihe River[D]. Nanjing: Nanjing University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10284-1016142021.htm
[13] 武江越.辽河流域水体及表层沉积物中多环芳烃分布特征及风险评估[D].北京: 北京化工大学, 2012.
Wu J Y. Spatial distribution and risk assessment of polycyclic aromatic hydrocarbons in water and surface sediments of Liaohe River[D]. Beijing: Beijing University of Chemical Technology, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10010-1012414509.htm
[14] 曹治国.滦河和漳卫南运河流域多环芳烃的污染特征和生态风险评价[D].北京: 北京师范大学, 2010.
Cao Z G. Characterization and ecosystem risk assessment of polycyclic aromatic hydrocarbons (PAHs) of two rivers in the Hai River basin, China[D]. Beijing: Beijing Normal University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10027-2010209094.htm
[15] 陈锋, 孟凡生, 王业耀, 等. 基于主成分分析-多元线性回归的松花江水体中多环芳烃源解析[J]. 中国环境监测, 2016, 32(4): 49-53.
Chen F, Meng F S, Wang Y Y, et al. The research of polycyclic aromatic hydrocarbons in the River based on the principal component-multivariate linear regression analysis[J]. Environmental Monitoring in China, 2016, 32(4): 49-53.
[16] Arias A H, Spetter C V, Freije R H, et al. Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca Estuary, Argentina[J]. Estuarine, Coastal and Shelf Science, 2009, 85(1): 67-81. DOI:10.1016/j.ecss.2009.06.008
[17] Mitra S, Bianchi T S. A preliminary assessment of polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico[J]. Marine Chemistry, 2003, 82(3-4): 273-288. DOI:10.1016/S0304-4203(03)00074-4
[18] Fernandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary[J]. Marine Pollution Bulletin, 1997, 34(11): 857-867. DOI:10.1016/S0025-326X(97)00063-5
[19] Reynaud S, Deschaux P. The effects of polycyclic aromatic hydrocarbons on the immune system of fish:a review[J]. Aquatic Toxicology, 2006, 77(2): 229-238. DOI:10.1016/j.aquatox.2005.10.018
[20] 刘娅囡.多环芳烃的土气交换研究[D].北京: 北京大学, 2008.
[21] Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons[J]. Cancer Causes & Control, 1997, 8(3): 444-472.
[22] Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment[J]. Environmental Science & Technology, 1992, 26(7): 1278-1284.
[23] 于小丽, 张江. 多环芳烃污染与防治对策[J]. 油气田环境保护, 1996, 6(4): 53-56.
[24] 岳敏, 谷学新, 邹洪, 等. 多环芳烃的危害与防治[J]. 首都师范大学学报(自然科学版), 2003, 24(3): 40-44, 31. DOI:10.3969/j.issn.1004-9398.2003.03.009
[25] 郭广慧, 吴丰昌, 何宏平, 等. 中国地表水体多环芳烃含量分布特征及其生态风险评价[J]. 中国科学:地球科学, 2012, 42(5): 680-691.
Guo G H, Wu F C, He H P, et al. Distribution characteristics and ecological risk assessment of PAHs in surface waters of China[J]. Science China:Earth Science, 2012, 42(5): 680-691.
[26] Duboudin C, Ciffroy P, Magaud H. Acute-to-chronic species sensitivity distribution extrapolation[J]. Environmental Toxicology and Chemistry, 2004, 23(7): 1774-1785. DOI:10.1002/etc.v23:7
[27] 王晓南, 闫振广, 刘征涛, 等. 生物效应比(BER)技术预测我国水生生物基准探讨[J]. 中国环境科学, 2016, 36(1): 276-285.
Wang X N, Yan Z G, Liu Z T, et al. Study of using biological effect ratio (BER) method to predict the aquatic life criteria in China[J]. China Environmental Science, 2016, 36(1): 276-285. DOI:10.3969/j.issn.1000-6923.2016.01.046
[28] US EPA. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Washington, DC: US EPA, 1985. 1-104.
[29] 王晓南, 刘征涛, 闫振广, 等. 麦穗鱼物种敏感性评价[J]. 环境科学, 2013, 34(6): 2329-2334.
Wang X N, Liu Z T, Yan Z G, et al. Species sensitivity evaluation of Pseudorasbora parva[J]. Environmental Science, 2013, 34(6): 2329-2334.
[30] 王晓南, 闫振广, 余若祯, 等. 中美水生生物基准受试物种敏感性差异研究[J]. 环境科学, 2016, 37(8): 3216-3223.
Wang X N, Yan Z G, Yu R Z, et al. Difference of species sensitivities for aquatic life criteria in China and the USA[J]. Environmental Science, 2016, 37(8): 3216-3223.
[31] Domene X, Ramírez W, Mattana S, et al. Ecological risk assessment of organic waste amendments using the species sensitivity distribution from a soil organisms test battery[J]. Environmental Pollution, 2008, 155(2): 227-236.
[32] Solomon K, Giesy J, Jones P. Probabilistic risk assessment of agrochemicals in the environment[J]. Crop Protection, 2000, 19(8-10): 649-655. DOI:10.1016/S0261-2194(00)00086-7
[33] 冯承莲, 雷炳莉, 王子健. 中国主要河流中多环芳烃生态风险的初步评价[J]. 中国环境科学, 2009, 29(6): 583-588.
Feng C L, Lei B L, Wang Z J. Preliminary ecological risk assessment of polycyclic aromatic hydrocarbons in main rivers of China[J]. China Environmental Science, 2009, 29(6): 583-588. DOI:10.3321/j.issn:1000-6923.2009.06.005
[34] Wang X L, Tao S, Dawson R W, et al. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area[J]. Environmental Research, 2002, 90(3): 201-206. DOI:10.1016/S0013-9351(02)00026-9
[35] 秦宁, 何伟, 孔祥臻, 等. 中国水生生态系统中多环芳烃的生态毒性与生态风险研究进展[J]. 中国科技论文, 2013, 8(12): 1209-1218.
Qin N, He W, Kong X Z, et al. Research progress in ecotoxicity and eco-risk assessment of polycyclic aromatic hydrocarbons in China's aquatic ecosystems[J]. China Sciencepaper, 2013, 8(12): 1209-1218. DOI:10.3969/j.issn.2095-2783.2013.12.003
[36] Traas TP, Van de Meent D, Posthuma L, et al. The potentially affected fraction as a measure of ecological risk[A]. In: Posthuma L, Traas T P, Suter Ⅱ G W (eds.). Species Sensitivity Distributions in Ecotoxicology[M]. Boca Raton, FL, USA: Lewis Publishers, 2002. 315-343.
[37] Erickson R J, Ankley G T, DeFoe D L, et al. Additive toxicity of binary mixtures of phototoxic polycyclic aromatic hydrocarbons to the oligochaete Lumbriculus variegatus[J]. Toxicology and Applied Pharmacology, 1999, 154(1): 97-105. DOI:10.1006/taap.1998.8563
[38] Swartz R C, Schults D W, Ozretich R J, et al. ΣPAH:a Model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments[J]. Environmental Toxicology and Chemistry, 1995, 14(11): 1977-1987. DOI:10.1002/etc.v14:11
[39] Sun C Y, Zhang J Q, Ma Q Y, et al. Human health and ecological risk assessment of 16 polycyclic aromatic hydrocarbons in drinking source water from a large mixed-use reservoir[J]. International Journal of Environmental Research and Public Health, 2015, 12(11): 13956-13969. DOI:10.3390/ijerph121113956
[40] 仇付国, 高始涛, 陈顷. 健康风险暴露评价研究进展[J]. 安全与环境学报, 2012, 12(1): 126-129.
Qiu F G, Gao S T, Chen Q. Review on research advances in health risk exposure assessment[J]. Journal of Safety and Environment, 2012, 12(1): 126-129. DOI:10.3969/j.issn.1009-6094.2012.01.029
[41] Turdi M, Yang L S. Trace elements contamination and human health risk assessment in drinking water from the agricultural and pastoral areas of Bay County, Xinjiang, China[J]. International Journal of Environmental Research and Public Health, 2016, 13(10): 938. DOI:10.3390/ijerph13100938
[42] Zhao Z H, Zhang L, Cai Y J, et al. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment[J]. Ecotoxicology and Environmental Safety, 2014, 104: 323-331. DOI:10.1016/j.ecoenv.2014.01.037
[43] Li Z J, Jennings A. Global variations in pesticide regulations and health risk assessment of maximum concentration levels in drinking water[J]. Journal of Environmental Management, 2018, 212: 384-394. DOI:10.1016/j.jenvman.2017.12.083
[44] 王进军, 刘占旗, 古晓娜. 环境致癌物的健康风险评价方法[J]. 国外医学卫生学分册, 2009, 36(1): 50-58.
Wang J J, Liu Z Q, Gu X N. Health risk assessment technique of environmental carcinogens[J]. Foreign Medical Sciences (Section of Hygiene), 2009, 36(1): 50-58.
[45] EPA/540/1-89/002, Risk assessment guidance for superfund volume I human health evaluation manual (Part A)[S].
[46] US EPA. Guidelines for exposure assessment[R]. Washington, DC: U.S. Environmental Protection Agency, 1992.
[47] US EPA. Guidelines for the health risk assessment of chemical mixtures[R]. Washington, DC: U.S. Environmental Protection Agency, 1986.
[48] Bingham E, Falk H L. Environmental carcinogens-the modifying effects of cocarciinogens on the threshold response[J]. Archives of Environmental Health an International Journal, 1969, 19(6): 779-783. DOI:10.1080/00039896.1969.10666930
[49] Habs M, Schmähl D, Misfeld J. Local carcinogenicity os some environmentally relevant polycyclic aromatic hydrocarbons after lifelong topical application to mouse skin[J]. Archiv für Geschwulstforschung, 1980, 50(3): 266-274.
[50] Hoffmann D, Wynder E L. Beitrag zur carcinogenen wirkung von dibenzopyrenen[J]. Zeitschrift Für Krebsforschung, 1966, 68(2): 137-149. DOI:10.1007/BF00525155
[51] Wynder E L, Hoffmann D. A study of tobacco carcinogenesis. Ⅶ. The role of higher polycyclic hydrocarbons[J]. Cancer, 1959, 12(6): 1079-1086. DOI:10.1002/(ISSN)1097-0142
[52] 占新华, 周立祥. 多环芳烃(PAHs)在土壤-植物系统中的环境行为[J]. 生态环境, 2003, 12(4): 487-492.
Zhan X H, Zhou L X. Environmental behavior of PAHs in soil-plant system[J]. Ecology and Environment, 2003, 12(4): 487-492. DOI:10.3969/j.issn.1674-5906.2003.04.028
[53] Mackay D, Shiu W Y, Ma K C, et al. Handbook of physical-chemical properties and environmental fate for organic chemicals (2nd ed.)[M]. Boca Raton: CRC Press, 2006: 315-320.
[54] Zhang Y X, Dou H, Chang B, et al. Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China[J]. Annals of the New York Academy of Sciences, 2010, 1140(1): 218-227.
[55] Zhang Y X, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004[J]. Atmospheric Environment, 2009, 43(4): 812-819. DOI:10.1016/j.atmosenv.2008.10.050
[56] 聂洪光.中国能源消费增长的问题及对策研究[D].长春: 吉林大学, 2013.
Nie H G. Research on the problems and solutions for the increase of energy consumption in China[D]. Changchun: Jilin University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014130339.htm
[57] 姚瑶.利用被动采样技术探究人为活动对南极和中国淡水中有机污染物的影响[D].广州: 中国科学院大学(中国科学院广州地球化学研究所), 2017.
Yao Y. Tracking impacts of anthropogenic activities on organic contaminants in freshwaters of antarctic and China by passive sampling techniques[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017. http://cdmd.cnki.com.cn/Article/CDMD-80165-1017074622.htm
[58] Polkowska Z·, Cichała-Kamrowska K, Ruman M, et al. Organic pollution in surface waters from the Fuglebekken basin in Svalbard, Norwegian Arctic[J]. Sensors, 2011, 11(9): 8910-8929. DOI:10.3390/s110908910
[59] Loewen M D, Sharma S, Tomy G, et al. Persistent organic pollutants and mercury in the Himalaya[J]. Aquatic Ecosystem Health & Management, 2005, 8(3): 223-233.
[60] Zhang S Y, Zhang Q, Darisaw S, et al. Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi River water, in New Orleans, Louisiana, USA[J]. Chemosphere, 2007, 66(6): 1057-1069. DOI:10.1016/j.chemosphere.2006.06.067
[61] Zhao W L, Cai M G, Adelman D, et al. Land-use-based sources and trends of dissolved PBDEs and PAHs in an urbanized watershed using passive polyethylene samplers[J]. Environmental Pollution, 2018, 238: 573-580. DOI:10.1016/j.envpol.2018.02.057
[62] Birks S J, Cho S, Taylor E, et al. Characterizing the PAHs in surface waters and snow in the Athabasca region:Implications for identifying hydrological pathways of atmospheric deposition[J]. Science of the Total Environment, 2017, 603-604: 570-583. DOI:10.1016/j.scitotenv.2017.06.051
[63] Škrbič B D, Kadokami K, Antič I. Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment[J]. Environmental Research, 2018, 166: 130-140. DOI:10.1016/j.envres.2018.05.034
[64] Bourgeault A, Gourlay-Francé C. Monitoring PAH contamination in water:comparison of biological and physico-chemical tools[J]. Science of the Total Environment, 2013, 454-455: 328-336. DOI:10.1016/j.scitotenv.2013.03.021
[65] Hijosa-Valsero M, Bécares E, Fernández-Aláez C, et al. Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain):PAHs, insecticides and herbicides in water and sediments[J]. Science of the Total Environment, 2016, 544: 797-810. DOI:10.1016/j.scitotenv.2015.11.160
[66] Prokeš R, Vrana B, Klánová J. Levels and distribution of dissolved hydrophobic organic contaminants in the Morava River in Zlín district, Czech Republic as derived from their accumulation in silicone rubber passive samplers[J]. Environmental Pollution, 2012, 166: 157-166. DOI:10.1016/j.envpol.2012.02.022
[67] Sharma B M, Melymuk L, Bharat G K, et al. Spatial gradients of polycyclic aromatic hydrocarbons (PAHs) in air, atmospheric deposition, and surface water of the Ganges River basin[J]. Science of the Total Environment, 2018, 627: 1495-1504. DOI:10.1016/j.scitotenv.2018.01.262
[68] Shaw M, Tibbetts I R, Müller J F. Monitoring PAHs in the Brisbane River and Moreton Bay, Australia, using semipermeable membrane devices and EROD activity in yellowfin bream, Acanthopagrus australis[J]. Chemosphere, 2004, 56(3): 237-246. DOI:10.1016/j.chemosphere.2004.03.003
[69] Badawy M I, Emababy M A. Distribution of polycyclic aromatic hydrocarbons in drinking water in Egypt[J]. Desalination, 2010, 251(1-3): 34-40. DOI:10.1016/j.desal.2009.09.148
[70] Amdany R, Chimuka L, Cukrowska E, et al. Assessment of bioavailable fraction of POPS in surface water bodies in Johannesburg City, South Africa, using passive samplers:an initial assessment[J]. Environmental Monitoring and Assessment, 2014, 186(9): 5639-5653. DOI:10.1007/s10661-014-3809-3
[71] Guzzella L, Poma G, De Paolis A, et al. Organic persistent toxic substances in soils, waters and sediments along an altitudinal gradient at Mt. Sagarmatha, Himalayas, Nepal[J]. Environmental Pollution, 2011, 159(10): 2552-2564. DOI:10.1016/j.envpol.2011.06.015
[72] 陆加杰, 杨琛, 卢锐泉, 等. 广州大学城珠江水域多环芳烃的污染特征[J]. 中国环境监测, 2009, 25(5): 86-89.
Lu J J, Yang C, Lu R Q, et al. The pollution of polycyclic aromatic hydrocarbon in the Pearl River around Guangzhou higher education mega center[J]. Environmental Monitoring in China, 2009, 25(5): 86-89. DOI:10.3969/j.issn.1002-6002.2009.05.026
[73] 刘艳霖.西江高要断面持久性有机污染物的行为与通量研究[D].广州: 中国科学院研究生院(广州地球化学研究所), 2007.
Liu Y L. Persistent organic pollutants passed water section at Gaoyao hydrological station of the Xijiang River[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2007.
[74] 金海燕, 陈建芳, 潘建明, 等. 夏季珠江口水体中多环芳烃的分布、组成及来源[J]. 海洋学研究, 2006, 24(3): 32-40.
Jin H Y, Chen J F, Pan J M, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the surface seawater of the Zhujiang River estuary in summer[J]. Journal of Marine Sciences, 2006, 24(3): 32-40. DOI:10.3969/j.issn.1001-909X.2006.03.004
[75] 杨清书, 雷亚平, 欧素英, 等. 珠江广州河段水环境中多环芳烃的组成及其垂直分布特征[J]. 海洋通报, 2008, 27(6): 34-43.
Yang Q S, Lei Y P, Ou S Y, et al. Vertical distribution, composition of polycyclic aromatic hydrocarbons in water column from Guangzhou channel in the Pearl River[J]. Marine Science Bulletin, 2008, 27(6): 34-43. DOI:10.3969/j.issn.1001-6392.2008.06.006
[76] 杨清书, 欧素英, 谢萍, 等. 珠江虎门潮汐水道水体中多环芳烃的分布及季节变化[J]. 海洋学报, 2004, 26(6): 37-48.
Yang Q S, Ou S Y, Xie P, et al. Distribution and seasonal changes of polycyclic aromatic hydrocarbons (PAHs) in surface water from Humen tidal channel[J]. Acta Oceanologica Sinica, 2004, 26(6): 37-48. DOI:10.3321/j.issn:0253-4193.2004.06.005
[77] Luo X J, Mai B X, Yang Q S, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River delta in south China[J]. Marine Pollution Bulletin, 2004, 48(11-12): 1102-1115. DOI:10.1016/j.marpolbul.2003.12.018
[78] 杨建丽.长江河口局部有机污染物分布及生态风险评价[D].北京: 北京化工大学, 2009.
Yang J L. Distribution and ecological risk assessment of organic pollutants in part of the Yangtze estuary[D]. Beijing: Beijing University of Chemical Technology, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10010-2009260479.htm
[79] 梁艳.长江嘉陵江重庆段多环芳烃污染状况及风险评价[D].重庆: 重庆大学, 2009.
Liang Y. Pollution and risk assessment of polycyclic aromatic hydrocarbons of the Yangtze River and Jialing River in Chongqing[D]. Chongqing: Chongqing University, 2009. http://d.wanfangdata.com.cn/Thesis/Y1663034
[80] 杜旭.长江口水体中半挥发性有机污染物和全氟化合物的存在水平及分布[D].大连: 大连理工大学, 2013.
Du X. Occurrence and distribution of semi-volatile organic pollutants and perfluorochemicals in the Yangtze estuary[D]. Dalian: Dalian University of Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013197561.htm
[81] 吴玲玲.长江口水体中典型有机污染物的分布及其对鱼类的毒性效应[D].上海: 同济大学, 2007.
Wu L L. Distribution of typical organic pollutants in the Yangtze River estuary and toxicology effects on fish[D]. Shanghai: Tongji University, 2007. http://d.wanfangdata.com.cn/Thesis/Y1228143
[82] 王成龙.长江流域-河口-近海环境中多环芳烃分布特征及影响因素研究[D].南京: 南京大学, 2017.
Wang C L. Studies on the distribution characteristics and its influencing factors of polycyclic aromatic hydrocarbons in Changjiang River-estuary-sea system[D]. Nanjing: Nanjing University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10284-1017097072.htm
[83] 熊毅.长江三峡库区城市给水厂典型持久性有机污染物研究[D].重庆: 重庆大学, 2005.
Xiong Y. Study on typical POPs in three Gorges Reservoir area's water purification plants[D]. Chongqing: Chongqing University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10611-2005144514.htm
[84] 王丹.长江上游(宜宾至泸州段)毒害污染物分布特征及风险评价——以重金属和多环芳烃为例[D].邯郸: 河北工程大学, 2016.
Wang D. Pollution characteristics and risk of persistent toxic substances from Yangtze River (Yibin to Luzhou)-a case study for heavy metal and polycyclic aromatic hydrocarbons[D]. Handan: Hebei University of Engineering, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10076-1016180108.htm
[85] 许艳秋.长江上游重庆主城区水体有机污染概况及典型有机污染物的环境迁移行为初探[D].重庆: 西南大学, 2010.
Xu Y Q. Study of organic pollution and migration of typical organic pollutants in the upstream of the Yangtze River in Chongqing[D]. Chongqing: Southwest University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10635-2010095399.htm
[86] 王超, 谭丽, 吕怡兵, 等. 长江重庆段表层水体中多环芳烃的分布及来源分析[J]. 环境化学, 2015, 34(1): 18-22.
Wang C, Tan L, Lyu Y B, et al. Distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in surface water from Chongqing section of the Yangtze River[J]. Environmental Chemistry, 2015, 34(1): 18-22.
[87] 暴志蕾.长三角地区饮用水源地有机污染物特征分析研究[D].石家庄: 河北师范大学, 2016.
Bao Z L. Characteristics of organic pollutants in drinking water sources of the Yangtze River delta region[D]. Shijiazhuang: Hebei Normal University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10094-1016060798.htm
[88] 张琦, 裴国霞, 李汗青, 等. 黄河包头段冻融过程中PAHs的分布特征及来源解析[J]. 环境科学研究, 2016, 29(2): 211-217.
Zhang Q, Pei G X, Li H Q, et al. Distribution and sources of PAHs in the Baotou section of the Yellow River during freezing-thawing process[J]. Research of Environmental Sciences, 2016, 29(2): 211-217.
[89] 裴国霞, 张琦, 李汗青, 等. 黄河包头段冻融期水体中PAHs的生态风险评价[J]. 干旱区研究, 2018, 35(1): 20-26.
Pei G X, Zhang Q, Li H Q, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons in water at Batou section of the Yellow River during freezing and thawing periods[J]. Arid Zone Research, 2018, 35(1): 20-26.
[90] 郎印海, 贾永刚, 刘宗峰, 等. 黄河口水中多环芳烃(PAHs)的季节分布特征及来源分析[J]. 中国海洋大学学报, 2008, 38(4): 640-646.
Lang Y H, Jia Y G, Liu Z F, et al. Seasonal distribution characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) in water samples from the Yellow River estuary[J]. Periodical of Ocean University of China, 2008, 38(4): 640-646.
[91] 董继元, 王式功, 尚可政. 黄河兰州段多环芳烃类有机污染物健康风险评价[J]. 农业环境科学学报, 2009, 28(9): 1892-1897.
Dong J Y, Wang S G, Shang K Z. Water environmental health risk assessment of polycyclic aromatic hydrocarbons in the Lanzhou reach of the Yellow River[J]. Journal of Agro-Environment Science, 2009, 28(9): 1892-1897. DOI:10.3321/j.issn:1672-2043.2009.09.020
[92] 牛静萍, 刘亚平, 阮烨, 等. 黄河兰州段环境激素的污染水平[J]. 环境与健康杂志, 2006, 23(6): 527-529.
Niu J P, Liu Y P, Ruan Y, et al. Investigation of environmental hormone level in Lanzhou reach of Yellow River[J]. Journal of Environment and Health, 2006, 23(6): 527-529. DOI:10.3969/j.issn.1001-5914.2006.06.018
[93] 王平, 徐建, 郭炜锋, 等. 黄河兰州段水环境中多环芳烃污染初步研究[J]. 中国环境监测, 2007, 23(3): 48-51.
Wang P, Xu J, Guo W F, et al. Preliminary study on PAHs in aquatic environment at Lanzhou reach of Yellow River[J]. Environmental Monitoring in China, 2007, 23(3): 48-51. DOI:10.3969/j.issn.1002-6002.2007.03.015
[94] 王凤英, 李文娟, 杨小红, 等. 黄河水中多环芳烃的测定[J]. 集宁师范学院学报, 2016, 38(2): 19-22.
Wang F Y, Li W J, Yang X H, et al. The Determination of polycyclic aromatic hydrocarbons in the Yellow River[J]. Journal of Jining Normal University, 2016, 38(2): 19-22. DOI:10.3969/j.issn.2095-3771.2016.02.006
[95] 张琦, 裴国霞, 李汗青, 等. 黄河头道拐段冰体中多环芳烃的分布特征及来源解析[J]. 农业环境科学学报, 2014, 33(11): 2221-2227.
Zhang Q, Pei G X, Li H Q, et al. Distribution and sources of polycyclic aromatic hydrocarbons in ice of Toudaoguai section of the Yellow River[J]. Journal of Agro-Environment Science, 2014, 33(11): 2221-2227. DOI:10.11654/jaes.2014.11.021
[96] 李恭臣, 夏星辉, 王然, 等. 黄河中下游水体中多环芳烃的分布及来源[J]. 环境科学, 2006, 27(9): 1738-1743.
Li G C, Xia X H, Wang R, et al. Pollution of polycyclic aromatic hydrocarbons (PAHs) in middle and lower reaches of the Yellow River[J]. Environmental Science, 2006, 27(9): 1738-1743. DOI:10.3321/j.issn:0250-3301.2006.09.008
[97] Li J, Li F D. Polycyclic aromatic hydrocarbons in the Yellow River estuary:levels, sources and toxic potency assessment[J]. Marine Pollution Bulletin, 2017, 116(1-2): 479-487. DOI:10.1016/j.marpolbul.2016.11.043
[98] Wang M, Wang C Y, Li Y W. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China:distribution pattern, risk assessment and sources[J]. Marine Pollution Bulletin, 2017, 122(1-2): 139-148. DOI:10.1016/j.marpolbul.2017.06.037
[99] Li G C, Xia X H, Yang Z F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China[J]. Environmental Pollution, 2006, 144(3): 985-993. DOI:10.1016/j.envpol.2006.01.047
[100] Wang L L, Yang Z F, Niu J F, et al. Characterization, ecological risk assessment and source diagnostics of polycyclic aromatic hydrocarbons in water column of the Yellow River delta, one of the most plenty biodiversity zones in the world[J]. Journal of Hazardous Materials, 2009, 169(1-3): 460-465. DOI:10.1016/j.jhazmat.2009.03.125
[101] 刘梦琳.淮河上游多环芳烃的分布特征及生态风险评价[D].新乡: 河南师范大学, 2016.
Liu M L. Distribution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons from the upper reach of the Huaihe River[D]. Xinxiang: Henan Normal University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10476-1016234652.htm
[102] 刘群.淮河上游洪河流域水环境污染源强解析及防治技术应用研究[D].南京: 南京大学, 2012.
Liu Q. Analysis of water pollutant load and application research on respective countermeasures in Hong River watershed from upper reach of the Huaihe River[D]. Nanjing: Nanjing University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10284-1012373702.htm
[103] 李琪.淮河中下游水环境中PAHs的分布及其降解菌的筛选[D].合肥: 安徽大学, 2012.
Li Q. Distribution characters of PAHs in aquatic environment and the isolation of PAHs-degrading bacteria from the middle and lower reaches of the Huaihe River[D]. Hefei: Anhui University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10357-1012399673.htm
[104] 李玉成, 张晓蕾, 叶云. 淮河中游水环境中PAHs分布特征及风险评价初探[J]. 安徽大学学报(自然科学版), 2010, 34(5): 85-93.
Li Y C, Zhang X L, Ye Y, et al. Distribution and environmental risk assessment of polycyclic aromatic hydrocarbons in the middle reaches of Huaihe River[J]. Journal of Anhui University (Natural Sciences Edition), 2010, 34(5): 85-93. DOI:10.3969/j.issn.1000-2162.2010.05.017
[105] Liu M L, Feng J L, Hu P T, et al. Spatial-temporal distributions, sources of polycyclic aromatic hydrocarbons (PAHs) in surface water and suspended particular matter from the upper reach of Huaihe River, China[J]. Ecological Engineering, 2016, 95: 143-151. DOI:10.1016/j.ecoleng.2016.06.045
[106] 王辉, 孙丽娜, 刘哲, 等. 大辽河地表水中多环芳烃的污染水平及致癌风险评价[J]. 生态毒理学报, 2015, 10(4): 187-194.
Wang H, Sun L N, Liu Z, et al. Pollution level and probabilistic cancer risk assessment of PAHs in surface water of Daliao River[J]. Asian Journal of Ecotoxicology, 2015, 10(4): 187-194.
[107] 王丽平, 南炳旭, 扈培龙, 等.大辽河口及其毗邻区域表层水体中多环芳烃的分布及其风险分析[A].见: 2015年中国环境科学学会学术年会论文集[C].深圳: 中国环境科学学会, 2015.
[108] 张岩林, 胡健, 刘宝剑, 等. 辽河流域多环芳烃(PAHs)的分布特征及来源解析[J]. 地球与环境, 2012, 40(2): 188-194.
Zhang Y L, Hu J, Liu B J, et al. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons(PAHs) in the Liaohe River drainage basin, northeast China[J]. Earth and Environment, 2012, 40(2): 188-194.
[109] 张林林.辽河流域化工与石化行业有机污染特征及风险评价[D].北京: 北京交通大学, 2014.
Zhang L L. Organic pollution characteristics of Liaohe River chemical and petrochemical industries and risk assessment[D]. Beijing: Beijing Jiaotong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10004-1014374309.htm
[110] 吕佳佩.辽河水环境中典型持久性有机污染物的污染特征研究[D].北京: 中国环境科学研究院, 2015.
Lv J P. Pollution characteristics of representative persistent organic pollutants in the aquatic environment of Liaohe River[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2015.
[111] 苏禹龙.四平条子河典型持久性有毒物质的污染特征研究[D].长春: 吉林大学, 2014.
Su Y L. Pollution characteristics of representative persistent toxic substances of Tiaozi River, Siping City section[D]. Changchun: Jilin University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014281544.htm
[112] 沈琼, 王开颜, 张巍, 等. 北京市通州区地表水中多环芳烃的分布与季节变化[J]. 环境化学, 2007, 26(4): 523-527.
Shen Q, Wang K Y, Zhang W, et al. Distribution and seasonal variations of polycyclic aromatic hydrocarbons in surface water from Tongzhou district of Beijing[J]. Environmental Chemistry, 2007, 26(4): 523-527. DOI:10.3321/j.issn:0254-6108.2007.04.026
[113] 于云江, 杨彦. 基于GIS的松花江沿岸某区浅层地下水污染特征及人群暴露风险评价[J]. 中国环境科学, 2013, 33(8): 1487-1494.
Yu Y J, Yang Y. The pollution characteristics and the crowd exposure risk assessment of shallow groundwater in an area of the Songhua River basin based on the GIS[J]. China Environmental Science, 2013, 33(8): 1487-1494.
[114] Zeng Q F, Jeppesen E, Gu X H, et al. Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture-and shipping-impacted subtropical lake, China[J]. Chemosphere, 2018, 201: 612-620. DOI:10.1016/j.chemosphere.2018.03.031
[115] 许云竹.松花江吉林市江段水体中多环芳烃源解析研究[D].长春: 吉林大学, 2011.
Xu Y Z. Source apportionment of polycyclic aromatic hydrocarbons in aquatic environment of Songhua River, Jilin city section[D]. Changchun: Jilin University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10183-1011099660.htm
[116] 刘宝林.松花江流域(吉林省部分)水环境持久性污染物的环境特征[D].长春: 吉林大学, 2013.
Liu B L. Environmental characteristics of persistent pollutants in aquatic environment of Songhua River (Jilin province)[D]. Changchun: Jilin University, 2013.
[117] 马万里, 刘丽艳, 齐虹, 等. 松花江流域冰封期水体中多环芳烃的污染特征研究[J]. 环境科学, 2012, 33(12): 4220-4225.
Ma W L, Liu L Y, Qi H, et al. Pollution characteristics of polycyclic aromatic hydrocarbons in water of Songhua River basin during the icebound season[J]. Environmental Science, 2012, 33(12): 4220-4225.
[118] 孙清芳, 冯玉杰, 高鹏, 等. 松花江水中多环芳烃(PAHs)的环境风险评价[J]. 哈尔滨工业大学学报, 2010, 42(4): 568-572.
Sun Q F, Feng Y J, Gao P, et al. Risk assessment of polycyclic aromatic hydrocarbons in water of the Songhua River[J]. Journal of Harbin Institute of Technology, 2010, 42(4): 568-572.
[119] 赵金声, 周明华. 松花江下游多环芳烃污染现状的初步研究[J]. 生态经济, 2015, 31(7): 132-135.
Zhao J S, Zhou M H. Preliminary study on pollution of polycyclic aromatic hydrocarbons in the downstream of the Songhua River[J]. Ecological Economy, 2015, 31(7): 132-135. DOI:10.3969/j.issn.1671-4407.2015.07.027
[120] Qin N, He W, Kong X Z, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators[J]. Ecological Indicators, 2013, 24: 599-608. DOI:10.1016/j.ecolind.2012.08.019
[121] 史雅娟, 吕永龙, 任鸿昌, 等. 持久性有机污染物研究的国际发展动态[J]. 世界科技研究与发展, 2003, 25(2): 73-78.
Shi Y J, Lv Y L, Ren H C, et al. Recent progress in scientific research on persistent organic pollutants (POPs)[J]. World Sci-Tech R&D, 2003, 25(2): 73-78. DOI:10.3969/j.issn.1006-6055.2003.02.014
[122] 陈思.松花江吉林市段多环芳烃的时空分布、来源解析和生态风险[D].长春: 吉林大学, 2014.
Chen S. The temporal and spatial distribution, source identification and risk assessment of polycyclic aromatic hydrocarbons in Songhua River, Jilin City section[D]. Changchun: Jilin University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014281522.htm
[123] 李海燕, 段丹丹, 黄文, 等. 珠江三角洲表层水中多环芳烃的季节分布、来源和原位分配[J]. 环境科学学报, 2014, 34(12): 2963-2972.
Li H Y, Duan D D, Huang W, et al. Seasonal distribution, sources, and in-situ partitioning of polycyclic aromatic hydrocarbons in water and suspended particulate matters from the Pearl River delta[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 2963-2972.
[124] 张荧, 魏立菲, 李逸, 等. 西江地表水中多环芳烃的分布和健康风险评价[J]. 人民珠江, 2016, 37(5): 76-79.
Zhang Y, Wei L F, Li Y, et al. Distribution and health risk assessment of polycyclic aromatic hydrocarbons in surface water of the Xijiang River, China[J]. Pearl River, 2016, 37(5): 76-79. DOI:10.3969/j.issn.1001-9235.2016.05.017
[125] 王若师, 张娴, 许秋瑾, 等. 东江流域典型乡镇饮用水源地有机污染物健康风险评价[J]. 环境科学学报, 2012, 32(11): 2874-2883.
Wang R S, Zhang X, Xu Q J, et al. Health risk assessment of organic pollutants in typical township drinking water sources of Dongjiang River basin[J]. Acta Scientiae Circumstantiae, 2012, 32(11): 2874-2883.