环境科学  2019, Vol. 40 Issue (2): 701-707   PDF    
高指数晶面TiO2对铬的吸附及光催化去除
钟德健1,2, 张建锋1,2, 李尧1,2, 谢晓丹1,2     
1. 西安建筑科技大学陕西省环境工程重点实验室, 西安 710055;
2. 西安建筑科技大学环境与市政工程学院, 西安 710055
摘要: 由工业生产引起的铬污染是环境领域面临的一大挑战.二氧化钛(TiO2)材料因其吸附催化的双重作用在铬的去除方面具有潜在应用前景.利用溶剂热法合成高指数晶面TiO2{201},对其进行SEM、TEM、XRD及XPS表征,并用于Cr(Ⅲ/Ⅵ)的吸附及Cr(Ⅵ)的光催化还原,以达到从水体中去除铬的目的.所合成的TiO2{201}为锐钛矿相,呈蒲公英状的层级结构.Langmuir吸附等温线结果表明,TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的最大吸附量分别为22.7 mg·g-1和13.2 mg·g-1,Freundlich模型拟合结果表明TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的吸附均易于进行,其1/n均小于0.5.在紫外光照条件下,TiO2{201}作为光催化剂可将毒性较强且吸附去除效果较差的Cr(Ⅵ)还原成Cr(Ⅲ),并以Cr(OH)3及Cr2O3的形式沉淀在TiO2表面,XPS表征结果进一步证实了表面沉淀的存在.为探明TiO2{201}光催化还原Cr(Ⅵ)的机制,分别研究光生空穴淬灭剂(EDTA-2Na)和光生电子淬灭剂(KBrO3)对Cr(Ⅵ)还原效率的影响,证明Cr(Ⅵ)的还原是由光生电子引起.
关键词: 铬污染      TiO2{201}      吸附去除      光催化还原      表面沉淀     
Adsorption and Photocatalytic Removal of Chromium on High-index TiO2 Facet
ZHONG De-jian1,2 , ZHANG Jian-feng1,2 , LI Yao1,2 , XIE Xiao-dan1,2     
1. Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2. School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract: Chromium (Cr) contamination caused by industrial manufacturing poses a severe challenge in the environment. Titanium dioxide (TiO2) has potential application in Cr removal due to its adsorption and photocatalytic performance. High-index TiO2 with exposed {201} facet was synthesized using the solvothermal method and characterized by SEM, TEM, XRD, and XPS. The adsorption of Cr(Ⅲ/Ⅵ) and photocatalytic reduction of Cr(Ⅵ) on TiO2{201} was examined for the removal from water. The synthesized TiO2{201} was constructed by a dandelion-like hierarchical structure. The adsorption isotherms of Cr(Ⅲ) and Cr(Ⅵ) on TiO2{201} conformed to the Langmuir model, with maximum adsorption capacities of 22.7 mg·g-1 and 13.2 mg·g-1, respectively. The best fitted results from the Freundlich model show that the adsorption of Cr(Ⅲ) and Cr(Ⅵ) on TiO2{201} were favorable with the parameter of 1/n less than 0.5. The results of photocatalytic reduction show that TiO2{201} can reduce Cr(Ⅵ) to Cr(Ⅲ) under UV irradiation, and Cr(Ⅲ) was further precipitated on the surface of TiO2 in the form of Cr(OH)3 and Cr2O3, which was evidenced by XPS characterization. To explore the mechanism of photocatalytic reduction of Cr(Ⅵ), the effect of scavengers for photogenerated holes (EDTA-2Na) and electrons (KBrO3) on Cr(Ⅵ) reduction was studied, and the results suggested that photogenerated electrons were the main reductant.
Key words: chromium contamination      TiO2{201}      adsorption removal      photocatalytic reduction      surface precipitation     

铬(Cr)是一种广泛用于工业生产且自然界中普遍存在的金属元素.由于冶金、电镀、制革以及印染等行业的迅猛发展, 随之产生具有高毒性、致畸致癌性的含铬废水所造成的环境污染日趋严峻[1, 2].含铬废水的处理方法主要包括离子交换法、化学沉淀法、电解还原法、膜分离法、吸附及光催化还原法等[3].吸附及光催化还原法因效率高、成本低、不易产生二次污染而受到广泛关注[4, 5].铬主要以Cr(Ⅵ)和Cr(Ⅲ)的形式存在于水体环境中[6], 其中Cr(Ⅵ)比Cr(Ⅲ)具有更高的毒性(约100倍)[7], 因此将Cr(Ⅵ)还原为毒性较低的Cr(Ⅲ)再去除被认为是一种有效的含铬废水处理方法.

二氧化钛(TiO2)作为一种吸附催化材料, 因其高效、无毒、化学稳定性好等优点而被广泛应用于环境污染的治理中[8~10].在紫外光(UV)下, TiO2表面可产生具有强烈氧化还原作用的电子-空穴对, 光生电子可将重金属离子, 如Cr、Hg等还原为无毒或低毒性状态; 光生空穴可将常见的有机污染物, 如苯酚、甲醛和染料等矿化成CO2和H2O[11]. Liu等[12]采用直接包裹法和水热蚀刻法制备了石墨烯包裹的TiO2空心核壳结构(TGHMS)光催化剂, TGHMS因可由相互独立暴露的{001}和{101}晶面组成的TiO2芯层形成一种Z型光催化体系, 而兼具较高的电荷分离效率和较强的氧化还原能力, 且在光催化协同去除罗丹明B和Cr(Ⅵ)中表现优异. Lara等[13]通过表面氟化法制备了暴露晶面为{001}的TiO2并用于光催化性能研究, 结果表明, 相较于市售TiO2(P25), {001}晶面的暴露及其表面附着的氟对于光催化氧化苯酚和甲基橙、光催化还原Cr(Ⅵ)所表现出的优越性能起着关键作用.综上所述, TiO2表面对Cr的吸附及光催化还原为水体中Cr的去除提供了有利途径.近期研究结果表明, TiO2表面结构对其吸附及催化性能有显著影响.高指数晶面TiO2{201}因其表面富有高密度的原子台阶、悬空键及未饱和配位的Ti原子, 具有潜在的高吸附能力及催化活性.

本研究以高指数晶面TiO2{201}为吸附催化材料, 通过吸附等温线分析其对Cr(Ⅲ/Ⅵ)的吸附, 并通过光生电子-空穴淬灭实验考察其光催化还原Cr(Ⅵ)的机制, 以期为铬的去除提供理论基础.

1 材料与方法 1.1 实验仪器

电感耦合等离子体发射光谱仪(ICP-OES, Optima 2000 DV, Perkin Elmer Co, USA); 紫外可见分光光度计(岛津UV-2550);电子天平(ME104);场发射扫描电子显微镜(FE-SEM, SU-8000, Hitachi); 高分辨透射电镜(HR-TEM, JEM-2100F, JEOL); X'Pert PRO MPDX射线衍射仪(PAN alytical, Netherlands); X射线光电子能谱仪(XPS, Thermo Fisher ESCALAB 250Xi); pH计(FE20);超声机(KH500B); 磁力搅拌器(WIGGENS WH220);真空干燥箱(DZF-6020);汞灯光源系统(中教金源CEL-M500);离心机(Thermo ScientificTM HeraeusTM MultifugeTM X1R).

1.2 实验材料及试剂

本实验所用六水合三氯化铬(CrCl3·6H2O, 分析纯)购自天津市津科精细化工研究所; 重铬酸钾(K2Cr2O7, 分析纯)购自天津市化学试剂一厂; 二苯基碳酰二肼(C13H14N4O, 分析纯)购自北京化学试剂公司; N, N-二甲基甲酰胺购自Alfa Aesar(China) Chemicals Co., Ltd.; 钛酸四丁酯及EDTA-2Na (C10H14N2Na2O8·2H2O)购自Sigma-Aldrich; 冰醋酸(C2H4O2, 优级纯)、无水乙醇(C2H6O, 优级纯)、丙酮(C3H6O, 分析纯)、硫酸(H2SO4, 优级纯)、磷酸(H3PO4, 优级纯)、盐酸(HCl, 优级纯)、氢氧化钠(NaOH, 分析纯)及溴酸钾(KBrO3, 分析纯)均购自国药集团化学试剂有限公司.

1.3 溶液配制

1 g·L-1 Cr(Ⅵ)溶液:称取于110℃干燥2 h的重铬酸钾(K2Cr2O7) 2.829 g, 用超纯水溶解后, 移入1000 mL容量瓶中, 再用超纯水稀释至标线, 摇匀, 可得浓度为1 g·L-1的Cr(Ⅵ)储备液.

1 g·L-1 Cr(Ⅲ)溶液:称取六水合三氯化铬(CrCl3·6H2O) 5.124 g, 用超纯水溶解后, 移入1000 mL容量瓶中, 再用超纯水稀释至标线, 摇匀, 可得浓度为1 g·L-1的Cr(Ⅲ)储备液.

2 g·L-1二苯基碳酰二肼显色剂溶液:称取0.2 g二苯基碳酰二肼(C13H14N4O), 溶于50 mL丙酮中, 加超纯水定容至100 mL, 摇匀并贮于棕色瓶中, 所得浓度为2 g·L-1的二苯基碳酰二肼溶液于4℃保存.

1+1硫酸:将优级纯浓硫酸缓慢加入到同体积的超纯水中.

1+1磷酸:将优级纯磷酸缓慢加入到同体积的超纯水中.

实验所用超纯水(18.2 MΩ·cm)均由Millipore Milli-Q系统提供.

1.4 实验方法 1.4.1 高指数晶面TiO2{201}的制备

采用溶剂热法制备高指数晶面TiO2{201}, 首先开启磁力搅拌, 将8 mL冰醋酸、12 mL N, N-二甲基甲酰胺及0.5 mL钛酸四丁酯依次加入至反应釜中, 混合搅拌5 min, 随后将反应釜置于200℃真空干燥箱中反应10 h.反应结束后, 所得产物经离心和5次无水乙醇清洗后, 再在60℃条件下烘干, 即可获得高指数晶面TiO2{201}.

1.4.2 高指数晶面TiO2{201}的表征

采用加速电压为5 kV的场发射扫描电镜(FE-SEM, SU-8000, Hitachi)、加速电压为200 kV的高分辨透射电镜(HR-TEM, JEM-2100F, JEOL)对所制备的高指数晶面TiO2{201}进行形貌表征.采用辐射源为Cu Kα射线、扫描角度2θ为5°~90°、间隔为0.01°、步长为1 s的X'Pert PRO MPDX射线衍射仪(PAN alytical, Netherlands)对所制备的高指数晶面TiO2{201}进行晶体结构表征.

1.4.3 吸附等温线

室温条件下, 取浓度为1 g·L-1的Cr(Ⅲ)和Cr(Ⅵ)储备液逐级稀释, 将30 mL浓度为2.5、5、10、15、20、25、35、50、65、80、100、125、150、175、200 mg·L-1的Cr(Ⅲ)和Cr(Ⅵ)溶液分别置于规格为50 mL的聚乙烯离心管中, 并确保每个体系中NaCl背景液浓度为0.04 mol·L-1, 用HCl和NaOH调节溶液pH=5[14], 随后往每个反应体系中投加15 mg TiO2{201}吸附剂, 即体系中TiO2{201}浓度为0.5 g·L-1.将反应体系置于旋转培养器上避光旋转摇匀, 吸附平衡后, 取混合溶液经0.22 μm水系滤膜过滤, 并采用电感耦合等离子体发射光谱仪(ICP-OES, Optima 200F0 DV, Perkin Elmer Co, USA)测定Cr浓度.

1.4.4 光催化还原Cr(Ⅵ)

室温条件下, 取浓度为1 g·L-1的Cr(Ⅵ)储备液逐级稀释, 得到浓度为10 mg·L-1的Cr(Ⅵ)溶液.取80 mL浓度为10 mg·L-1的Cr(Ⅵ)溶液于100 mL烧杯中, 用HCl和NaOH调节pH=5, 随后在黑暗条件下加入质量为40 mg的TiO2{201}, 即反应体系中TiO2{201}浓度为0.5 g·L-1, 磁力搅拌30 min以达到吸附-脱附平衡, 再置于波长为254 nm、强度为2000 μW·cm-2的紫外光下照射.按照光照时间0、5、10、15、20、25、30、40 min进行取样, 所取样品经0.22 μm水系滤膜过滤.采用相同的实验方法分别考察浓度为20 mmol·L-1的光生电子淬灭剂(KBrO3)和光生空穴淬灭剂(EDTA-2Na)对TiO2{201}光催化还原Cr(Ⅵ)的影响.

取4 mL滤液于离心管中, 并依次加入1+1硫酸、1+1磷酸各0.04 mL以及0.16 mL二苯基碳酰二肼显色剂溶液, 摇匀, 待10 min后所显紫色稳定, 采用紫外可见分光光度计(岛津UV-2550)于540 nm处测定Cr(Ⅵ)浓度[15].

2 结果与讨论 2.1 高指数晶面TiO2{201}的表征

高指数晶面TiO2{201}的SEM形貌表征结果如图 1(a)所示, 所制备的TiO2{201}由直径约1 μm的类蒲公英状的层级球形结构组成; TEM及HR-TEM表征结果分别如图 1(b)1(c)所示, 所制备的TiO2{201}其晶格间距为0.24 nm, 与文献报道一致[16]. TiO2{201}的X射线衍射(XRD)图谱如图 2所示, 所有识别的特征衍射峰均与MDI Jade 6.5软件中的锐钛矿相TiO2标准图谱(JCPDS No. 21-1272)相匹配, 表明所制备的高指数晶面TiO2{201}为锐钛矿相[17].

图 1 TiO2{201}的SEM、TEM及HR-TEM表征结果 Fig. 1 SEM, TEM, and HR-TEM characterization of TiO2{201}

图 2 TiO2{201}及TiO2{201}光催化还原Cr(Ⅵ)后所收集固体[TiO2{201}-Cr(Ⅵ)]的XRD表征结果 Fig. 2 XRD patterns of TiO2{201} and the solid[TiO2{201}-Cr(Ⅵ)] collected after photocatalytic reduction of Cr(Ⅵ) by TiO2{201}

2.2 吸附等温线

吸附等温线可以用来表征吸附材料的表面性质和吸附亲和性, 被认为是研究吸附理论的最佳途径[18].本项研究采用Langmuir及Freundlich吸附模型对等温吸附结果进行拟合, 如公式(1)~(3)所示:

(1)
(2)
(3)

式中, qeqm分别为平衡吸附量(mg·g-1)和最大吸附量(mg·g-1), c0ce分别为吸附质的初始浓度(mg·L-1)和平衡浓度(mg·L-1), mV分别为吸附剂的质量(mg)与溶液体积(L), KL为与吸附自由能相关的Langmuir吸附平衡常数(L·mg-1); KF与1/n为Freundlich公式中的常数, 当1/n在0.1~0.5范围内时易于吸附, 且1/n越小, 吸附性能越好.

TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的吸附结果、Langmuir及Freundlich拟合结果如图 3表 1所示, Langmuir吸附模型拟合可得TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的最大吸附量分别为22.7 mg·g-1和13.2 mg·g-1, 且TiO2{201}对Cr(Ⅲ)的吸附效果较好; Freundlich拟合结果表明TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的吸附均易于进行(1/n均小于0.5).

图 3 TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的吸附等温线、Langmuir及Freundlich模型拟合 Fig. 3 Langmuir and Freundlich fitting results for adsorption isotherms of Cr(Ⅲ) and Cr(Ⅵ) on TiO2{201} (symbol)

表 1 Langmuir和Freundlich模型拟合TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的等温吸附结果 Table 1 Langmuir and Freundlich fitting results for adsorption isotherms of Cr(Ⅲ) and Cr(Ⅵ) on TiO2{201}

2.3 光催化还原Cr(Ⅵ)

TiO2{201}对Cr(Ⅵ)的光催化还原结果如图 4所示, 其中c0为Cr(Ⅵ)的初始浓度(mg·L-1), ct为光照时间t所测得的Cr(Ⅵ)浓度(mg·L-1).从中可知, 光照40 min时, TiO2{201}对Cr(Ⅵ)的还原率仅为60%;在加入光生空穴淬灭剂EDTA-2Na后, 仅需光照20 min, Cr(Ⅵ)的还原率便可达100%;在加入光生电子淬灭剂KBrO3之后, Cr(Ⅵ)还原率为0.以上结果表明光生电子是TiO2{201}光催化还原Cr(Ⅵ)的主要反应活性物质, 而KBrO3作为一种电子淬灭剂, 将其引入可抑制Cr(Ⅵ)的还原; EDTA-2Na作为一种空穴淬灭剂, 将其引入可促进光生电子和空穴的分离, 从而提高光生电子的利用率, 即提高Cr(Ⅵ)的还原率[19, 20].在投加电子淬灭剂KBrO3的体系中, 光生电子与电子淬灭剂、光生电子与Cr(Ⅵ)之间的反应同时存在, 而在投加空穴淬灭剂EDTA-2Na的体系中, 因空穴被淬灭而产生的大量光生电子则全部作用于Cr(Ⅵ)的还原, 因此空穴淬灭剂对Cr(Ⅵ)还原率的影响比电子淬灭剂更大. TiO2{201}光催化还原Cr(Ⅵ)的机制可表述为图 5及公式(4)~(6):在紫外光照下, TiO2{201}表面产生光生电子(e-)-光生空穴(h+)对, 光生电子将Cr(Ⅵ)还原为Cr(Ⅲ), 光生空穴则将H2O氧化为羟基自由基(·OH)[21, 22].

(4)
(5)
(6)
图 4 不同淬灭剂对TiO2{201}光催化还原Cr(Ⅵ)的影响 Fig. 4 Effect of different scavengers on photocatalytic reduction of Cr(Ⅵ) by TiO2{201}

图 5 TiO2{201}光催化还原Cr(Ⅵ)机制 Fig. 5 Mechanism of photocatalytic reduction of Cr(Ⅵ) by TiO2{201}

2.4 XRD及XPS表征

为进一步考察TiO2{201}光催化还原Cr(Ⅵ)的机制, 采用XRD及XPS对TiO2{201}及TiO2{201}光催化还原Cr(Ⅵ)反应结束后所收集的固体TiO2{201}-Cr(Ⅵ)进行表征. XRD表征结果如图 2所示, 表明光催化还原反应结束后, TiO2{201}仍为锐钛矿相, 其晶型未发生变化. XPS表征结果如图 6所示, XPS可检测TiO2{201}与TiO2{201}-Cr(Ⅵ)的表面组成及化学状态.通过XPS获得的结合能, 须以外来污染碳源的结合能(284.6 eV)为基准进行校正. TiO2{201}与TiO2{201}-Cr(Ⅵ)表面Ti 2p的高分辨能谱图如图 6(a)所示, 结果显示在464.4 eV和458.7 eV处出现两个峰, 分别对应氧化态Ti4+的Ti 2p3/2与Ti 2p1/2自旋轨道分裂光电子[23, 24], Ti 2p3/2与Ti 2p1/2两个谱峰的能量差(5.7 eV)反映了锐钛矿相TiO2的Ti4+化学态.

图 6 TiO2{201}及TiO2{201}光催化还原Cr(Ⅵ)后所收集固体(TiO2{201}-Cr(Ⅵ))的XPS表征结果 Fig. 6 XPS patterns of TiO2{201} and the solid(TiO2{201}-Cr(Ⅵ)) collected after photocatalytic reduction of Cr(Ⅵ) by TiO2{201}

O 1s的高分辨能谱图如图 6(b)所示, 结果显示, TiO2{201}在529.9 eV和531.4 eV处出现两个峰, TiO2{201}-Cr(Ⅵ)在529.8 eV和531.1 eV处出现两个峰, 分别对应Ti—O和—OH[25].通过计算Ti—O峰和—OH峰的百分占比, 进一步分析二者含量的变化情况, 计算数据如表 2所示.

表 2 TiO2{201}和TiO2{201}-Cr(Ⅵ)中的Ti—O与—OH占比情况 Table 2 Contribution of Ti—O and —OH to the O 1s XPS spectra for TiO2{201} and TiO2{201}-Cr(Ⅵ)

表 2可知, TiO2{201}光催化还原Cr(Ⅵ)反应结束后所收集的固体, —OH含量约为未经光照的TiO2{201}的2.6倍, 说明TiO2{201}光催化还原Cr(Ⅵ)的过程中伴随着—OH的生成.结合图 6(c), 可知Cr(Ⅵ)被TiO2{201}光催化还原成Cr(Ⅲ), 继而Cr(Ⅲ)以Cr(OH)3沉淀覆盖在TiO2{201}表面, 因此光催化还原结束后表面—OH含量升高.根据XPS中Cr 2p3/2和Cr 2p1/2的谱图对应元素[26], 可判断覆盖在TiO2{201}表面的Cr(Ⅲ)为Cr2O3和Cr(OH)3的混合物, Cr(Ⅵ)主要为CrO3, 其相对应的Cr 2p类型及其结合能如表 3所示.

表 3 利用Cr 2p的XPS谱对TiO2{201}-Cr(Ⅵ)进行成分分析 Table 3 Components of TiO2{201}-Cr(Ⅵ) analyzed by Cr 2p XPS spectra

此外, 从TiO2{201}与TiO2{201}-Cr(Ⅵ)的X射线价带谱[图 6(d)]可看出, 由于Cr的引入并在TiO2{201}表面发生了还原反应, TiO2{201}-Cr(Ⅵ)的价带顶相较于TiO2{201}明显下降了1 eV, 说明Cr覆盖在TiO2表面之后, 费米能级更接近价带[27], 形成p型半导体材料, 有望拓展其光催化性能.

3 结论

(1) Freundlich模型拟合结果表明TiO2{201}对Cr(Ⅲ)和Cr(Ⅵ)的吸附均易于进行, 其1/n均小于0.5;但Langmuir模型拟合结果表明TiO2{201}对Cr(Ⅲ)的吸附量(22.7 mg·g-1)高于对Cr(Ⅵ)的吸附量(13.2 mg·g-1), 对Cr(Ⅵ)的吸附去除效果较差.

(2) 经比较光生空穴和电子淬灭剂对TiO2{201}光催化还原Cr(Ⅵ)的影响, 发现紫外光照射40 min时, TiO2{201}对Cr(Ⅵ)的还原率为60%, 在加入光生空穴淬灭剂EDTA-2Na之后, 还原率可达100%, 而在加入光生电子淬灭剂KBrO3之后, 还原率为0, 表明光生电子对TiO2{201}光催化还原Cr(Ⅵ)起决定性作用.

(3) 对TiO2{201}光催化还原Cr(Ⅵ)反应结束后所收集的固体TiO2{201}-Cr(Ⅵ)进行XPS及XRD表征. XPS表征结果显示Cr(Ⅵ)在TiO2表面被还原为Cr(Ⅲ)后, 以Cr2O3和Cr(OH)3的形式沉积在TiO2{201}表面; XRD结果表明TiO2{201}仍为锐钛矿相, 其晶型未发生变化, 表明TiO2{201}性质稳定.

参考文献
[1] Chen L, Chen Z H, Chen D, et al. Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling[J]. Journal of Environmental Sciences, 2017, 52: 276-283. DOI:10.1016/j.jes.2016.04.006
[2] Velegraki G, Miao J W, Drivas C, et al. Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr(Ⅵ)[J]. Applied Catalysis B:Environmental, 2018, 221: 635-644. DOI:10.1016/j.apcatb.2017.09.064
[3] Du Y C, Zhang S H, Wang J S, et al. Nb2O5 nanowires in-situ grown on carbon fiber:a high-efficiency material for the photocatalytic reduction of Cr(Ⅵ)[J]. Journal of Environmental Sciences, 2018, 66: 358-367. DOI:10.1016/j.jes.2017.04.019
[4] Zhao D L, Gao X, Wu C N, et al. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(Ⅵ)[J]. Applied Surface Science, 2016, 384: 1-9. DOI:10.1016/j.apsusc.2016.05.022
[5] Li Y, Cui W Q, Liu L, et al. Removal of Cr(Ⅵ) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction[J]. Applied Catalysis B:Environmental, 2016, 199: 412-423. DOI:10.1016/j.apcatb.2016.06.053
[6] Kumar A, Jena H M. Adsorption of Cr(Ⅵ) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 2032-2041. DOI:10.1016/j.jece.2017.03.035
[7] 陈心满, 徐明芳. UV/TiO2光催化还原Cr(Ⅵ)过程中吸附作用的影响及其消除[J]. 环境科学, 2006, 27(5): 913-917.
Chen X M, Xu M F. Effects of absorption on photo-reduction of Cr(Ⅵ) by UV/TiO2 process and its elimination[J]. Environmental Science, 2006, 27(5): 913-917. DOI:10.3321/j.issn:0250-3301.2006.05.017
[8] Wei M, Wan J M, Hu Z W, et al. Enhanced photocatalytic degradation activity over TiO2 nanotubes co-sensitized by reduced graphene oxide and copper(Ⅱ) meso-tetra(4-carboxyphenyl)porphyrin[J]. Applied Surface Science, 2016, 377: 149-158. DOI:10.1016/j.apsusc.2016.03.120
[9] Li Y N, Chen Z Y, Bao S J, et al. Ultrafine TiO2 encapsulated in nitrogen-doped porous carbon framework for photocatalytic degradation of ammonia gas[J]. Chemical Engineering Journal, 2018, 331: 383-388. DOI:10.1016/j.cej.2017.08.119
[10] Momeni M M, Nazari Z. Preparation of TiO2 and WO3-TiO2 nanotubes decorated with PbO nanoparticles by chemical bath deposition process:a stable and efficient photo catalyst[J]. Ceramics International, 2016, 42(7): 8691-8697. DOI:10.1016/j.ceramint.2016.02.103
[11] Sun Q, Hu X L, Zheng S L, et al. Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite[J]. Powder Technology, 2015, 274: 88-97. DOI:10.1016/j.powtec.2014.12.052
[12] Liu H, Liu S, Zhang Z L, et al. Hydrothermal etching fabrication of TiO2@graphene hollow structures:mutually independent exposed {001} and {101} facets nanocrystals and its synergistic photocaltalytic effects[J]. Scientific Reports, 2016, 6: 33839. DOI:10.1038/srep33839
[13] Lara M A, Sayagués M J, Navío J A, et al. A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure[J]. Journal of Materials Science, 2018, 53(1): 435-446.
[14] Lu D Z, Chai W Q, Yang M C, et al. Visible light induced photocatalytic removal of Cr(Ⅵ) over TiO2-based nanosheets loaded with surface-enriched CoOx nanoparticles and its synergism with phenol oxidation[J]. Applied Catalysis B:Environmental, 2016, 190: 44-65. DOI:10.1016/j.apcatb.2016.03.003
[15] Han J C, Chen G J, Qin L P, et al. Metal respiratory pathway-independent cr isotope fractionation during Cr(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Environmental Science & Technology Letters, 2017, 4(11): 500-504.
[16] Song J Y, Yan L, Duan J M, et al. TiO2 crystal facet-dependent antimony adsorption and photocatalytic oxidation[J]. Journal of Colloid and Interface Science, 2017, 496: 522-530. DOI:10.1016/j.jcis.2017.02.054
[17] Chen M, Ma J Z, Zhang B, et al. Facet-dependent performance of anatase TiO2 for photocatalytic oxidation of gaseous ammonia[J]. Applied Catalysis B:Environmental, 2018, 223: 209-215. DOI:10.1016/j.apcatb.2017.04.012
[18] Kebir M, Trari M, Maachi R, et al. Relevance of a hybrid process coupling adsorption and visible light photocatalysis involving a new hetero-system CuCo2O4/TiO2 for the removal of hexavalent chromium[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 548-559. DOI:10.1016/j.jece.2014.12.024
[19] Xue C, Zhang T X, Ding S J, et al. Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16091-16102.
[20] Wu Z B, Yuan X Z, Zeng G M, et al. Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (Ⅵ) reduction and rhodamine B oxydative degradation[J]. Applied Catalysis B:Environmental, 2018, 225: 8-21. DOI:10.1016/j.apcatb.2017.11.040
[21] Wang L, Zhang C B, Gao F, et al. Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(Ⅵ) removal under visible light[J]. Chemical Engineering Journal, 2017, 314: 622-630. DOI:10.1016/j.cej.2016.12.020
[22] Mohamed A, Osman T A, Toprak M S, et al. Visible light photocatalytic reduction of Cr(Ⅵ) by surface modified CNT/titanium dioxide composites nanofibers[J]. Journal of Molecular Catalysis A:Chemical, 2016, 424: 45-53. DOI:10.1016/j.molcata.2016.08.010
[23] Yan L, Du J J, Jing C Y. How TiO2 facets determine arsenic adsorption and photooxidation:spectroscopic and DFT studies[J]. Catalysis Science & Technology, 2016, 6(7): 2419-2426.
[24] Yan L, Tu H W, Chan T S, et al. Mechanistic study of simultaneous arsenic and fluoride removal using granular TiO2-La adsorbent[J]. Chemical Engineering Journal, 2017, 313: 983-992. DOI:10.1016/j.cej.2016.10.142
[25] Shi L, Xu C L, Sun X, et al. Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation[J]. Journal of Materials Science, 2018, 53(16): 11329-11342. DOI:10.1007/s10853-018-2442-x
[26] Chidambaram D, Halada G P, Clayton C R. Development of a technique to prevent radiation damage of chromate conversion coatings during X-ray photoelectron spectroscopic analysis[J]. Applied Surface Science, 2001, 181(3-4): 283-295. DOI:10.1016/S0169-4332(01)00433-0
[27] Cao J Y, Zhang Y J, Liu L Q, et al. A p-type Cr-doped TiO2 photo-electrode for photo-reduction[J]. Chemical Communications, 2013, 49(33): 3440-3442. DOI:10.1039/c3cc40394g