环境科学  2018, Vol. 39 Issue (12): 5480-5486   PDF    
大兴安岭南瓮河湿地类型对土壤中甲基汞分布的影响
周心劝1,2, 刘玉荣2, 李晶3, 周志峰1     
1. 西南大学资源环境学院, 重庆 400715;
2. 中国科学院生态环境研究中心, 北京 100085;
3. 中国林业科学研究院湿地研究所, 北京 100091
摘要: 甲基汞(methylmercury,MeHg)是所有汞(Hg)的化合物中毒性最强的有机物,其毒性远远大于无机Hg.MeHg可能通过食物链的传递进入人体,威胁人类健康.本研究以大兴安岭南瓮河国家自然保护区为研究对象,分析了中位沼泽、低位沼泽、岛状林、森林土4种湿地类型土壤样品MeHg含量分布差异以及土壤性质对MeHg含量的影响.结果表明:①总汞(THg)与MeHg含量变化趋势不一致,THg含量的高低顺序为:岛状林[(138.76±101.97)mg·kg-1]>森林土[(117.57±32.44)mg·kg-1]>低位沼泽[(71.8±1.42)mg·kg-1]>中位沼泽[(65.11±26.69)mg·kg-1],而MeHg含量高低顺序为:岛状林[(1.14±1.15)μg·kg-1]>中位沼泽[(0.87±1.06)μg·kg-1]>低位沼泽[(0.28±0.06)μg·kg-1]>森林土[(0.1±0.05)μg·kg-1];②岛状林和中位沼泽中MeHg的含量较高且随采样位点波动较大,低位沼泽和森林土中MeHg的含量较低,每个取样点之间变化较小;③沼泽湿地形成的时间越长,MeHg的含量越多,即中位沼泽[(0.87±1.06)μg·kg-1]>低位沼泽[(0.28±0.06)μg·kg-1];土壤pH与MeHg的含量呈显著正相关(P < 0.05);含水率(WC)、有机质(OM%)、总碳(C%)、总汞(THg)含量在中位沼泽地区与MeHg含量呈显著的线性关系(P < 0.05);土壤pH、铵态氮(NH4+-N)含量在岛状林地区与MeHg含量呈显著的线性关系(P < 0.05).本研究阐明了不同湿地生态系统MeHg的分布特点及其影响因素,为全面评价湿地生态系统中MeHg积累及其环境风险提供了数据支撑.
关键词: 南瓮河      湿地      甲基汞      总汞      土壤性质     
Effects of Wetland Types on Distribution of Soil Methylmercury Based on the Region of Nanweng River in the Greater Xing'an Mountains
ZHOU Xin-quan1,2 , LIU Yu-rong2 , LI Jing3 , ZHOU Zhi-feng1     
1. College of Resources and Environment, Southwest University, Chongqing 400715, China;
2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
3. Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
Abstract: Methylmercury (MeHg) is the most toxic organic matter of all mercury (Hg) compounds. Its toxicity is far higher than that of inorganic Hg. Methylmercury can enter the human body through food, threatening human health. Based on the Nanweng River National Nature Reserve in the Greater Xing'an Mountains, the differences in the distribution of MeHg in soil samples collected from four types of wetlands, including medium swamp, low swamp, island forest, and forest soil, and the effect of the soil properties on the MeHg content were investigated in this study. The results show that:① the trends of the total Hg and MeHg levels are inconsistent. The order of the mean total Hg content is island forest (138.76 mg·kg-1±101.97 mg·kg-1) > forest soil (117.57 mg·kg-1±32.44 mg·kg-1) > low swamp (71.8 mg·kg-1±1.42 mg·kg-1) > median swamp (65.11 mg·kg-1±26.69 mg·kg-1), while the mean MeHg content is in the order of island forest (1.14 μg·kg-1±1.15 μg·kg-1) > medium swamp (0.87 μg·kg-1±1.06 μg·kg-1) > low swamp (0.28 μg·kg-1±0.06 μg·kg-1) > forest soil (0.1 μg·kg-1±0.05 μg·kg-1); ② the contents of MeHg in the island forest and medium swamp were relatively high and fluctuated dramatically, whereas the contents of MeHg in the low swamp and forest soil were lower and showed little change between each sampling point; ③ the longer the marsh wetland formation was, the higher was the MeHg content, that is, median swamp (0.87 μg·kg-1±1.06 μg·kg-1) > low swamp (0.28 μg·kg-1±0.06 μg·kg-1); the soil pH was positively correlated with MeHg (P < 0.05); in the medium swamp area, the content of MeHg was positively related to the water content (WC), organic matter (OM%), carbon (C%), and total mercury (THg; P < 0.05); in the island forest areas, the MeHg content showed a linear relationship with the soil pH and NH4+-N (P < 0.05). This study reveals the distribution characteristics of MeHg and its influencing factors for different wetland ecosystems, providing data supporting the comprehensive evaluation of MeHg accumulation in wetland ecosystems.
Key words: Nanweng River      wetland      methylmercury      total mercury      soil properties     

汞(Hg)是唯一能够在自然条件下以液态形式存在的剧毒重金属污染物[1~4], 常温下蒸发的Hg蒸气可以伴随着大气循环进行远距离的传输[5], 在全球Hg的生物地球化学循环过程中起到了重要作用[6].大气中Hg0一方面继续随着大气环流进行长距离的传播, 另一方面通过被植物吸收或氧化后以干湿沉降的方式返回陆地地表, 使生态系统受到污染[6]. Hg主要以无机Hg的形式存在于自然环境中, 通过甲基化过程转化成MeHg[7]. MeHg具有生物富集和食物链放大的作用, 对特定人群构成威胁[8, 9].非生物因素(pH、有机质等)和生物因素是影响Hg甲基化过程的重要因素[10~16]. Hg发生甲基化的甲基供体是厌氧微生物产生的甲基钴胺素[17], 所以甲基化反应常发生在厌氧环境中, 好氧环境则不利于微生物的甲基化[18~20].这些厌氧微生物的分布特征以及数量直接决定着MeHg在湿地生态系统中的富集程度[21].尽管Hg甲基化反应可以在很多环境发生, 但是沉积物和土壤是其主要场所[22~24].前人对MeHg的研究主要集中在森林土壤[25, 26]、水稻土壤[27]、水体环境[28]以及沉积物[29], 对沼泽中MeHg积累的报道相对较少.因此, 本文以大兴安岭不同湿地类型(中位沼泽、低位沼泽、岛状林、森林土)为研究对象, 分析4种湿地类型土壤MeHg含量, 通过揭示湿地环境, 尤其是沼泽湿地, MeHg的分布特征及其影响因素, 以期为湿地中Hg污染防控提供重要数据支持.

1 材料与方法 1.1 研究区域

样品采集于南瓮河国家自然保护区内, 该区是大兴安岭地区湿地面积最大、资源最集中的地区.研究区域的地理位置为东经125°08′11″~125°16′38″, 北纬51°8′15″~51°10′17″, 海拔最高为460 m, 最低为420 m.湿地类型主要有森林湿地、草丛湿地、灌丛湿地、湿地岛状林、冰间湖湿地和湖泊湿地[30].湿地地形走势是西北高东南低, 南瓮河是该湿地水分的主要来源[31].

1.2 样品采集和处理

2016年8月, 在大兴安岭南瓮河湿地分别采集了低位沼泽(4份样品)、中位沼泽(9份样品)、岛状林(9份样品)和森林土(10份样品)这4个不同湿地的土壤样品.用样品袋密封之后低温运回实验室, 除去土壤样品中混有的植物枯枝落叶和石头等杂质, 自然风干.

1.3 土壤基本理化性质分析

土壤样品理化性质的测定参照《土壤农化分析》[32]中的方法.土壤pH采用pH计(Fe20-K)测定, 水:土=2.5:1;土壤含水率采用烘干法测定; 土壤有机质采用重铬酸钾-比色法测定; 铵态氮含量采用连续流动分析仪(AA3, 德国SEAL公司)测定, 用1 mol·L-1的KCl(国药, 优级纯)溶液浸提(液土比5:1);总碳和总氮采用元素分析仪(Vario TOC, 德国Elementar公司)测定.

1.4 土壤THg与MeHg测定

THg测定:采集的土样自然风干、研磨, 过100目筛.称取0.1 g土壤样品于镍舟之中, 每个样品3个重复, 放入测汞仪(Milestone DMA-80 Direct Mercury Analyzer)进行THg分析.

MeHg测定:称取0.5 g左右过100目的土壤样品于15 mL的离心管中, 在通风橱中加入2 mL的消解液(KOH-甲醇)、涡旋, 使土壤样品和消解液充分混匀; 将离心管倾斜放在摇床上, 70℃、230 r·min-1振荡4 h, 消解过程中取出涡旋一次; 消解结束后, 冷却至室温, 用超纯水定容至12 mL; 4 000 r·min-1离心20 min.取50 μL上清液与缓冲液、乙基化试剂混合之后用全自动甲基汞仪(Model Ⅲ, Brooks Rand Labs)测定, 检出限为0.001 ng·mL-1.

实验过程采用平行实验、标准物质和空白对照进行质量控制, THg的标准物质为GBW07405(GSS-5), 参考含量为(0.29±0.03) μg·g-1, 测定值为(0.30±0.12) μg·g-1, MeHg的标准物质为ERM-CC580, 参考含量为(75±4) μg·kg-1, 测定值为(73±3) μg·kg-1. THg和MeHg的标准物质的加标回收率分别为100.5%~108.43%和94.5%~101.9%, 实验中空白值为样品测定值的1%~3%, 可忽略不计.

1.5 数据处理

采用Excel 2010对数据进行汇总; SPSS 19.0软件对数据进行相关分析、单因素方差分析; Origin 9.0软件绘图.

2 结果与分析 2.1 各湿地类型土壤基本性质

表 1可以看出, 森林土的含水率低于另外3种类型, 但其有机质含量高于岛状林和中位沼泽.低位沼泽土壤的含水率、总氮、铵态氮和总碳均高于中位沼泽. 4种湿地土壤均为酸性, 其中中位沼泽地区的pH值变化范围明显高于其他3种地形, 且其有机质含量最低.

表 1 不同湿地类型土壤理化指标的变化范围1) Table 1 Variation of the physicochemical soil index of different wetland types

2.2 各湿地类型土壤中THg和MeHg含量

表 2为4种湿地类型中THg、MeHg含量和甲基化率(MeHg/THg)的平均值.可见, 各类型土壤中THg的平均含量均高于黑龙江省土壤环境背景值37 ng·g-1 [33].森林土和岛状林土壤中THg含量显著高于中位和低位沼泽(P<0.05)[图 1(a)]; 森林土中MeHg含量显著低于岛状林、低位和中位沼泽(P<0.05)[图 1(b)]; 森林土的MeHg/THg与岛状林、低位和中位沼泽存在显著性差异(P<0.05)[图 1(c)]. MeHg与THg含量在4种湿地类型土壤中变化趋势不一致.

表 2 4种湿地类型土壤中THg、MeHg含量和MeHg/THg值1) Table 2 Contents of THg, MeHg, and MeHg/THg in the soil of four wetland types

图中误差线为标准偏差, 其上方不同小写字母代表不同湿地类型之间的差异性显著(P<0.05) 图 1 不同湿地类型下THg、MeHg含量和甲基化率 Fig. 1 Total Hg content, MeHg content and methylation rate of different wetland types

各类型湿地土壤中MeHg含量的变异性特征如图 2所示.总体看来, 森林土中MeHg的含量低于岛状林、低位和中位沼泽.在森林土和低位沼泽区, 不同取样点之间MeHg含量的波动较小, 而岛状林和中位沼泽地区, 不同取样点之间MeHg含量的波动较大.其中, 岛状林最高浓度为3.31 μg·kg-1, 是最低浓度的41倍; 中位沼泽最高浓度为2.72 μg·kg-1, 是最低浓度的17倍.

图 2 不同湿地类型中MeHg含量变异性特征 Fig. 2 Variation of MeHg of different wetland types

2.3 土壤理化因子对MeHg含量的影响

表 3为各类型湿地土壤样品理化指标与MeHg含量、MeHg/THg的Spearman相关性分析. MeHg含量与土壤pH呈显著正相关(P<0.05); MeHg/THg与土壤pH呈显著负相关(P<0.01), 与土壤有机质和THg含量呈显著正相关(P<0.05).不同湿地类型影响MeHg形成的土壤理化因子不同(图 3), 在中位沼泽地区, MeHg含量与土壤含水率(P<0.01)、有机质(P<0.05)、总碳(P<0.05)、THg含量(P<0.01)具有线性关系; 在岛状林地区, MeHg含量则与土壤pH及NH4+-N含量具有线性关系.

表 3 湿地土壤中MeHg含量、甲基化率与理化指标的相关分析1) Table 3 Correlation analysis of the MeHg content, methylation rate, and physicochemical indexes of wetland soils

图 3 不同湿地土壤MeHg含量与理化指标相关分析 Fig. 3 Relationship between the content of MeHg and soil properties of different wetland soils

3 讨论 3.1 不同湿地类型中Hg的甲基化率

有研究报道, 美国Louisiana湖泊2个不同水体沉积物中甲基化率分别为0.27%和0.5%[34], 加拿大Kejimkujik公园湿地的甲基化率达到了3.2%[35], 美国North Dakota的Lostwood野生动物保护区湖泊湿地沉积物中甲基化率为2.2%[36], 大沽河排污河道水体沉积物中甲基化率为2.4%[37].而在大兴安岭南瓮河区域4种湿地类型中, 低位沼泽的甲基化率为0.38%、中位沼泽的甲基化率为1.08%、岛状林的甲基化率为1.12%、森林土的甲基化率为0.09%.总体来看, 岛状林、中位沼泽、低位沼泽和森林土的甲基化率均低于国外湿地中的甲基化率.本课题组对若尔盖湿地土样中的MeHg也进行了测定, 发现在若尔盖湿地地区甲基化率为0.174%~3.253%, 贵州铜仁和万山水稻土的甲基化率分别为0.06%~0.17%和0.02%~0.23%(未发表数据).可见, 南瓮河区域4种湿地类型的甲基化率高于贵州铜仁、万山水稻土的甲基化率, 和若尔盖湿地的甲基化率相近.水稻土中甲基化率低于沼泽和湿地, 可能是因为水稻土存在干湿交替的现象, 淹水期间土壤中MeHg含量增加, 当稻田处于干旱时, 甲基化产物主要是二甲基汞, 导致MeHg的积累降低[38]; 湿地土壤长年浸泡在水中, 形成了稳定的厌氧环境, 使Hg甲基化反应维持在一个相对平稳的状态, 因此, MeHg含量不断积累.湿地是森林中MeHg的重要来源[39], 通过对湿地中MeHg的研究, 可以采取一些措施减少MeHg的暴露, 减少对人类的危害.

3.2 影响湿地土壤MeHg含量的主要因素

本研究探讨了影响大兴安岭南瓮河4种湿地类型中MeHg含量的分布特点及其影响因素.森林土有机质含量高于另外3种地形, 但其MeHg的含量最低, 可能是由于从森林演变成沼泽的过程中, 植物凋落物中有机质的归还量逐渐减少[40], 导致土壤中有机质的含量降低; 有机质对Hg的甲基化具有双重作用, 一方面可以为微生物生存提供充足的营养物质, 另一方面能与Hg紧密结合, 降低无机Hg对甲基化微生物的生物有效性[19, 41, 42], 进而影响MeHg的含量.森林土和岛状林湿地中的碳含量明显高于低位沼泽和中位沼泽, 是因为森林生态系统是陆地生态系统最大的碳库[43].岛状林湿地土壤表面和孔隙中的水含有大量的可溶性碳, 为甲基化微生物进行代谢活动提供了充足的营养物质[40].岛状林周围沼泽中积累的MeHg随着地下水和地表水的流动转移到土壤中, 从而导致岛状林土壤中MeHg含量较高. pH与MeHg含量呈显著正相关(P<0.05), 有研究发现, pH会影响Hg在土壤中的溶解度, 也可以间接影响Hg在土壤中的存在形态[40], 酸性土壤会增加Hg的甲基化程度, 但当pH<4时, 易受到腐殖酸的影响, Hg的活性降低, 从而降低Hg的甲基化程度[44].本研究4种类型土壤pH的变化范围是4.78~6.77, 属于酸性土壤, 在一定程度上促进MeHg的形成.除了非生物因素之外, 微生物作用引起的Hg甲基化也逐渐受到人们的广泛关注[45], 厌氧沉积物中主要的甲基化微生物是硫酸盐还原菌, 随后又相继发现产甲烷菌和铁还原菌也具有甲基化的能力[11, 12, 46, 47].在大兴安岭4种湿地类型中, 沼泽地区的MeHg含量明显高于未沼泽(森林土)地区, 说明沼泽地区形成的厌氧环境有利于甲基化微生物的代谢活动, 长期的沼泽环境导致其较高的MeHg累积.

4 结论

(1) 大兴安岭湿地中, 森林土[(117.57±32.44) mg·kg-1]、岛状林[(138.76±101.97) mg·kg-1]、低位沼泽[(71.8±1.42) mg·kg-1]、中位沼泽[(65.11±26.69) mg·kg-1]中THg的含量均高于黑龙江省土壤环境背景值, 表明该区域湿地土壤受到Hg的污染.

(2) 大兴安岭4种湿地类型中, 土壤pH是影响MeHg含量的主要因素; 森林土中MeHg的含量低于沼泽土壤; 中位沼泽地区, 土壤含水率、总碳、有机质、THg含量与MeHg含量具有线性关系, 说明这些因子也能在一定程度上影响MeHg的积累.

(3) 中位沼泽中MeHg的含量[(0.87±1.06) μg·kg-1]高于低位沼泽[(0.28±0.06) μg·kg-1], 表明沼泽形成的时间越长, 其环境越有利于Hg的甲基化.

参考文献
[1] 冯新斌, 尹润生, 俞奔, 等. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135.
Feng X B, Yin R S, Yu B, et al. A review of Hg isotope geochemistry[J]. Earth Science Frontiers, 2015, 22(5): 124-135.
[2] Mahaffey K, Rice G. Mercury study report to Congress. Volume 4. An assessment of exposure to mercury in the United States[R]. Environmental Protection Agency, Research Triangle Park, NC (United States). Office of Air Quality Planning and Standards, 1997. https://www.epa.gov/mercury/mercury-study-report-congress
[3] 阴永光, 李雁宾, 蔡勇, 等. 汞的环境光化学[J]. 环境化学, 2011, 30(1): 84-91.
Yin Y G, Li Y B, Cai Y, et al. Environmental photo-chemistry of mercury[J]. Environmental Chemistry, 2011, 30(1): 84-91.
[4] 李玉锋, 赵甲亭, 李云云, 等. 同步辐射技术研究汞的环境健康效应与生态毒理[J]. 中国科学:化学, 2015, 45(6): 597-613.
Li Y F, Zhao J T, Li Y Y, et al. Studies on the environmental health effects and ecotoxicology of mercury by synchrotron radiation-based techniques[J]. Scientia Sinica Chimica, 2015, 45(6): 597-613.
[5] Johansson K, Bergbäck B, Tyler G. Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment[J]. Water, Air and Soil Pollution:Focus, 2001, 1(3-4): 279-297.
[6] Lindqvist O, Johansson K, Bringmark L, et al. Mercury in the Swedish environment-recent research on causes, consequences and corrective methods[J]. Water, Air, and Soil Pollution, 1991, 55(1-2): ⅹⅰ-261.
[7] Lawson N M, Mason R P, Laporte J M. The fate and transport of mercury, methylmercury, and other trace metals in Chesapeake Bay tributaries[J]. Water Research, 2001, 35(2): 501-515. DOI:10.1016/S0043-1354(00)00267-0
[8] Harada M. Minamata disease:methylmercury poisoning in Japan caused by environmental pollution[J]. Critical Reviews in Toxicology, 1995, 25(1): 1-24. DOI:10.3109/10408449509089885
[9] Clarkson T W, Magos L, Myers G J. The toxicology of mercury-current exposures and clinical manifestations[J]. The New England Journal of Medicine, 2003, 349(18): 1731-1737. DOI:10.1056/NEJMra022471
[10] Celo V, Lean D R S, Scott S L. Abiotic methylation of mercury in the aquatic environment[J]. Science of the Total Environment, 2006, 368(1): 126-137. DOI:10.1016/j.scitotenv.2005.09.043
[11] Compeau G C, Bartha R. Sulfate-reducing bacteria:principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2): 498-502.
[12] Kerin E J, Gilmour C C, Roden E, et al. Mercury methylation by dissimilatory iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12): 7919-7921. DOI:10.1128/AEM.01602-06
[13] Pan-Hou H S, Hosono M, Imura N. Plasmid-controlled mercury biotransformation by clostridium cochlearium T-2[J]. Applied and Environmental Microbiology, 1980, 40(6): 1007-1011.
[14] Vonk J W, Sijpesteijn A K. Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi[J]. Antonie van Leeuwenhoek, 1973, 39(1): 505-513. DOI:10.1007/BF02578894
[15] Weber J H. Review of possible paths for abiotic methylation of mercury(Ⅱ) in the aquatic environment[J]. Chemosphere, 1993, 26(11): 2063-2077. DOI:10.1016/0045-6535(93)90032-Z
[16] Wood J M. Biological cycles for toxic elements in the environment[J]. Science, 1974, 183(4129): 1049-1052. DOI:10.1126/science.183.4129.1049
[17] Raposo J C, Ozamiz G, Etxebarria N, et al. Mercury biomethylation assessment in the estuary of Bilbao (North of Spain)[J]. Environmental Pollution, 2008, 156(2): 482-488. DOI:10.1016/j.envpol.2008.01.017
[18] Monperrus M, Tessier E, Amouroux D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea[J]. Marine Chemistry, 2007, 107(1): 49-63. DOI:10.1016/j.marchem.2007.01.018
[19] Ullrich S M, Tanton T W, Abdrashitova S A. Mercury in the aquatic environment:a review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001, 31(3): 241-293. DOI:10.1080/20016491089226
[20] 刘金铃, 丁振华. 汞的甲基化研究进展[J]. 地球与环境, 2007, 35(3): 215-222.
Liu J L, Ding Z H. Progress in research on mercury methylation in environment[J]. Earth and Environment, 2007, 35(3): 215-222.
[21] 梁小兵. 汞甲基化细菌研究进展[J]. 生态学杂志, 2013, 32(3): 755-761.
Liang X B. Mercury methylation bacteria and methyl mercury producing:a review[J]. Chinese Journal of Ecology, 2013, 32(3): 755-761.
[22] Gilmour C C, Henry E A, Mitchell R. Sulfate stimulation of mercury methylation in freshwater sediments[J]. Environmental Science & Technology, 1992, 26(11): 2281-2287.
[23] Guimarães J R D, Meili M, Hylander L D, et al. Mercury net methylation in five tropical flood plain regions of Brazil:high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils[J]. Science of the Total Environment, 2000, 261(1-3): 99-107. DOI:10.1016/S0048-9697(00)00628-8
[24] 丁振华, 王文华, 庄敏. 汞的界面地球化学研究进展[J]. 海洋科学, 2005, 29(10): 54-57, 64.
Ding Z H, Wang W H, Zhuang M. Progress of interfacial geochemistry of mercury[J]. Marine Science, 2005, 29(10): 54-57, 64. DOI:10.3969/j.issn.1000-3096.2005.10.013
[25] Eklöf K, Bishop K, Bertilsson S, et al. Formation of mercury methylation hotspots as a consequence of forestry operations[J]. Science of the Total Environment, 2018, 613-614: 1069-1078. DOI:10.1016/j.scitotenv.2017.09.151
[26] Braaten H F V, de Wit H A. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils[J]. Environmental Pollution, 2016, 218: 140-149. DOI:10.1016/j.envpol.2016.08.029
[27] 王欣悦, 唐振亚, 张成, 等. 长期不同耕作方式下紫色水稻土和上覆水中汞及甲基汞的分布特征[J]. 环境科学, 2016, 37(3): 910-916.
Wang X Y, Tang Z Y, Zhang C, et al. Effects of long-term different tillage methods on mercury and methylmercury contents in purple paddy soil and overlying water[J]. Environmental Science, 2016, 37(3): 910-916.
[28] Eckley C S, Hintelmann H. Determination of mercury methylation potentials in the water column of lakes across Canada[J]. Science of the Total Environment, 2006, 368(1): 111-125. DOI:10.1016/j.scitotenv.2005.09.042
[29] Liem-Nguyen V, Jonsson S, Skyllberg U, et al. Effects of nutrient loading and mercury chemical speciation on the formation and degradation of methylmercury in estuarine sediment[J]. Environmental Science & Technology, 2016, 50(13): 6983-6990.
[30] 晏鸣霄, 夏振清, 王攀婷, 等. 南瓮河湿地保护区土壤有机碳、含水率和pH的变化分布[J]. 森林工程, 2015, 31(4): 22-25.
Yan M X, Xia Z Q, Wang P T, et al. Distribution of the variations of the soil organic carbon, moisture content, and pH in Nanweng river wetland reserve[J]. Forest Engineering, 2015, 31(4): 22-25. DOI:10.3969/j.issn.1001-005X.2015.04.006
[31] 刘玉臣, 崔克城, 陈佰利. 大兴安岭南瓮河森林湿地现状及保护措施[J]. 林业科技, 2002, 27(3): 21-22.
Liu Y C, Cui K C, Chen B L. Present condition and protection measures of forest wetland of Nanweng River, Daxing'anling[J]. Forestry Science & Technology, 2002, 27(3): 21-22.
[32] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000.
[33] 国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 354-356.
[34] DeLaune R D, Jugsujinda A, Devai I, et al. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes[J]. Journal of Environmental Science and Health, Part A, 2004, 39(8): 1925-1933. DOI:10.1081/ESE-120039365
[35] O'Driscoll N J, Beauchamp S, Siciliano S D, et al. Continuous analysis of dissolved gaseous mercury (DGM) and mercury flux in two freshwater lakes in Kejimkujik Park, Nova Scotia:evaluating mercury flux models with quantitative data[J]. Environmental Science & Technology, 2003, 37(10): 2226-2235.
[36] Sando S K, Krabbenhoft D, Johnson K M, et al. Mercury and methylmercury in water and bottom sediments of wetlands at Lostwood National Wildlife Refuge, North Dakota, 2003-04[R]. Reston, VA: US Geological Survey, 2007. http://agris.fao.org/agris-search/search.do?recordID=US201300126604
[37] Shi J B, Liang L N, Jiang G B, et al. The speciation and bioavailability of mercury in sediments of Haihe River, China[J]. Environment International, 2005, 31(3): 357-365. DOI:10.1016/j.envint.2004.08.008
[38] 张成, 宋丽, 王定勇, 等. 三峡库区消落带甲基汞变化特征的模拟[J]. 中国环境科学, 2014, 34(2): 499-504.
Zhang C, Song L, Wang D Y, et al. Simulation on the variation characteristics of methylmercury of the water-level-fluctuating zone in the Three Gorges Area[J]. China Environmental Science, 2014, 34(2): 499-504.
[39] Louis V L S, Rudd J W M, Kelly C A, et al. Importance of wetlands as sources of methyl mercury to boreal forest ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(5): 1065-1076. DOI:10.1139/f94-106
[40] 郑冬梅, 杨继松, 李航, 等. 辽河口不同类型湿地土壤汞、甲基汞含量及其影响因素[J]. 生态学杂志, 2017, 36(4): 1067-1071.
Zheng D M, Yang J S, Li H, et al. Mercury and methylmercury concentrations and their influencing factors in soils of different types of wetlands of Liaohe Estuary[J]. Chinese Journal of Ecology, 2017, 36(4): 1067-1071.
[41] Da Cunha-Santino M B, Júnior I B. Humic substance mineralization in a tropical oxbow lake (São Paulo, Brazil)[J]. Hydrobiologia, 2002, 468(1-3): 33-43.
[42] 彭倩, 朱慧可, 钟寰, 等. 腐殖酸对汞污染稻田中甲基汞行为的影响[J]. 生态与农村环境学报, 2015, 31(5): 748-752.
Peng Q, Zhu H K, Zhong H, et al. Effects of humic acid on behaviors of methylmercury in Hg-contaminated paddy soil[J]. Journal of Ecology and Rural Environment, 2015, 31(5): 748-752.
[43] 徐耀粘, 江明喜. 森林碳库特征及驱动因子分析研究进展[J]. 生态学报, 2015, 35(3): 926-933.
Xu Y Z, Jiang M X. Forest carbon pool characteristics and advances in the researches of carbon storage and related factors[J]. Acta Ecologica Sinica, 2015, 35(3): 926-933.
[44] Liu X, Ma A Z, Zhuang G Q, et al. Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China[J]. MicrobiologyOpen, 2018. DOI:10.1002/mbo3.577
[45] 胡海燕, 冯新斌, 曾永平, 等. 汞的微生物甲基化研究进展[J]. 生态学杂志, 2011, 30(5): 874-882.
Hu H Y, Feng X B, Zeng Y P, et al. Progress in research on microbial methylation of mercury[J]. Chinese Journal of Ecology, 2011, 30(5): 874-882.
[46] Fleming E J, Mack E E, Green P G, et al. Mercury methylation from unexpected sources:molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1): 457-464. DOI:10.1128/AEM.72.1.457-464.2006
[47] Jensen S, Jernelöv A. Biological methylation of mercury in aquatic organisms[J]. Nature, 1969, 223(5207): 753-754. DOI:10.1038/223753a0