环境科学  2018, Vol. 39 Issue (11): 5007-5014   PDF    
城市典型不透水下垫面径流中邻苯二甲酸酯的污染特征
刘雨童, 李田, 彭航宇     
同济大学污染控制与资源化研究国家重点实验室, 上海 200092
摘要: 在我国属于优先控制污染物的邻苯二甲酸酯(PAEs)应用依然广泛,径流中的PAEs对受纳水体的污染值得高度关注.对上海典型的城市不透水下垫面路面及屋面降雨径流中6种优先控制PAEs的质量浓度进行监测,评价城市不透水下垫面径流中PAEs的污染特征.结果表明,上海市路面及屋面径流中∑6PAEs的EMC平均值分别为170.64 μg·L-1和40.92 μg·L-1,与国外城市相比污染严重,DEHP为主要PAEs污染物.对不同类型水样中PAEs含量差异的显著性分析发现,不同下垫面径流中低分子量(LMW)PAEs浓度不存在显著性差异,路面径流中高分子量(HMW)PAEs浓度显著高于屋面径流及雨水(P < 0.01),道路交通是造成下垫面径流PAEs污染的重要因素.路面径流中PAEs、TSS及COD浓度随降雨历时的变化特征表明,PAEs的变化趋势与TSS及COD相同,初期径流浓度较高,存在初期冲刷效应.不透水下垫面径流中PAEs浓度及其影响因素的相关分析表明,屋面径流中∑6PAEs浓度与降雨强度呈负相关,与TSS呈正相关.路面径流中∑6PAEs浓度与降雨量、降雨强度呈负相关,与前期晴天数、TSS、COD呈正相关.下垫面径流中∑6PAEs浓度与表面累积的颗粒物含量有关.DEHP、DBP为我国《地表水环境质量标准》控制污染物,路面及屋面径流中DEHP的浓度超过8 μg·L-1的标准值分别达到32、7倍,路面径流中DBP浓度在多数降雨事件中超过标准值3 μg·L-1,屋面径流中DBP浓度在多数降雨事件中低于标准值,下垫面径流直接排放对受纳水体,特别是饮用水水源地存在威胁.
关键词: 路面径流      屋面径流      邻苯二甲酸酯(PAEs)      污染特征      面源污染     
Characteristics of Phthalic Acid Esters Pollution in Urban Surface Runoff in Shanghai, China
LIU Yu-tong , LI Tian , PENG Hang-yu     
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
Abstract: Phthalic acid esters (PAEs) are still widely applied in China, and their pollution characteristics in urban surface runoff are important to receiving water protection. To evaluate the pollution characteristics of PAEs in urban runoff, six priority PAEs in road and roof runoff were monitored in nine storm events from June to September 2017 in Shanghai, China, and related rainwater samples were collected simultaneously. The average ∑6PAEs in urban road and roof runoff were 170.64 μg·L-1 and 40.92 μg·L-1, respectively, much higher than the values reported in Europe and Australia. Di-2-ethylhexyl phthalate (DEHP) was the dominating pollutant in both road and roof runoff. Significance analyses indicated there was no significant difference for low molecular weight(LMW)PAEs concentrations between road and roof runoff, whereas high molecular weight (HMW) PAEs concentrations in road runoff were significantly higher than those in roof runoff and rainwater (P < 0.01), which implied that traffic was an important factor contributing to PAEs pollution in urban runoff. The pollutograph of PAEs, total suspended solids (TSS), and chemical oxygen demand (COD) concentrations vs rainfall duration for road runoff showed the same trend, and the first flush effect of PAEs was generally apparent. The influencing factors of PAEs in urban runoff were investigated. EMCs of PAEs in roof runoff were negatively correlated with rainfall intensity and positively correlated with TSS. EMCs of PAEs in road runoff were negatively correlated with rainfall volume and intensity and positively correlated with antecedent dry period, TSS, and COD. PAEs in surface runoff were significantly correlated with particulate matter. According to the criteria of the National Standard of Surface Water Quality of China, DEHP and DBP have limiting values of 8 μg·L-1 and 3 μg·L-1, respectively. The ratios of DEHP concentrations in road and roof runoff to the limiting values are 32 and 7, respectively. DBP concentrations were higher than the limiting value in most rainfall events for road runoff but lower than those for roof runoff. Without reasonable management measures, urban runoff could contaminate receiving water, especially drinking water sources.
Key words: road runoff      roof runoff      phthalic acid esters(PAEs)      pollution characteristics      non-point source pollution     

邻苯二甲酸酯(phthalic acid esters, PAEs)是一类普遍使用的化学工业产品, 主要作为聚氯乙烯等生产中改性添加剂使用, 增大产品的可塑性[1~3], 同时还用作农药载体、驱虫剂、润滑剂、化妆品等生产原料[4].有研究表明, PAEs具有抗雄性激素作用, 能够影响动物内分泌系统[5, 6]. 2009年5月USEPA将DEHP列入饮用水标准[7], 随后我国、欧盟等地区也将DEHP、DBP列入地表水环境质量标准.随着城市区域不透水下垫面的增加, 降雨径流产生的面源污染日益严重.道路和屋顶是不透水下垫面的主要组成部分, 路面和屋面径流是城市面源污染的重要来源.有研究表明下垫面径流中含有PAEs污染物[8, 9], 是地表水中PAEs的重要来源之一[10~12].澳大利亚不同道路径流中PAEs的测定浓度范围在9.47~58.21 μg ·L-1之间[13], 瑞典不同区域下垫面径流中PAEs的测定浓度范围在4.67~100 μg ·L-1之间[8], 路面径流中的PAEs可能污染受纳水体, 给水生生物及人体带来危害[14~16].国内研究人员对广州、天津、西安等城市道路灰尘中PAEs的调查表明, 道路灰尘中存在多种PAEs, DEHP为主要的污染物, 占总PAEs的质量分数为50%以上[17~19].

目前, 国内对环境中PAEs污染的研究主要集中于城市道路灰尘、河流水质和土壤累积方面[20~22], 对不同下垫面径流中PAEs的污染特征的研究鲜见报道, 对相关问题开展调查分析, 对于城市水环境保护具有重要意义.本文选取上海典型不透水下垫面内环高架道路及沥青平屋顶为考察对象, 采集径流样品进行监测, 研究实际降雨条件下城市下垫面径流中PAEs的污染特征, 以期为城市面源污染中PAEs的评估及控制提供依据.

1 材料与方法 1.1 采样点

实验共有3个采样点, 分别为内环高架道路(A1)、校园(A2, A3)采样点, 采样点位置如图 1所示.样点A1采集路面径流, A2采集屋面径流, A3采集雨水.

图 1 下垫面径流及雨水采样点位置示意 Fig. 1 Surface runoff and rainwater sampling sites

样点A1位于内环高架道路密云路段转弯处, 径流向弯道内侧汇集排放, 路面径流由落水管排入地面雨水口; 样点A2位于同济大学工程中心楼顶, 距离高架道路采样点约100 m, 屋面径流由外置落水管排出; 样点A3位于A2相邻屋顶, 放置多个不锈钢水盆, 直接收集自然降雨.采样点概况如表 1所示.

表 1 径流采样点概述 Table 1 Overview of the sampling sites

1.2 样品采集

使用棕色玻璃瓶采集水样, 所有取样容器在采样之前均用蒸馏水冲洗并烘干.路面与屋面径流的采集均在相应汇水面的水落管出口.样品采用人工时间间隔法采集, 在降雨径流产生后, 根据降雨特性, 每隔3~30 min取一次样, 并记录每个样品采集时的时间.为保证样品的代表性, 每场降雨事件样品采集数量不少于10个.降雨结束后, 按照降雨过程中每个样品采集时刻的降雨量与该场降雨的总降雨量比值, 配制以流量为权重的混合样品1 L, 作为该场降雨的污染物事件平均浓度(EMC)样品.根据降雨特性, 监测部分降雨事件的道路径流过程样品, 研究径流中污染物浓度随降雨过程的变化情况.

收集同期雨水样品作为湿沉降对照, 并在屋顶设置翻斗式自记雨量计(SL3-1)记录降雨量变化过程.降雨结束后, 取不锈钢水盆中的雨水1 L作为雨水样品.待测水样立即送回实验室, 在4℃冰箱中保存并在24 h内完成萃取处理.

1.3 测定方法

参考《水质邻苯二甲酸二甲(二丁、二辛)酯的测定液相色谱法》(HJT 72-2001)中规定的方法对样品进行预处理, 运用高效液相色谱仪(Shimadzu LC-20A, 日本)对水样中PAEs含量进行分析测定.其他水质检测指标包括TSS、COD, 采用国家标准检测方法:TSS为重量法, COD为比色法(HACHDRP2010).

1.4 质量控制

本实验分析过程按方法空白、样品空白、空白加标、样品加标及平行样进行质量控制.在萃取前加入6种PAEs标准溶液(美国o2si公司, 纯度>98%)进行加标回收率测定, 样品加标回收率为68.5%~101.7%;空白水样加标回收率为63.3%~107.9%, 空白实验未检出目标污染物, 满足环境样品中PAEs的分析要求.样品3次平行样测定的相对标准偏差均小于10%, 重现性满足质量控制标准.

1.5 监测降雨事件

2017年6~10月, 采集到完整的下垫面径流及雨水样品的降雨事件共有9场, 其中小雨(<10.0 mm)1场, 中雨(10.0~24.9 mm)6场, 大雨(25.0~49.9)2场, 监测降雨事件的降雨特性见表 2.降雨径流过程样分析选取2017年9月20日降雨事件, 此次降雨量较大, 降雨呈中间大、两边小的形状, 比较符合上海市降雨特征.

表 2 2017年监测降雨事件的降雨特征 Table 2 Characteristics of monitored rainfall evens in 2017

1.6 数据分析

采用IBM SPSS 20进行正态检验, 结果表明所有数据均符合正态分布.由于数据方差不齐, 故使用Games-Howell法对不同水样间水质参数差异的显著性进行分析.数据间相关性用Pearson相关系数表示.

2 结果与讨论 2.1 下垫面径流及雨水中PAEs浓度

统计9场监测降雨事件的不同下垫面径流及雨水中各种PAEs的EMC浓度的最小值、最大值及平均值得表 3.在监测期间, 所有场次降雨事件水样中除了BBP外, 其他5种PAEs均有检测出.不同下垫面径流中∑6PAEs的EMC质量浓度变化范围分别为:路面径流(85.00~244.37 μg ·L-1)、屋面径流(21.50~78.71 μg ·L-1), 就几何均值来看∑6PAEs的EMC质量浓度大小依次为:路面径流(170.64 μg ·L-1)>屋面径流(41.28 μg ·L-1). DEHP为主要PAEs污染物, 分别占路面、屋面径流中∑6PAEs的74.39%、96.40%.雨水中同样检测出PAEs, ∑6PAEs的EMC质量浓度范围在8.54~36.73 μg ·L-1之间, 均值为18.69 μg ·L-1.路面、屋面径流中∑6PAEs浓度均值分别是雨水的9、2倍, 雨水经过城市下垫面产生较为严重的PAEs径流污染.

表 3 下垫面径流及雨水中PAEs的EMC质量浓度1)/μg ·L-1 Table 3 EMC of PAEs in urban runoff and rainwater samples/μg ·L-1

上海城区不透水下垫面径流中PAEs浓度与文献报道的国外城市下垫面径流中PAEs浓度的对比见表 4.澳大利亚不同道路径流中∑PAEs的测定浓度范围在9.47~58.21 μg ·L-1之间[13], 其中∑6PAEs浓度范围为0.03~9.94 μg ·L-1, 瑞典不同区域下垫面径流中∑PAEs的测定浓度范围在4.67~100 μg ·L-1之间[8], 其中∑6PAEs浓度范围为1.85~8.37 μg ·L-1.我国环境中存在的PAEs主要为6种优先控制污染物, Zhang等[23]和Li等[24]分别对我国河流流域中16种PAEs进行监测, 其中6种优先控制PAEs普遍存在, 总量可达∑16PAEs的98%.本实验不同下垫面径流中∑6PAEs浓度显著高于国外报道结果, 这主要是因为在欧洲等发达国家6种优先控制PAEs的使用受到限制, 已被更高分子量、低生物毒性的PAEs所代替.

表 4 不同地区下垫面径流PAEs及TSS浓度平均值比较1)/μg ·L-1 Table 4 Comparison of PAEs and TSS average concentrations in urban surface runoff literature date/μg ·L-1

2.2 下垫面径流及雨水中PAEs的组分差异

图 2给出下垫面径流及雨水中PAEs各组分的含量及其对∑6PAEs的贡献率, 可以看出不同水样中PAEs的组成存在差别. DEHP与DnOP为高分子量(HMW)PAEs, DMP、DEP为低分子量(LMW)PAEs, DBP介于两者之间.由图 2(a)可知, 不同水样中LMW PAEs浓度相差不大, 浓度差别主要集中在HMW PAEs上, HMW PAEs浓度的均值大小依次为:路面径流(155.54 μg ·L-1)>屋面径流(42.46 μg ·L-1)>雨水(13.32 μg ·L-1).由图 2(b)可知, 不同水样中PAEs各组分的贡献率存在差异, LMW PAEs占∑6PAEs的质量分数大小依次为:雨水(23.63%)>屋面径流(15.76%)>路面径流(5.25%), HMW PAEs占∑6PAEs的质量分数大小依次为:路面径流(91.15%)>屋面径流(81.13%)>雨水(71.28%).

图 2 下垫面径流及雨水中PAEs含量及组成比例(质量分数) Fig. 2 Concentrations and compositions of PAEs in surface runoffs and rainwater

图 3给出路面、屋面径流及雨水中不同类型PAEs浓度的显著性分析结果, 路面径流中∑6PAEs浓度显著高于屋面径流及雨水(P < 0.01), 屋面径流中∑6PAEs浓度显著高于雨水(P < 0.05), 路面径流PAEs污染较屋面径流严重.不同水样PAEs各组分含量具有显著性差别, 表明可能的来源不同.

不同水样间大写字母不同表示表示组间差异极显著(P<0.01), 小写字母不同表示组间差异显著(P<0.05), 字母相同表示不存在显著性差异 图 3 不同水样中PAEs浓度差异的显著性分析 Fig. 3 Significant analysis of PAEs concentration in different water samples

LMW PAEs浓度在路面、屋面径流之间不存在差异, DBP及HMW PAEs在路面径流中的浓度显著高于屋面径流(P < 0.01).在瑞典, 不同下垫面径流中LMW PAEs浓度变化不大, 而在交通密度大的路面径流中DBP及HMW PAEs浓度显著高于其他类型下垫面, 这与本文研究结果有相近之处[25, 26]. HMW PAEs主要作为增塑剂被用于汽车轮胎、表面油漆、道路及屋顶沥青材料中.有研究表明, 汽车轮胎磨损、轮胎从停车场携带的沉积物, 汽车塑料部件、表面的油漆及汽车燃烧, 道路材料等都是道路径流中PAEs的来源[27~30].道路交通是造成下垫面径流PAEs污染的重要因素.

2.3 下垫面径流中PAEs浓度的影响因素分析

为了评价径流中PAEs浓度与主要影响因子之间的关系, 对路面及屋面径流中∑6PAEs浓度与降雨特征、其他径流水质参数之间的相关性进行分析(表 5).结果表明, 路面径流中∑6PAEs浓度与降雨量、降雨强度呈负相关, 与前期晴天数、TSS、COD呈正相关.屋面径流中∑6PAEs浓度与降雨强度呈负相关, 与TSS呈正相关.路面、屋面径流中∑6PAEs浓度与前期晴天数、COD的相关系数差异明显, 这与路面及屋面径流中PAEs的组成及来源不同有关.下垫面径流中∑6PAEs浓度与表面累积的颗粒物含量有关, 降雨期间随着颗粒物被雨水冲刷进入径流中, HMW PAEs的lg KOC值>4, 在水中溶解度较低, 容易吸附在有机颗粒物的表面[31].路面径流中HMW PAEs所占质量分数大于屋面径流, 所以路面径流中∑6PAEs与TSS、COD的相关性更强, 受前期晴天数的影响更大.

表 5 下垫面径流中∑6PAEs浓度与影响因素的相关系数1) Table 5 Correlations between surface runoff ∑6PAEs and influencing factors

2.4 下垫面径流中PAEs的排放特征

选择2017年9月27日降雨事件考察路面径流中PAEs的排放规律.该场降雨雨量较大、历时较长, 降雨量的分布比较稳定, 降雨中期出现最大雨强, 对分析径流污染物的排放规律具有较好的代表性. PAEs、TSS及COD浓度随降雨历时的变化过程如图 4.

图 4 路面径流污染物浓度随降雨历时的变化 Fig. 4 Variation in pollutants in road runoff with rainfall duration

TSS、COD在初期径流中浓度较高, 随着冲刷过程持续浓度下降明显, 存在明显的初期冲刷效应. PAEs中除了DMP、DBP之外, 排放特征都与TSS、COD类似, 存在明显的初期效应.这说明HMW PAEs的存在形态与输送特征均与TSS相近, 而LMW PAEs有其他来源与径流排放机制. LMW PAEs的lg KOC值<4, 易挥发性, 在水中溶解度较高[15].径流中LMW PAEs在累计雨量不是很大的情况下, 随着降雨过程的持续, 溶解到雨水中的LMW PAEs浓度未见下降, 故不存在初期冲刷效应.

2.5 下垫面径流中PAEs浓度与规范值比较

我国《地表水环境质量标准》规定的DEHP、DBP标准值分别为8 μg ·L-1、3 μg ·L-1, 《欧洲水框架指令》规定的地表水环境质量标准中DEHP的限定值为1.3 μg ·L-1, 明显低于我国的标准值, 这是因为欧洲等地区限制了DEHP的使用, 城市下垫面径流中DEHP浓度通常不超过8.50 μg ·L-1.对实测下垫面径流中PAEs浓度与我国规范限值的比值进行统计(表 6), 得知路面及屋面径流中DEHP的浓度分别可以达到水环境标准的32、7倍, 路面径流中DBP在多数降雨事件中超过标准限值, 屋面径流中DBP在多数降雨事件中低于标准限值.这一结果表明, 城市下垫面径流直接排放会对受纳水体造成污染, 对于饮用水水源地的安全存在威胁.

表 6 下垫面径流中DEHP、DBP浓度与标准限值的比值 Table 6 Ratios of DEHP and DBP concentrations to the limiting-values of the drinking water standard

3 结论

(1) 上海城市不透水下垫面径流存在明显的PAEs污染, 路面及屋面径流中∑6PAEs浓度分别为170.64 μg ·L-1、40.92 μg ·L-1, 其中DEHP分别占PAEs总量的74.39%、96.40%, 与国外的相关报道相比我国的PAEs径流污染状况严重, DEHP与DBP大部分降雨情况下超过标准限值.

(2) 不同下垫面径流中LMW PAEs浓度不存在显著的差异, 路面径流中HMW PAEs浓度显著高于屋面径流及雨水, 道路交通是造成下垫面径流PAEs污染的重要因素.

(3) 路面径流中∑6PAEs排放存在初期冲刷效应, 与降雨量、降雨强度呈负相关, 与前期晴天数、TSS及COD浓度呈正相关; 屋面径流中∑6PAEs浓度与降雨强度呈负相关, 与TSS呈正相关.

参考文献
[1] Du L P, Ma L J, Qiao Y, et al. Determination of phthalate esters in teas and tea infusions by gas chromatography-mass spectrometry[J]. Food Chemistry, 2016, 197: 1200-1206. DOI:10.1016/j.foodchem.2015.11.082
[2] Hu L, Shan W Y, Zhang Y, et al. Liquid phase microextraction based on the solidification of a floating ionic liquid combined with high-performance liquid chromatography for the preconcentration of phthalate esters in environmental waters and in bottled beverages[J]. RSC Advances, 2016, 6(43): 36223-36230. DOI:10.1039/C6RA00788K
[3] Hou X D, Guo Y, Liang X J, et al. Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap[J]. Talanta, 2016, 153: 392-400. DOI:10.1016/j.talanta.2016.03.034
[4] Lou C Y, Guo D D, Zhang K, et al. Simultaneous determination of 11 phthalate esters in bottled beverages by graphene oxide coated hollow fiber membrane extraction coupled with supercritical fluid chromatography[J]. Analytica Chimica Acta, 2017, 1007: 71-79.
[5] 耿梦娇, 昌盛, 刘琰, 等. 滹沱河冲洪积扇深层孔隙水中多环芳烃和酞酸酯的污染水平与饮水健康风险评估[J]. 中国环境科学, 2016, 36(12): 3824-3830.
Geng M J, Chang S, Liu Y, et al. Pollution status and health risks of drinking water of the polycyclic aromatic hydrocarbons and phthalate esters in the deep shallow pore water of Hutuo River Pluvial Fan[J]. China Environmental Science, 2016, 36(12): 3824-3830. DOI:10.3969/j.issn.1000-6923.2016.12.038
[6] Zhang L L, Liu J L, Liu H Y, et al. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China[J]. Ecotoxicology, 2016, 24(5): 967-984.
[7] Polidoro B A, Comeros-Raynal M T, Cahill T, et al. Land-based sources of marine pollution:pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa[J]. Marine Pollution Bulletin, 2017, 116(1-2): 501-507. DOI:10.1016/j.marpolbul.2016.12.058
[8] Björklund K, Cousins A P, Stromvall A M, et al. Phthalates and nonylphenols in urban runoff:occurrence, distribution and area emission factors[J]. Science of the Total Environment, 2009, 407(16): 4665-4672. DOI:10.1016/j.scitotenv.2009.04.040
[9] Launay M A, Dittmer U, Steinmetz H. Organic micropollutants discharged by combined sewer overflows-Characterisation of pollutant sources and stormwater-related processes[J]. Water Research, 2016, 104: 82-92. DOI:10.1016/j.watres.2016.07.068
[10] He W, Qin N, Kong X Z, et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake[J]. Science of the Total Environment, 2013, 461-462: 672-680. DOI:10.1016/j.scitotenv.2013.05.049
[11] Björklund K. Substance flow analyses of phthalates and nonylphenols in stormwater[J]. Water Science and Technology, 2010, 62(5): 1154-1160. DOI:10.2166/wst.2010.923
[12] Sousa J C G, Ribeiro A R, Barbosa M O, et al. A review on environmental monitoring of water organic pollutants identified by EU guidelines[J]. Journal of Hazardous Materials, 2018, 344: 146-162. DOI:10.1016/j.jhazmat.2017.09.058
[13] Clara M, Windhofer G, Hartl W, et al. Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment[J]. Chemosphere, 2010, 78(9): 1078-1084. DOI:10.1016/j.chemosphere.2009.12.052
[14] Salaudeen T, Okoh O, Agunbiade F, et al. Fate and impact of phthalates in activated sludge treated municipal wastewater on the water bodies in the Eastern Cape, South Africa[J]. Chemosphere, 2018, 203: 336-344. DOI:10.1016/j.chemosphere.2018.03.176
[15] Paluselli A, Fauvelle V, Schmidt N, et al. Distribution of phthalates in Marseille Bay (NW Mediterranean Sea)[J]. Science of the Total Environment, 2018, 621: 578-587. DOI:10.1016/j.scitotenv.2017.11.306
[16] Lee K S, Lim Y H, Kim K N, et al. Urinary phthalate metabolites concentrations and symptoms of depression in an elderly population[J]. Science of the Total Environment, 2018, 625: 1191-1197. DOI:10.1016/j.scitotenv.2017.12.219
[17] Wang J Z, Ho S S H, Ma S X, et al. Characterization of PM2.5 in Guangzhou, China:uses of organic markers for supporting source apportionment[J]. Science of the Total Environment, 2016, 550: 961-971. DOI:10.1016/j.scitotenv.2016.01.138
[18] Zhao J, Ji Y Q, Zhu Z Y, et al. PAEs occurrence and sources in road dust and soil in/around parks in May in Tianjin, China[J]. Ecotoxicology and Environmental Safety, 2018, 147: 238-244. DOI:10.1016/j.ecoenv.2017.08.014
[19] Wang L J, Zhang W J, Tao W D, et al. Investigating into composition, distribution, sources and health risk of phthalic acid esters in street dust of Xi'an City, Northwest China[J]. Environmental Geochemistry and Health, 2017, 39(4): 865-877. DOI:10.1007/s10653-016-9856-7
[20] Wen Z D, Huang X L, Gao D W, et al. Phthalate esters in surface water of Songhua River watershed associated with land use types, Northeast China[J]. Environmental Science and Pollution Research, 2018, 25(8): 7688-7698. DOI:10.1007/s11356-017-1119-3
[21] Tang J, An T C, Xiong J K, et al. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J]. Environmental Geochemistry and Health, 2017, 39(6): 1487-1499. DOI:10.1007/s10653-017-9936-3
[22] Kong Y L, Shen J M, Chen Z L, et al. Profiles and risk assessment of phthalate acid esters (PAEs) in drinking water sources and treatment plants, East China[J]. Environmental Science and Pollution Research, 2017, 24(30): 23646-23657. DOI:10.1007/s11356-017-9783-x
[23] Zhang Z M, Zhang H H, Zhang J, et al. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area[J]. Science of the Total Environment, 2018, 619-620: 93-102. DOI:10.1016/j.scitotenv.2017.11.070
[24] Li R L, Liang J, Gong Z B, et al. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China[J]. Science of the Total Environment, 2017, 580: 388-397. DOI:10.1016/j.scitotenv.2016.11.190
[25] Kalmykova Y, Björklund K, Stromvall A M, et al. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol a and phthalates in landfill leachates and stormwater[J]. Water Research, 2013, 47(3): 1317-1328. DOI:10.1016/j.watres.2012.11.054
[26] DiBlasi C J, Li H, Davis A P, et al. Removal and fate of polycyclic aromatic hydrocarbon pollutants in an urban stormwater bioretention facility[J]. Environmental Science & Technology, 2009, 43(2): 494-502.
[27] Markiewicz A, Bjorklund K, Eriksson E, et al. Emissions of organic pollutants from traffic and roads:Priority pollutants selection and substance flow analysis[J]. Science of the Total Environment, 2017, 580: 1162-1174. DOI:10.1016/j.scitotenv.2016.12.074
[28] Gasperi J, Zgheib S, Cladière M, et al. Priority pollutants in urban stormwater:part 2-case of combined sewers[J]. Water Research, 2012, 46(20): 6693-6703. DOI:10.1016/j.watres.2011.09.041
[29] Canepari S, Castellano P, Astolfi M L, et al. Release of particles, organic compounds, and metals from crumb rubber used in synthetic turf under chemical and physical stress[J]. Environmental Science and Pollution Research, 2018, 25(2): 1448-1459. DOI:10.1007/s11356-017-0377-4
[30] Chi C C, Xia M, Zhou C, et al. Determination of 15 phthalate esters in air by gas-phase and particle-phase simultaneous sampling[J]. Journal of Environmental Sciences, 2017, 55: 137-145. DOI:10.1016/j.jes.2016.01.036
[31] Wu Y X, Eichler C M A, Cao J P, et al. Particle/gas partitioning of phthalates to organic and inorganic airborne particles in the indoor environment[J]. Environmental Science & Technology, 2018, 52(6): 3583-3590.