天然有机物(natural organic matter)是天然水体中的主要有机污染物, 其中腐殖质(humic substances, HS)可占到溶解性有机物(DOM)的50%以上[1].腐殖质是多种消毒副产物(DBPs)的主要前体物质, 间接危害人体健康[2, 3], 因此是饮用水处理的主要目标污染物之一.
混凝是去除有机物中腐殖质最经济、简单的处理工艺[4, 5], 目前水厂多根据烧杯实验中的浊度、DOC等指标来优化有机物的去除[6].此外, 天然有机物的芳香度、疏水性和分子量等性质对混凝过程以及混凝控制也有重要的影响[7, 8], 但目前这些参数的测定耗时长、分析成本高, 难以实现水体的实时、在线监测[9, 10].紫外可见吸收光谱作为一种简单、快速和经济的水质检测方法[11, 12], 其不但可以表征有机物的相对浓度, 近年来还被用于天然有机物芳香度和分子量等性质的表征.相关研究发现, 单波长吸收导数、双波长吸收比值和光谱特征斜率等替代参数与有机物的腐殖化度、分子量以及憎水性等性质有密切的相关性[13~17], 该方法为水体有机物性质的在线表征及混凝过程控制提供了可能.然而, 目前国内对于通过紫外光谱方法进行饮用水混凝控制的研究较少.为此, 本文以含腐殖酸和高岭土的配水为研究对象, 结合紫外可见光谱分析和尺寸排阻色谱技术, 分析混凝过程中有机物的组分及性质变化与紫外可见光谱之间的关系, 探究通过光谱方法实现天然水体混凝控制技术的可行性.
1 材料与方法 1.1 实验材料本研究以腐殖酸提取物(Aldrich, 溶解性有机碳含量为32%)模拟天然水体中的有机物[18, 19], 以高岭土(国药, 平均粒径1 μm)模拟水体中的颗粒物[20], 配制50 mg ·L-1 NaHCO3、30 mg ·L-1 CaSO4、30 mg ·L-1 MgSO4和2 mg ·L-1 KCl作为背景离子溶液以模拟实际天然水体中的碱度和矿物质[21].混凝实验采用PACl聚合氯化铝(国药, Al2O3质量分数为28%)作为混凝剂.实验中所有溶液均用Milli-Q超纯水配制.
样品的DOC由日本SHIMADZU-TOC仪测定; 浊度由HACH 2100N测定; 紫外可见光谱由HACH DR6000紫外可见分光光度计测定.
1.2 烧杯实验将400 mL不同质量浓度梯度的腐殖酸(0~36 mg ·L-1)和高岭土(0~200 NTU)混合溶液倒入500 mL烧杯中, 用0.05 mol ·L-1的NaOH和HCl将待混凝溶液的pH值调节至7.5±0.1以模拟天然水体条件.将调节好的溶液置于六联搅拌器上(MY3000混凝实验搅拌器, 武汉梅宇仪器), 按梯度加入PACl, 投加量以Al计.其后, 300·r ·min-1快速搅拌30 s, 70·r·min-1慢速搅拌15 min, 静置20 min.静置后, 从水面下2 cm处取50 mL样品测定上清液浊度, 样品用0.45 μm的滤膜过滤, 用滤液测定DOC和紫外可见光谱.混凝过后的上清液浊度和DOC值会不断下降, 最佳投加量(以Al计)由这些参数下降过程中的拐点确定.
1.3 尺寸排阻色谱分析尺寸排阻色谱由高效液相色谱与紫外检测器(Waters486型, 美国Waters)联用进行测量, 检测波长设置为254 nm, 色谱柱为TOSOH G3000PWXL凝胶色谱柱, 该色谱柱基于聚乙二醇(PEGs)和聚氧化乙烯(PEOs)的分离范围为0.1×103~80×103, 柱子规格为7.8 mm×300 mm, 将色谱柱置于恒温柱温箱中, 温度设置为30℃; 配制2.5 g ·L-1 KH2PO4和1.5 g ·L-1 Na2HPO4 ·2H2O的磷酸盐缓冲溶液(pH=6.85)作为流动相, 用高压恒流泵(LC-P100, 上海伍丰)使流动相流量恒为0.5 mL ·min-1, 待测样品进样量为0.5mL.实验采用国际腐殖质协会(IHSS)的NOM标准样品与混凝前后水中DOM的分子量进行对比分析[22].
1.4 紫外光谱数据处理将水样扫描得到的紫外可见光谱(200~600 nm)作平滑处理后进行光谱分析, 对各波长处的吸光度作自然对数处理得到对数光谱, 不同区间的光谱斜率由公式(1)进行计算.
![]() |
(1) |
式中, ln A(λ)指任意波长吸光度的自然对数, λ1和λ2为计算光谱区间斜率的波长范围[17].
2 结果与讨论 2.1 不同水质条件对混凝效果的影响天然有机物和颗粒物是天然水体中的主要污染物, 本部分以腐殖酸与高岭土共存溶液为研究对象, 考察在中性pH值和相同离子强度条件下, 腐殖酸浓度和高岭土浓度变化对混凝剂最佳投加量的影响, 以探究天然有机物对混凝控制的重要性.
2.1.1 不同水质条件对颗粒物及有机物去除的影响本研究进行了5个腐殖酸质量浓度梯度及6个浊度梯度共30种水质条件下的混凝实验, 图 1是10 mg·L-1腐殖酸在不同高岭土浓度(浊度)下的混凝实验结果.随着混凝剂的投加, 上清液浊度的去除率先基本不变或略有下降, 然后快速升高并最终趋于稳定, 且原水的初始浊度越高其最终的去除率越高, 说明颗粒物浓度的增加有助于浊度的去除, 此结果与文献[23]的报道一致.与此不同, 不同浊度下DOC的去除率均随混凝剂投加量增加而逐渐上升, 最终在80%左右, 说明PACl对腐殖酸有很好的去除效果, 而浊度变化对DOC去除率无显著影响.其他腐殖酸浓度下的混凝实验结果与图 1相似, 因此本文未显示.
![]() |
原水HA质量浓度为10 mg ·L-1 图 1 混凝剂投加量对浊度及DOC去除的影响 Fig. 1 Effects of coagulant dose on the reduction of turbidity and DOC |
两种污染物浓度对混凝剂最佳投加量的影响结果如图 2所示, 虽然原水高岭土颗粒物浓度显著变化, 腐殖酸浓度与混凝剂最佳投加量之间仍呈很强的线性相关关系(R2=0.97, n=34).计算结果表明, 混凝需药量与原水DOC比值(以Al/DOC计)的均值为0.61 mg ·mg-1.与此相比, Edzwald[23]的研究结果为0.60~0.65 mg ·mg-1, Archer等[13]对上百所水厂的调研结果显示, Al与原水TOC比值为0.70 mg ·mg-1.上述结果说明, 混凝剂最佳投加量与有机物浓度存在一定的计量关系且基本不受原水浊度的影响, 这是因为天然有机物表面的电荷密度一般是颗粒物的50倍以上[23], 腐殖酸类物质所带负电量更高, 与颗粒物相比使水体中有机物发生电中和脱稳需要更多的铝盐[24]. Shin等[25]的研究结果也表明在较高颗粒物浓度与NOM共存的水体中, 有机物对混凝剂的消耗呈主导作用.因此, 有机物浓度是决定混凝需药量的主要因素.
![]() |
图 2 有机物浓度与最佳投加量之间的关系及浊度对最佳投加量的影响 Fig. 2 Linear correlation between optimal coagulant dose and DOC |
混凝剂最佳投加量虽与水体有机物的浓度之间存在计量关系, 但该关系值及有机物去除效果会受到天然有机物憎水性、腐殖化程度等性质的影响[13, 26], 而SUVA254(UV254与TOC或DOC的比值)可以反映水体中有机物的腐殖化程度(芳香度)[27].天然水体的SUVA254一般在2.0~5.0 L ·(mg ·m)-1之间[28], 本研究中腐殖酸溶液的SUVA254为8.9 L ·(mg ·m)-1.
如图 3所示, 随着混凝剂的增加, 不同腐殖酸浓度的配水在混凝后的SUVA254不断降低, 逐渐接近并都稳定于2 L ·(mg ·m)-1左右, 此时DOC也达到最佳去除率. Hussain等[28]对河水[SUVA254=2.3L ·(mg ·m)-1]和水库水[SUVA254=3.4L ·(mg ·m)-1]的混凝实验结果也显示, 随着混凝剂的投加, 河水及水库水的SUVA254值分别下降至1.8L ·(mg ·m)-1和2.0L ·(mg ·m)-1, 并趋于稳定. Edzwald等[24]对5种地表水厂的调研结果表明, 5种地表水体[SUVA254为2.1~4.3 L ·(mg ·m)-1]在充分混凝后, SUVA254都降至1.6~2.0 L ·(mg ·m)-1之间. Korak等[29]对22种实际水源水的混凝实验结果也与上述研究一致.
![]() |
原水浊度=0 NTU 图 3 不同腐殖酸浓度下SUVA254随混凝剂投加量的变化 Fig. 3 Specific UV absorbance at various coagulant doses with different HA concentrations |
对于天然水, SUVA254在一定程度上可以代表DOM中憎水性有机酸(HPO-A)的相对比重[30], 其值越高[SUVA254≥3.0 L ·(mg ·m)-1]意味着有机物中疏水性物质占比越高, 有机物越易于通过混凝去除[13, 31]; 当SUVA254<3.0 L ·(mg ·m)-1时, 水体中的芳香类物质大部分被去除[4], 水体中多为亲水性组分且所含腐殖质的比重较低, DOM较难通过混凝去除[32, 33]; 而当SUVA254接近2.0 L ·(mg ·m)-1时, 此时混凝过程对有机物几乎不再有去除效果[28].因此, 对于天然水, SUVA254可以表征有机物的混凝效果, 通过测量SUVA254的大小监测水体的腐殖化程度以实时控制混凝剂的投加, 有效去除天然有机物.然而, 实现该过程需要实时检测水体中的DOC, DOC的检测耗时长且费用昂贵, 对此考虑用光谱参数代替DOC的测量.
2.2 天然有机物的紫外吸收光谱表征上述实验结果表明, 实现混凝控制有必要对有机物的腐殖化程度进行表征, 紫外光谱法是表征DOM特征的新兴手段.已有研究表明, 光谱比值(A250/A365、A254/A410等)可以指示有机物的腐殖化程度[15, 34], 而光谱斜率因其包含更宽的波长可以更好地表征有机物的平均特征[14], 因此本研究主要利用光谱特征斜率作为替代参数分析其与有机物SUVA254的相关性, 评价有机物的混凝效果.
2.2.1 混凝对紫外可见吸收光谱的影响由于200~220 nm紫外吸收光谱会受到HCO3-、Br-及NO3-等离子的影响[35, 36], 且450 nm以后的可见光波段吸光度较小, 可利用的信息少[37], 本研究以220~450 nm处波长为分析区间. 图 4(a)是质量浓度为24 mg ·L-1的HA配水随混凝剂投加量的光谱变化, 各水样在紫外到可见光区间没有明显的特征吸收峰, 并且随着投加量的增加整个区间的吸光度都逐渐减小, 其中UV254的去除率达到了96%, 这与Shi等[38]的研究结果相似. 图 4(b)是对原始光谱进行对数变换后的光谱, 整个区间有明显的线性趋势, 不同区间的斜率有较明显的区别, 且混凝后的光谱斜率都有细微的变化, 但当对数变换吸光度值高于约4.0时, 对数光谱开始出现噪声, 这将会影响分析的准确性.
![]() |
原水HA质量浓度为24 mg ·L-1 图 4 水样吸收光谱及对数变换光谱随混凝剂投加量的变化 Fig. 4 Original spectra and log-transformed spectra of water samples at various coagulant doses |
光谱特征斜率一般是指原光谱对数变换后某一区间内直线的斜率[39].本研究根据对数光谱的一阶导数变化特征, 从中筛选出了若干光谱区间, 同时选择了有机物分析常用的光谱区间[14, 40], 由公式(1)计算了不同PACl投加量下的出水光谱特征斜率. 图 5反映了腐殖酸溶液(初始浓度为10 mg ·L-1)部分波长区间斜率的变化趋势, 随着混凝剂的投加, 光谱斜率逐渐降低, 在最佳投加量下达到了最低值, 继续增大混凝剂的量, 斜率小幅回升并趋于稳定.其他水质条件下的计算结果也表明, 原水的光谱斜率不随HA浓度改变(如S275~295=-0.0088), 且达到最佳混凝效果后都趋于定值(如S275~295=-0.015), 这与SUVA254的变化趋势相似.由此将光谱斜率与其对应的SUVA254进行相关性分析, 结果表明(表 1): S275~295与SUVA254的相关性最高(R2=0.81), 其次是S285~305(R2=0.79)与S280~350(R2=0.78).因此, 光谱特征斜率尤其是S275~295可以代替SUVA254反映水体中有机物的混凝效果.
![]() |
原水HA质量浓度为10 mg ·L-1 图 5 不同区间光谱特征斜率随投加量的变化 Fig. 5 Spectral slopes with different wavelength ranges at various coagulant doses |
![]() |
表 1 不同区间光谱特征斜率与SUVA254的线性分析(n=217) Table 1 Linear correlations between spectral slopes of various wavelength ranges and SUVA254 |
相关研究表明, 280~350 nm的光谱信息反映了天然有机物中聚羟芳香类物质(PHA)的活化程度[41], 而腐殖酸这类中小分子量的芳香结构物质含有丰富的C C键, 吸光度集中在较长波段(273~350 nm)[42]. Roccaro等[17]的研究结果显示280~350 nm的吸光度与三卤甲烷和卤乙酸的产量有很强的线性关系, 这表明该波长区间与生成消毒副产物的腐殖酸类物质有密切的相关性. Platikanov等[43]通过变量重要性投影法(VIP)的计算结果也表明285 nm处的吸光度与水体中DOM的相关性最高.因此, 上述3个特定波长斜率尤其是S275~295与SUVA254有密切的相关性.
2.3 天然有机物的尺寸排阻色谱表征为进一步阐明光谱特征斜率与有机物混凝效果之间相关性的原因, 本研究利用排阻色谱法(SEC-UV)对实验中不同腐殖酸浓度配水在不同铝盐投加量下的混凝出水进行了表征, 探究光谱斜率与有机物组分之间的关系.
2.3.1 混凝对有机物组分构成的影响图 6(a)是36 mg ·L-1的HA在不同混凝剂投加量下的色谱图, HS峰为主要色谱峰, 腐殖质构成结构体(building blocks, BB)峰为HS峰的肩峰, 小分子酸及中性物质(low molecular weight acids &neutrals, LMW)峰为拖尾峰[44].为进一步量化混凝过程中有机物各组分的变化, 本研究根据腐殖酸组分的泊松分布特性对排阻色谱进行分峰, 计算了各组分的去除率及各组分对总UVA254贡献的占比[22], 结果如图 6(b)所示.对于原水UVA254, HS组分贡献最高, 达60%以上, BB贡献最低.混凝后, HS及LMW组分去除率与总UVA254去除率的去除趋势类似, 最终都达到了90%以上, 而BB的去除率一直较低, 最高只有70%.对于各组分占比的变化, 随着铝盐的投加, 由于BB是HS的构成结构单元, 难通过混凝过程有效去除, 因此, BB成为混凝后造成UV254的有机物的主要成分[44~46], 与此同时, 易于混凝的HS组分比重逐渐减小至10%, 水体有机物的腐殖化程度逐渐减小并趋于定值.
![]() |
(a)排阻色谱变化, (b)各组分对总UVA254的贡献占比变化; 原水HA质量浓度为36 mg ·L-1 图 6 UV排阻色谱及各组分对总UVA254的贡献占比随混凝剂投加量的变化 Fig. 6 Changes in the SEC-UV chromatograms and the contributions of different organic fractions to the total UVA254 with increasing coagulant dose |
SEC-UV的分析结果表明(图 6), 有机物的光谱斜率与HS组分占比之间可能存在相关性, 为进一步确定水体光谱特征斜率与有机物组分之间的关系, 本研究计算了不同浓度腐殖酸在不同混凝程度后的各波长区间光谱斜率, 并将其与对应的投加量下的各组分对UVA254的贡献比值进行了线性分析.结果如表 2所示, S275~295及S285~305与HS组分的占比有明显的相关性(R2>0.8, n=22), 这与该波长区间与SUVA254之间的相关性规律一致.此外, 由于BB占比与HS占比呈负相关, 因此BB组分与光谱斜率也有一定的相关性.值得注意的是, S250~285与HS占比的相关性最高(R2=0.88), 这主要是由于SEC-UV的检测波长为254 nm, 色谱分析结果集中反映了腐殖酸在该波长处的吸光度变化, 但该波长区间斜率与SUVA254的相关系数并不高.综上, 光谱斜率反映了水体的腐殖化程度, 因而S275~295等区间光谱斜率可以反映水体有机物中腐殖质类物质的混凝效果.
![]() |
表 2 不同区间光谱斜率与有机物各组分占比的线性分析(n=22) Table 2 Linear correlations between different spectral slopes and the contributions of different organic fractions to HA |
3 结论
(1) 对于腐殖质与颗粒物共存的模拟天然水, 腐殖质对混凝剂的消耗起主导作用.混凝剂最佳投加量与溶解性有机物浓度之间存在一定的计量关系, 即Al/DOC=0.61 mg ·mg-1.
(2) 混凝过后, 水体的SUVA254会不断下降并稳定在2.0L ·(mg ·m)-1左右, SUVA254可以作为腐殖质混凝效果的指示参数; 光谱特征斜率与SUVA254的变化趋势一致, 且S275~295等光谱斜率与SUVA254呈明显的线性相关, 光谱斜率可以作为SUVA254的替代参数.
(3) 天然有机物中腐殖质组分最易被混凝去除, 达到最佳混凝效果后, 腐殖质的构成结构体(BB)成为残留有机物的主要成分, 而光谱斜率变化反映了HS组分的变化过程, 因此其与水体有机物的混凝效果密切相关.
(4) 在实际水处理工艺中, 水体的光谱特征斜率有可能作为混凝控制的重要指标, 可以通过该参数的监测优化混凝剂的投加, 以最终实现基于水体紫外光谱分析的在线混凝过程控制.
[1] |
王文东, 张轲, 范庆海, 等. 紫外辐射对腐殖酸溶液理化性质及其混凝性能的影响[J]. 环境科学, 2016, 37(3): 994-999. Wang W D, Zhang K, Fan Q H, et al. Effects of UV radiation on the physicochemical properties and coagulation properties of humic acid solution[J]. Environmental Science, 2016, 37(3): 994-999. |
[2] | Awad J, van Leeuwen J, Chow C, et al. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters[J]. Journal of Hazardous Materials, 2016, 308: 430-439. DOI:10.1016/j.jhazmat.2016.01.030 |
[3] | Li C M, Wang D H, Xu X, et al. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation[J]. Science of the Total Environment, 2017, 587-588: 177-184. DOI:10.1016/j.scitotenv.2017.02.108 |
[4] | Abeynayaka A, Visvanathan C, Monthakanti N, et al. Removal of DOM and THM formation potential of tropical surface water by ceramic microfiltration[J]. Water Science and Technology:Water Supply, 2012, 12(6): 869-877. DOI:10.2166/ws.2012.066 |
[5] | Jin P K, Song J N, Yang L, et al. Selective binding behavior of humic acid removal by aluminum coagulation[J]. Environmental Pollution, 2017, 233: 290-298. |
[6] | Yavich A A, Van De Wege J. Chemical feed control using coagulation computer models and a streaming current detector[J]. Water Science and Technology, 2013, 67(12): 2814-2821. DOI:10.2166/wst.2013.198 |
[7] | Jiao R Y, Xu H, Xu W Y, et al. Influence of coagulation mechanisms on the residual aluminum-The roles of coagulant species and MW of organic matter[J]. Journal of Hazardous Materials, 2015, 290: 16-25. DOI:10.1016/j.jhazmat.2015.02.041 |
[8] | Xu H, Zhang D W, Xu Z Z, et al. Study on the effects of organic matter characteristics on the residual aluminum and flocs in coagulation processes[J]. Journal of Environmental Sciences, 2018, 63: 307-317. DOI:10.1016/j.jes.2016.11.020 |
[9] | Matilainen A, Gjessing E T, Lahtinen T, et al. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment[J]. Chemosphere, 2011, 83(11): 1431-1442. DOI:10.1016/j.chemosphere.2011.01.018 |
[10] | Zheng Q, Yang X Q, Deng W C, et al. Characterization of natural organic matter in water for optimizing water treatment and minimizing disinfection by-product formation[J]. Journal of Environmental Sciences, 2016, 42(4): 1-5. |
[11] | Langergraber G, Fleischmann N, Hofstaedter F, et al. Monitoring of a paper mill wastewater treatment plant using UV/VIS spectroscopy[J]. Water Science and Technology, 2004, 49(1): 9-14. DOI:10.2166/wst.2004.0004 |
[12] | Chen B S, Wu H N, Li S F Y. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring[J]. Talanta, 2014, 120: 325-330. DOI:10.1016/j.talanta.2013.12.026 |
[13] | Archer A D, Singer P C. An evaluation of the relationship between SUVA and NOM coagulation using the ICR database[J]. Journal-American Water Works Association, 2006, 98(7): 110-123. DOI:10.1002/j.1551-8833.2006.tb07715.x |
[14] | Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969. DOI:10.4319/lo.2008.53.3.0955 |
[15] | Piirsoo K, Viik M, Kõiv T, et al. Characteristics of dissolved organic matter in the inflows and in the outflow of Lake Vörtsjärv, Estonia[J]. Journal of Hydrology, 2012, 475: 306-313. DOI:10.1016/j.jhydrol.2012.10.015 |
[16] | Byrne A J, Brisset T, Chow C W K, et al. Development of spectroscopic on-line surrogate parameters for water treatment plant optimization[J]. Journal of the Australian Water Association, 2014, 41(2): 94-100. |
[17] | Roccaro P, Yan M Q, Korshin G V. Use of log-transformed absorbance spectra for online monitoring of the reactivity of natural organic matter[J]. Water Research, 2015, 84: 136-143. DOI:10.1016/j.watres.2015.07.029 |
[18] | Yang Z L, Liu B, Gao B Y, et al. Effect of Al species in polyaluminum silicate chloride (PASiC) on its coagulation performance in humic acid-kaolin synthetic water[J]. Separation and Purification Technology, 2013, 111: 119-124. DOI:10.1016/j.seppur.2013.03.040 |
[19] | Lin J L, Huang C P, Dempsey B, et al. Fate of hydrolyzed Al species in humic acid coagulation[J]. Water Research, 2014, 56(3): 314-324. |
[20] |
王文东, 王昌鑫, 刘荟, 等. 紫外辐射对高岭土混凝过程的影响机制[J]. 环境科学, 2017, 38(1): 188-194. Wang W D, Wang C X, Liu H, et al. Effects of UV radiation on the coagulation process of kaolin and involved mechanisms[J]. Environmental Science, 2017, 38(1): 188-194. |
[21] | Abbott Chalew T E, Ajmani G S, Huang H O, et al. Evaluating nanoparticle breakthrough during drinking water treatment[J]. Environmental Health Perspectives, 2013, 121(10): 1161-1166. DOI:10.1289/ehp.1306574 |
[22] | Huber S A, Balz A, Abert M, et al. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND)[J]. Water Research, 2011, 45(2): 879-885. DOI:10.1016/j.watres.2010.09.023 |
[23] | Edzwald J K. Coagulation in drinking water treatment:Particles, organics and coagulants[J]. Water Science and Technology, 1993, 27(11): 21-35. DOI:10.2166/wst.1993.0261 |
[24] | Edzwald J K, Kaminski G S. A practical method for water plants to select coagulant dosing[J]. Journal of the New England Water Works Association, 2009, 123(1): 15-31. |
[25] | Shin J Y, Spinette R F, O'Melia C R. Stoichiometry of coagulation revisited[J]. Environmental Science & Technology, 2008, 42(7): 2582-2589. |
[26] | Edwards M. Predicting DOC removal during enhanced coagulation[J]. Journal-American Water Works Association, 1997, 89(5): 78-89. DOI:10.1002/j.1551-8833.1997.tb08229.x |
[27] |
周玲玲, 张永吉, 孙丽华, 等. 铁盐和铝盐混凝对水中天然有机物的去除特性研究[J]. 环境科学, 2008, 29(5): 1187-1191. Zhou L L, Zhang Y J, Sun L H, et al. Characteristic of natural organic matter removal by ferric and aluminium coagulation[J]. Environmental Science, 2008, 29(5): 1187-1191. DOI:10.3321/j.issn:0250-3301.2008.05.006 |
[28] | Hussain S, van Leeuwen J, Chow C, et al. Removal of organic contaminants from river and reservoir waters by three different aluminum-based metal salts:Coagulation adsorption and kinetics studies[J]. Chemical Engineering Journal, 2013, 225: 394-405. DOI:10.1016/j.cej.2013.03.119 |
[29] | Korak J A, Rosario-Ortiz F L, Summers R S. Evaluation of optical surrogates for the characterization of DOM removal by coagulation[J]. Environmental Science:Water Research & Technology, 2015, 1(4): 493-506. |
[30] | Xue S, Zhao Q L, Wei L L, et al. Reduction of dissolved organic matter in secondary municipal effluents by enhanced coagulation[J]. Environmental Progress & Sustainable Energy, 2015, 34(3): 751-760. |
[31] | Liang L, Singer P C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water[J]. Environmental Science & Technology, 2003, 37(13): 2920-2928. |
[32] | Wang D S, Zhao Y M, Xie J K, et al. Characterizing DOM and removal by enhanced coagulation:A survey with typical Chinese source waters[J]. Separation and Purification Technology, 2013, 110: 188-195. DOI:10.1016/j.seppur.2013.03.020 |
[33] | Jiao R Y, Chow C W K, Xu H, et al. Organic removal assessment at full-scale treatment facilities using advanced organic characterization tools[J]. Environmental Science:Processes & Impacts, 2014, 16(10): 2451-2459. |
[34] | Spencer R G M, Bolton L, Baker A. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations[J]. Water Research, 2007, 41(13): 2941-2950. DOI:10.1016/j.watres.2007.04.012 |
[35] | Korshin G, Chow C W K, Fabris R, et al. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights[J]. Water Research, 2009, 43(6): 1541-1548. DOI:10.1016/j.watres.2008.12.041 |
[36] | Tsoumanis C M, Giokas D L, Vlessidis A G. Monitoring and classification of wastewater quality using supervised pattern recognition techniques and deterministic resolution of molecular absorption spectra based on multiwavelength UV spectra deconvolution[J]. Talanta, 2010, 82(2): 575-581. DOI:10.1016/j.talanta.2010.05.009 |
[37] |
吴元清, 杜树新, 严赟. 水体有机污染物浓度检测中的紫外光谱分析方法[J]. 光谱学与光谱分析, 2011, 31(1): 233-237. Wu Y Q, Du S X, Yan Y. Ultraviolet spectrum analysis methods for detecting the concentration of organic pollutants in water[J]. Spectroscopy and Spectral Analysis, 2011, 31(1): 233-237. DOI:10.3964/j.issn.1000-0593(2011)01-0233-05 |
[38] | Shi B Y, Wei Q S, Wang D S, et al. Coagulation of humic acid:The performance of preformed and non-preformed Al species[J]. Colloids and Surfaces A:Physicochemical & Engineering Aspects, 2007, 296(1-3): 141-148. |
[39] |
李丹, 何小松, 高如泰, 等. 紫外-可见光谱研究堆肥水溶性有机物不同组分演化特征[J]. 中国环境科学, 2016, 36(11): 3412-3421. Li D, He X S, Gao R T, et al. Evolution based on the spectra of different hydrophilic and hydrophobic components separated from dissolved organic matter (DOM) during compost[J]. China Environmental Science, 2016, 36(11): 3412-3421. DOI:10.3969/j.issn.1000-6923.2016.11.027 |
[40] | Hur J, Williams M A, Schlautman M A. Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis[J]. Chemosphere, 2006, 63(3): 387-402. DOI:10.1016/j.chemosphere.2005.08.069 |
[41] | Korshin G V, Li C W, Benjamin M M. Monitoring the properties of natural organic matter through UV spectroscopy:A consistent theory[J]. Water Research, 1997, 31(7): 1787-1795. DOI:10.1016/S0043-1354(97)00006-7 |
[42] | Yan M Q, Korshin G, Wang D S, et al. Characterization of dissolved organic matter using high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with a multiple wavelength absorbance detector[J]. Chemosphere, 2012, 87(8): 879-885. DOI:10.1016/j.chemosphere.2012.01.029 |
[43] | Platikanov S, Rodriguez-Mozaz S, Huerta B, et al. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements[J]. Journal of Environmental Management, 2014, 140: 33-44. DOI:10.1016/j.jenvman.2014.03.006 |
[44] | Heiderscheidt E, Leiviskä T, Kløve B. Coagulation of humic waters for diffused pollution control and the influence of coagulant type on DOC fractions removed[J]. Journal of Environmental Management, 2016, 181: 883-893. DOI:10.1016/j.jenvman.2016.06.043 |
[45] | Diemert S, Wang W, Andrews R C, et al. Removal of halo-benzoquinone (emerging disinfection by-product) precursor material from three surface waters using coagulation[J]. Water Research, 2013, 47(5): 1773-1782. DOI:10.1016/j.watres.2012.12.035 |
[46] | Bolto B, Abbt-Braun G, Dixon D, et al. Experimental evaluation of cationic polyelectrolytes for removing natural organic matter from water[J]. Water Science and Technology, 1999, 40(9): 71-79. DOI:10.2166/wst.1999.0445 |