环境科学  2018, Vol. 39 Issue (10): 4530-4538   PDF    
岷江上游水体中DOM光谱特征的季节变化
范诗雨1, 秦纪洪2, 刘堰杨1, 孙辉1     
1. 四川大学环境科学与工程系, 四川省土壤环境保护工程技术中心, 成都 610065;
2. 成都大学环境工程系, 成都 610106
摘要: 川西北高原湿地和高山峡谷区是岷江等河流重要集水区,地表水体中溶解性有机质(DOM)更多受环境背景影响,DOM来源与结构特征对认识流域有机碳输出通量及模式有重要意义.本文对岷江上游在4月(枯水期末)和10月(丰水期末)分别进行沿程地表水采样并测定了DOM三维荧光光谱(EEM),结合平行因子模型(PARAFAC)分析岷江上游水体DOM沿程和季节变化特征.结果表明,DOM荧光峰(类腐殖峰A、C和类蛋白峰B、T)沿程波动趋势和程度不同;枯水期末(4月) A、C峰强而丰水期末(10月) B、T峰强.PARAFAC识别出3个荧光组分,即C1(250~260/380~480 nm,类腐殖质,占比48.68%~65.02%),C2(300~330/380~480 nm,类腐殖质,占比23.17%~29.83%)和C3(270~280/300~350 nm,类蛋白质,占比11.83%~21.53%);枯水期末(4月)组分沿程波动更明显,其中C1沿程波动最显著.荧光指数(FI)均值在1.4~1.9之间,说明不同季节DOM均有内外源混合特征;枯水期末(4月) DOM腐殖化、芳香性和疏水性高,表明DOM陆源贡献更大,而丰水期末(10月) DOM自生源贡献比枯水期更高.CDOM浓度[a(355)]与类腐殖质浓度[Fn (355)]极显著正相关,这也证实岷江上游水体中DOM的陆源输入.C1、C2在枯水期末(4月)相关性极显著而丰水期末(10月)相关性未达到显著性水平,进一步表明岷江上游水体中DOM的外源性及季节性差异.
关键词: 三维荧光及平行因子法      溶解性有机质      高海拔河流      季节变化      岷江上游     
Seasonal Variations of DOM Spectral Characteristics in the Surface Water of the Upstream Minjiang River
FAN Shi-yu1 , QIN Ji-hong2 , LIU Yan-yang1 , SUN Hui1     
1. Sichuan Research Center for Soil Environment Protection Engineering and Technology, Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China;
2. Department of Environmental Engineering, Chengdu University, Chengdu 610106, China
Abstract: Alpine wetlands and valleys of northwestern Sichuan are the main catchment areas of Minjiang River, where dissolved organic matter (DOM) in surface waters comes mainly from the natural background environment. Sources and structure parameters of DOM are important for calibrating the flux and pattern of organic carbon exports from plateau wetlands and alpine rivers. In this study, surface water samples along the upstream Minjiang River were collected at the end of dry season (April) and rainy season (October). Excitation emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) was used to characterize seasonal variations of DOM along Minjiang River. Results showed fluorescence peaks (humic-like peaks A and C, protein-like peaks B and T) were different along the river. Peak A and peak C were more obvious at the end of dry season, while peak B and peak T were more obvious at the end of rainy season. PARAFAC produced a three-component model including two humic-like components[C1 (250-260/380-480 nm) and C2 (300-330/380-480 nm)] and one protein-like component[C3 (270-280/300-350 nm)], accounting relative intensity 48.68%-65.02% for C1, 23.17%-29.83% for C2, and 11.83%-21.53% for C3. Fluorescence components showed variations along the river more prominently in April than October, in which the most significant one was C1. Average fluorescence index (FI) values ranged from 1.4 to 1.9, indicating that DOM consisted of both autochthonous and allochthonous components. Moreover, higher degrees of humification, aromaticity and hydrophobicity were found in April than those in October, suggesting more terrigenous sources at the end of dry season and more biological sources at the end of rainy season. Additionally, chromophoric dissolved organic matter (CDOM)[a(355)] correlated significantly with humic-like substance[Fn(355)], which also indicated that DOM components originated from terrigenous input in the upstream Minjiang River. The results also showed significant positive correlation between C1 and C2 in April, with no significant correlation in October, which further proved that exogenous input and seasonal variations characterized DOM sources in the upstream Minjiang River.
Key words: EEM-PARAFAC      dissolved organic matter (DOM)      alpine river      seasonal variation      the upstream of Minjiang River     

水体有机质以溶解态、胶体或颗粒等形式存在, 其中溶解性有机质(dissolved organic matter, DOM)是指能通过0.45 μm滤膜的复杂混合有机物[1].DOM不仅作为碳的生物地化循环的重要组成部分[2], 对全球碳循环有重要影响[3]; 也作为污染物重要载体, 影响污染物的迁移和转化[4].水体DOM可能来源于外源(如土壤和凋落物等)输入, 也可能由微生物活动等内源生成[5], 二者共同形成水体中DOM化学结构和组成特征; 同时人类活动输入越来越多有机污染使水体DOM结构和转化过程更加复杂, 影响到流域地表水环境质量.

三维荧光光谱(three dimension excitation-emission matrix, 3D-EEM)近年来被广泛用于DOM来源及特征变化、地表水环境质量评价与管理等领域, 在指标灵敏度、选择性、信息量、可操作性和监测连续性等方面比其他方法有独特优势[6, 7], 其研究和应用日益受到重视, 尤其是在水体与土壤环境、沉积物、污水与堆肥处理等领域.3D-EEM结合相关数理统计方法已经用于研究海洋中不同来源DOM特征[8]、湖泊DOM活性及气候变化对外源DOM输入的影响[9]、海底热液中DOM转化和生物有效性[10]、近岸水体DOM组分变化机制[11]、降雨中DOM来源季节性特征[12]及地下水DOM季节变化与垂直分布[13, 14]等水环境中DOM特征及动态, 河流DOM催化及臭氧化转化[15]、工业废水DOM特征与环境效应[16], 及热蚀变土[17]、湖泊沉积物[18]等多孔介质中DOM组成和分布等方面.

川西北高寒湿地是岷江等长江支流重要集水区, 也是全球重要高原湿地及低温土壤有机碳沉积重要地区, 近年来全球环境变化特别是暖冬等, 可能影响到该区域土壤环境变化, 使河流外源有机碳输入和转化及水生微生物活动特征改变, 从而导致水体DOM时空特征和动态发生变化.本研究通过对岷江上游水体中DOM的沿程和季节特征分析, 对于认识高海拔河流中自然水体的DOM时空变化特征具有重要意义.

1 材料与方法 1.1 研究区域概况

岷江发源于岷山南麓松潘县郎架岭, 是长江上游最重要支流之一.岷江源至都江堰以上部分为岷江上游, 流经青藏高原和四川盆地之间的地形陡变地带, 河流落差大; 该地区每年5~10月由于受东南季风和西南季风的共同影响形成了大量的降水, 旱季则为11月至次年4月, 干湿季节分明.

1.2 样品采集和处理

于2016年10月(丰水期末)和2017年4月(枯水期末), 分别从岷江源向下经松潘县和茂县进行岷江上游干流河段地表水采样, 均采集12个点(从源头向下编号为S1~S12, 如图 1所示).依次用自来水、超纯水清洗特氟龙采样瓶, 并烘干备用; 采样前, 先用待测水样润洗采样瓶3次; 每个点取3~5个重复样; 取样后, 水样置于保温箱中4℃避光保存, 并尽快送回实验室.将水样用0.45 μm滤膜(PVDF, Millipore, USA)过滤后, 测定三维荧光光谱.

图 1 岷江上游沿程DOM采样点分布示意 Fig. 1 Location for DOM sampling along the upstream Minjiang River

1.3 测定方法

采用Horiba公司Aqualog荧光光谱仪同时测定样品三维荧光光谱和紫外-可见光吸收光谱.荧光光谱扫描具体操作步骤是:光源为150 W无臭氧氙弧灯, 以Millipore纯水作空白, 激发波长(Ex)范围240~550 nm, 增量3 nm; 发射波长(Em)范围为210~620 nm; 积分信号时间0.5 s, 系统自动校正瑞利散射和拉曼散射[19].

另外, 水样中溶解性有机碳(dissolved organic carbon, DOC)和溶解性总氮(total dissolved nitrogen, TDN)采用总有机碳总氮分析仪(Milti N/C 2100s, 德国Jena)测定, 用Millipore超纯水作空白(丰水期末和枯水期末水样中水溶性碳氮沿程特征如图 2所示).

图 2 枯水期末(4月)和丰水期末(10月)岷江上游水体沿程水溶性碳氮特征 Fig. 2 Dissolved organic carbon (DOC) and total dissolved nitrogen(TDN) along the upstream Minjiang River at the end of dry season (April) and rainy season (October)

1.4 光谱参数选取

选取常用的3D-EEM光谱参数和UV-vis吸收光谱参数分析岷江上游水体DOM内外源贡献率、腐殖化程度、芳香化和疏水性等信息(见表 1).

表 1 三维荧光光谱和紫外-可见吸收光谱的DOM特征参数 Table 1 Indices selected as characteristic parameters for the DOM 3D fluorescence and ultraviolet-visible absorption spectrum

利用OriginPro 9.0、Matlab 2016、Excel 2016、ArcMap10.1软件进行数据处理、图形绘制和相关性分析.

2 结果与讨论 2.1 荧光峰特征

水体DOM根据3D-EEM中荧光位置分为A峰(紫外区类腐殖质, 低分子量而荧光特性强, 主要由陆源有机质产生[25])、C峰(可见光区类腐殖质, 分子量高于A峰, 具有相对稳定的芳香性和疏水性结构[5])、B峰(类络氨酸, 主要由微生物活动产生[26])和T峰(类色氨酸, 指示比B峰更不易降解的蛋白类物质[27]); 此外还有海洋类腐殖质M峰, 其相对淡水的腐殖质峰蓝移(激发波长变短)[28].不同来源DOM及光谱校正前后荧光峰的光谱位置有所差异[29].

DOM荧光峰沿程变化显示(图 3), A峰总体呈沿程增加趋势(除S2~S3), 在枯水期末(4月)和丰水期末(10月)沿程波动都较大, 应该是沿程陆源输入引起A峰强度变化; C峰强度沿程变化小, 与其具有相对稳定的结构有关[5]; B峰和T峰总体呈现沿程增加趋势, 因为沿程微生物活动等自生源输入增加; T峰强度大于B峰, 因为其比B峰更不易降解[27].

Ex为激发波长, Em为发射波长; A为紫外区类腐殖峰, C为可见光区类腐殖峰, B为类络氨酸峰, T为类色氨酸峰 图 3 枯水期末(4月)和丰水期末(10月)岷江上游水体DOM荧光峰沿程变化趋势 Fig. 3 Comparison of DOM 3D fluorescence spectra measured at different Minjiang River sampling sites at the end of dry season (April) and rainy season (October)

类腐殖质峰(A峰、C峰)强度大于类蛋白峰(B峰、T峰), 说明岷江上游水体DOM陆源贡献更明显.其中A峰和C峰在枯水期末(4月)强度大于丰水期末(10月), 而T峰和B峰丰水期末(10月)强度增大, 说明水体DOM枯水期末(4月)更多来自于陆源腐殖质输入, 而丰水期末(10月)自生源贡献增强, 生物有效性高.

此外, S2处枯水期末(4月)A峰显著增大, 而丰水期末(10月)A峰很小, 可能因为枯水期末(4月)该处有显著外源输入, 丰水期末(10月)时该外源输入减小或因冰川融化和支流汇入等对DOM稀释使荧光峰减小.S3、S4和S9在枯水期末(4月)B峰几乎消失, 说明这些地点DOM自生源贡献很低.

2.2 荧光组分特征

本文用PARAFAC模型识别出DOM的3个组分[30, 31], 其中组分C1(250~260/380~480 nm)为吸收UVC的类腐殖质, 分子量小且有抗光解性[25]; 组分C2(300~330/380~480 nm)为类腐殖质, 可吸收UVC、UCB和UVA降解, 分子量大于C1且具有一定疏水性[25]; 组分C3(270~280/300~350 nm)为微生物降解产生的类蛋白物质[27].

组分的沿程变化显示(图 4), 组分C1枯水期末(4月)沿程波动大于丰水期末(10月), 尤其是采样点S1~S4组分C1波动很大, 说明4月时在S1~S4河段间应有外源类腐殖质输入, 与前文荧光峰的分析结论一致.组分C3丰水期末(10月)含量高于枯水期末(4月)且沿程波动较大, 说明丰水期末(10月)河流DOM有更多的自生源贡献, 该来源也有明显沿程变化特征.

图 4 枯水期末(4月)和丰水期末(10月)岷江上游水体DOM荧光组分沿程变化 Fig. 4 Changes in intensity of three components identified by PARAFAC application along the upstream Minjiang River at the end of dry season (April) and rainy season (October)

组分贡献率C1为65.02%±2.82%(4月)、48.68%±3.64%(10月); C2为23.17%±2.77%(4月)、29.83%±3.57%(10月); C3为11.83%±1.99%(4月)、21.53%±2.52%(10月).C1、C2贡献率枯水期末(4月)显著高于丰水期末(10月)(P < 0.05), C3贡献率枯水期末(4月)显著低于丰水期末(10月)(P < 0.01), 表明DOM组成有显著的季节差异.有研究表明岷江上游季节性冻融的土壤促进了凋落物中木质素和纤维素降解[32], 可能是枯水期末(4月)处于土壤冻融期(10月到次年4月)结束时, 陆源土壤有机贡献使水体DOM类腐殖质增加.

综上, 岷江上游DOM以类腐殖物质为主, 类蛋白物质贡献率低, 河流生物有效性较低.有研究表明, 自然水体DOM以类腐殖荧光为主, 受人类活动影响类蛋白荧光峰增强[5], 说明人类活动对该流域地表水环境影响处于较低水平.

2.3 光谱参数分析

枯水期末(4月)荧光光谱特征参数沿程波动大于丰水期末(10月)(如图 5), 且沿程变化趋势有明显季节差异, 枯水期末(4月)DOM的来源更不稳定.枯水期末(4月)HIX普遍高于丰水期末(10月), 说明DOM腐殖质化程度高; 丰水期末(10月)BIX更高, 说明DOM自生源贡献大, 生物有效性高.

图 5 枯水期末(4月)和丰水期末(10月)岷江上游水体沿程DOM三维荧光光谱特征参数 Fig. 5 Comparison of DOM characteristic parameters for 3D fluorescence spectra at different sampling sites along the upstream Minjiang River at the end of dry season (April) and rainy season (October)

枯水期末(4月)S1~S4间的吸收光谱特征参数沿程波动大(图 6), 说明水体DOM动态变化明显.DOM的芳香性[SUVA(254)]和疏水性[SUVA(260)]有极相似的变化趋势, 可能因为DOM芳香性结构主要存在于疏水性成分之中[12].通常情况下, 认为陆源比自生源DOM有更多芳环结构[11], S1~S4枯水期末(4月)芳香性和疏水性高也说明该河段有陆源有机质输入, 与前文荧光组分分析结论一致.

图 6 枯水期末(4月)和丰水期末(10月)岷江上游水体沿程DOM紫外-可见光谱特征参数 Fig. 6 Comparison of DOM characteristic parameters for UV-vis absorption spectra at different sampling sites along the upstream Minjiang River at the end of dry season (April) and rainy season (October)

两次采样FI均值都在1.4~1.9之间(见表 2), 说明水体DOM为陆源与自生源贡献结合; 枯水期末(4月)BIX < 1, 丰水期末(10月)BIX>1, 说明丰水期末(10月)时DOM自生源贡献大, 生物可利用性高; 枯水期末(4月)HIX在4~10之间, 丰水期末(10月)HIX < 4, 且Fn(355)在枯水期末(4月)显著大于丰水期末(10月)(P < 0.01), 说明枯水期末(4月)DOM腐殖化特征明显, 丰水期末(10月)DOM腐殖化程度低; 枯水期末(4月)时河流中DOM的芳香性[SUVA(254)]更高, 疏水性[SUVA(260)]也更高.

表 2 枯水期末(4月)和丰水期末(10月)岷江上游水体DOM三维荧光和紫外-可见光谱参数 Table 2 DOM characteristic parameters for 3D fluorescence and ultraviolet-visible absorption spectra of the upstream Minjiang River at the end of dry season (April) and rainy season (October)

有色溶解性有机质(chromophoric dissolved organic matter, CDOM)是DOM重要组成部分, CDOM浓度[a(355)]的沿程波动可能由陆源输入或人为活动影响所致, 同时降雨也是河流CDOM变化的重要来源[12].两次采样时a(355)无显著性差异(P>0.05), 说明虽然枯水期末(4月)S1~S4间水体CDOM波动大(图 6), 但岷江上游CDOM输入无显著季节差异.

综上, 岷江上游河流DOM为内外源贡献结合, 但丰水期末(10月)DOM的自生源贡献更大, 而枯水期末(4月)DOM更多来自陆源, 腐殖化、芳香性和疏水性更高.此外, 枯水期末(4月)光谱参数的变异系数均大于丰水期末(10月), 说明枯水期末时河流DOM来源更不稳定.

2.4 荧光组分与光谱参数和水溶性碳氮的相关性

岷江上游水体DOM呈现出时空变化特征, DOM组成和结构参数(如荧光组分、腐殖化、芳香性和疏水性参数)的相关性结果揭示DOM内外源输入机制与变化.

DOC与C2在丰水期末(10月)极显著正相关(P < 0.01)(表 3), 说明C2对DOC转化与降解有重要影响; DOC与其他荧光组分相关性不显著, 可能由于DOM中非生色组分所占比例不同, 也说明仅用DOC指标不能全面描述DOM的地化特征[12, 33].TDN与荧光组分无显著相关性, 可能因为水体溶解性碳氮的行为特征比较复杂, 也说明TDN不是限制高海拔河流DOM迁移转化的因素[19].

表 3 岷江上游水体DOM荧光组分、光谱参数与水溶性碳氮之间相关性1) Table 3 Correlations between DOM fluorescent components, spectral parameters, dissolved organic carbon and nitrogen in the upstream Minjiang River

C1和C2丰水期末(10月)无显著相关, 枯水期末(4月)却极显著(P < 0.01)正相关, 说明C1、C2在枯水期末(4月)来源更相似.C2与SUVA(254)、SUVA(260)枯水期末(4月)相关性极显著(P < 0.01), 丰水期末(10月)却无显著相关, 说明C2结构特征(芳香性和疏水性)有季节差异.C2和C3与a(355)仅在枯水期末(4月)极显著相关(P < 0.01), 说明枯水期末(4月)C2、C3影响CDOM的动态变化.此外, a(355)与Fn(355)极显著正相关(P < 0.01), 说明水体中类腐殖质浓度水平[Fn(355)]对CDOM含量[a(355)]有重要影响.

3 结论

(1) 岷江上游水体DOM荧光峰(包括类腐殖峰A、C与类蛋白峰B、T)的沿程波动趋势和范围不同; A、C峰在枯水期末(4月)强度大于丰水期末(10月), 而B、T峰丰水期末(10月)强度大于枯水期末(4月).

(2) 平行因子识别出DOM的3个组分:类腐殖质C1(250~260/380~480 nm)、类腐殖质C2(300~330/380~480 nm)和类蛋白质C3(270~280/300~350 nm), C1贡献率4月>10月, C3贡献率10月>4月; 枯水期末(4月)组分沿程波动大, 来源更不稳定.

(3) 光谱参数表明水体DOM为内外源结合:枯水期末(4月)陆源贡献大, 腐殖化程度、芳香性、疏水性高; 丰水期末(10月)有更多自生源贡献, 生物有效性高.

(4) DOC与C2在丰水期末(10月)极显著正相关; TDN与荧光组分相关性不显著; C1与C2枯水期末(4月)极显著正相关; C2与DOM芳香性[SUVA(254)]、疏水性[SUVA(260)]在枯水期末(4月)极显著正相关; 组分与光谱参数间的相关性表明枯水期末(4月)DOM组分来源更相似.

参考文献
[1] Leenheer J A, Croue J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1): 18A-26A.
[2] Aiken G R, Hsu-Kim H, Ryan J N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles and colloids[J]. Environmental Science and Technology, 2011, 45(8): 3196-3201. DOI:10.1021/es103992s
[3] Battin T J, Luyssaert S, Kaplan L A, et al. The boundless carbon cycle[J]. Nature Geoscience, 2009, 2(9): 598-600. DOI:10.1038/ngeo618
[4] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils:a review[J]. Soil Science, 2000, 165(4): 277-304. DOI:10.1097/00010694-200004000-00001
[5] Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-A review[J]. River Research and Applications, 2007, 23(6): 631-649. DOI:10.1002/(ISSN)1535-1467
[6] 傅平青, 刘丛强, 吴丰昌. 溶解有机质的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2005, 25(12): 2024-2028.
Fu P Q, Liu C Q, Wu F C. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter[J]. Spectroscopy and Spectral Analysis, 2005, 25(12): 2024-2028. DOI:10.3321/j.issn:1000-0593.2005.12.031
[7] Green S A, Blough N V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters[J]. Limnology and Oceanography, 1994, 39(8): 1903-1916. DOI:10.4319/lo.1994.39.8.1903
[8] Murphy K R, Stedmon C A, Waite T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry, 2008, 108(1-2): 40-58. DOI:10.1016/j.marchem.2007.10.003
[9] Du Y X, Zhang Y Y, Chen F Z, et al. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC:an insight into the fate of allochthonous DOM in alpine lakes affected by climate change[J]. Science of the Total Environment, 2016, 568: 216-225. DOI:10.1016/j.scitotenv.2016.06.036
[10] Yang L Y, Zhuang W E, Chen C T A, et al. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC[J]. Water Research, 2017, 111: 195-203. DOI:10.1016/j.watres.2017.01.001
[11] Yamashita Y, Jaffé R, Maie N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Limnology and Oceanography, 2008, 53(5): 1900-1908. DOI:10.4319/lo.2008.53.5.1900
[12] 梁俭, 江韬, 魏世强, 等. 夏、冬季降雨中溶解性有机质(DOM)光谱特征及来源辨析[J]. 环境科学, 2015, 36(3): 888-897.
Liang J, Jiang T, Wei S Q, et al. Absorption and fluorescence characteristics of dissolved organic matter (DOM) in rainwater and sources analysis in summer and winter Season[J]. Environmental Science, 2015, 36(3): 888-897.
[13] 何小松, 席北斗, 张鹏, 等. 地下水中溶解性有机物的季节变化特征及成因[J]. 中国环境科学, 2015, 35(3): 862-870.
He X S, Xi B D, Zhang P, et al. The seasonal distribution characteristics and its reasons of dissolved organic matter in groundwater[J]. China Environmental Science, 2015, 35(3): 862-870.
[14] 何小松, 张慧, 黄彩红, 等. 地下水中溶解性有机物的垂直分布特征及成因[J]. 环境科学, 2016, 37(10): 3813-3820.
He X S, Zhang H, Huang C H, et al. Vertical distribution characteristics of dissolved organic matter in groundwater and its cause[J]. Environmental Science, 2016, 37(10): 3813-3820.
[15] Zhang T, Lu J F, Ma J, et al. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation[J]. Chemosphere, 2008, 71(5): 911-921. DOI:10.1016/j.chemosphere.2007.11.030
[16] Yang L Y, Han D H, Lee B M, et al. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR:spectroscopy:implications for downstream impact and source identification[J]. Chemosphere, 2015, 127: 222-228. DOI:10.1016/j.chemosphere.2015.02.028
[17] Cawley K M, Hohner A K, Podgorski D C, et al. Molecular and spectroscopic characterization of water extractable organic matter from thermally altered soils reveal insight into disinfection byproduct precursors[J]. Environmental Science & Technology, 2017, 51(2): 771-779.
[18] 陈俊伊, 王书航, 姜霞, 等. 蠡湖表层沉积物荧光溶解性有机质(FDOM)荧光光谱特征[J]. 环境科学, 2017, 38(1): 70-77.
Chen J Y, Wang S H, Jiang X, et al. Fluorescence spectral characteristics of fluorescent dissolved organic matter (FDOM) in the surface sediments from Lihu Lake[J]. Environmental Science, 2017, 38(1): 70-77.
[19] 刘堰杨, 秦纪洪, 刘琛, 等. 基于三维荧光及平行因子分析的川西高原河流水体CDOM特征[J]. 环境科学, 2018, 39(2): 720-728.
Liu Y Y, Qin J H, Liu C, et al. Characteristics of chromophoric dissolved organic matter (CDOM) in rivers of western Sichuan plateau based on EEM-PARAFAC analysis[J]. Environmental Science, 2018, 39(2): 720-728.
[20] 胡琼丹, 王华静, 李锦, 等. 太湖秋季入湖水源中DOM的光谱学特征及通量[J]. 环境科学与技术, 2015, 38(3): 152-158.
Hu Q D, Wang H J, Li J, et al. Various inflows to Taihu Lake in autumn:spectroscopy characteristics and DOM flux[J]. Environmental Science & Technology, 2015, 38(3): 152-158.
[21] 王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域土壤溶解性有机质的紫外-可见及荧光特征[J]. 环境科学, 2015, 36(3): 879-887.
Wang Q L, Jiang T, Zhao Z, et al. Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of soil dissolved organic matter (DOM) in typical agricultural watershed of Three Gorges reservoir region[J]. Environmental Science, 2015, 36(3): 879-887.
[22] Ferrari G M, Dowell M D, Grossi S, et al. Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region[J]. Marine Chemistry, 1996, 55(3-4): 299-316. DOI:10.1016/S0304-4203(96)00061-8
[23] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[24] 高洁, 江韬, 李璐璐, 等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学, 2015, 36(1): 151-162.
Gao J, Jiang T, Li L L, et al. Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in Soils of water-level fluctuation zones of the Three Gorges reservoir region[J]. Environmental Science, 2015, 36(1): 151-162. DOI:10.3969/j.issn.1673-288X.2015.01.042
[25] Ishii S K L, Boyer T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems:a critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006-2017.
[26] Stedmon C A, Markager S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis[J]. Limnology and Oceanography, 2005, 50(5): 1415-1426. DOI:10.4319/lo.2005.50.5.1415
[27] Fellman J B, Hood E, Spencer R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems:a review[J]. Limnology and Oceanography, 2010, 55(6): 2452-2462. DOI:10.4319/lo.2010.55.6.2452
[28] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. DOI:10.1016/0304-4203(95)00062-3
[29] 吴华勇, 周泽宇, 王洪涛, 等. 光谱校正对溶解有机物三维荧光光谱特征影响[J]. 光谱学与光谱分析, 2012, 32(11): 3044-3048.
Wu H Y, Zhou Z Y, Wang H T, et al. Effect of spectra correction on the fluorescence characteristics of dissolved organic matter[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3044-3048. DOI:10.3964/j.issn.1000-0593(2012)11-3044-05
[30] Yang L Y, Hur J, Zhuang W E. Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications:a review[J]. Environmental Science and Pollution Research, 2015, 22(9): 6500-6510. DOI:10.1007/s11356-015-4214-3
[31] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3-4): 239-254. DOI:10.1016/S0304-4203(03)00072-0
[32] 邓仁菊, 杨万勤, 张健, 等. 季节性冻融期间亚高山森林凋落物的质量变化[J]. 生态学报, 2010, 30(3): 830-835.
Deng R J, Yang W Q, Zhang J, et al. Changes in litter quality of subalpine forests during one freeze-thaw season[J]. Acta Ecologica Sinica, 2010, 30(3): 830-835.
[33] 王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域水体中溶解性有机质的光谱特征[J]. 环境科学, 2016, 37(6): 2082-2092.
Wang Q L, Jiang T, Zhao Z, et al. Spectral characteristics of dissolved organic matter (DOM) in waters of typical agricultural watershed of Three Gorges reservoir areas[J]. Environmental Science, 2016, 37(6): 2082-2092.