环境科学  2018, Vol. 39 Issue (9): 4105-4113   PDF    
黄河兰州段水体中有色溶解性有机质组成、空间分布特征及来源分析
赵夏婷, 李珊, 王兆炜, 谢晓芸     
兰州大学资源环境学院, 兰州 730000
摘要: 利用紫外-可见吸收光谱、激发发射矩阵荧光光谱(EEMs)并结合平行因子分析(PARAFAC),分析黄河兰州段水体有色溶解有机质(CDOM)的组成、空间分布以及来源.结果表明,黄河兰州段水体CDOM可能是由芳香性结构的小分子组成,解析出的4个组分中,类蛋白质(1个组分)含量最多,占总荧光强度的51.06%,类腐殖质(2个组分)次之,占36.74%,非类腐殖质(1个组分)最少,占12.20%,类蛋白质组分和类腐殖质组分来源不同.CDOM属于"类蛋白质-类腐殖质"复合主导型,以生物来源的类蛋白质为主.从上游到下游河段,CDOM的空间分布格局大体有一个先降低再升高再降低的过程,其趋势主要受到类蛋白质含量变化的影响.类蛋白质的含量受到了居民/商业污水排放、河岸及水上餐饮、娱乐设施、船舶运输以及少量工业企业废水排放等各种高强度人为活动干扰.黄河流经兰州市受到了一定的内源污染,建议对黄河兰州段水体进行内源污染的控制.
关键词: 有色溶解性有机质      平行因子分析      黄河兰州段水体      吸收特性      荧光特性      聚类分析     
Composition, Spatial Distribution Characteristics and Source Analysis of Chromophoric Dissolved Organic Matter in the Lanzhou Reach of the Yellow River
ZHAO Xia-ting , LI Shan , WANG Zhao-wei , XIE Xiao-yun     
College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Abstract: Chromophoric dissolved organic matter (CDOM) in riverine systems can be affected by environmental conditions and land-use, and can thus provide important information regarding anthropogenic activities in surrounding landscapes. It can modify the optical properties of waters and affect the balance and availability of dissolved nutrients and metals in water bodies. However, the characteristics of CDOM in the Lanzhou reach of the Yellow River have not yet been reported. In this study, the optical properties of water samples collected at 32 locations during April 2017 across the Lanzhou reach of the Yellow River were examined using UV-VIS and excitation-emission matrix fluorescence spectroscopy-parallel factor analysis (EEM-PARAFAC), to determine CDOM compositional changes, spatial distribution characteristics, and sources. Cluster analysis was used to categorize samples into groups of similar pollution levels within a study area. Results showed that CDOM was primarily comprised of low molecular weight organic substances with aromatic structure belonging to complex "protein-like-humic-like" substances, and dominated by protein-like substances (organism sources). Two humic-like components (C1, C4), one tryptophan-like component (C2), and one non-humic-like component (C3) were identified by PARAFAC. Tryptophan-like substances were predominant in the components of CDOM, accounting for 51.06% of average total fluorescence intensity. Humic-like materials and non-humic-like substances accounted for 36.74% and 12.20%, respectively. Weak correlations were observed between protein-like substances and humic-like substances, indicating different sources of these components. The distribution of total fluorescence intensity showed a distinct spatial pattern; trends in fluorescence intensity were weak-strong-weak along an upstream to downstream continuum, mainly affected by changes in the content of protein-like substances. The spatial variation of the CDOM in the Lanzhou reach of the Yellow River can therefore be assessed based on protein-like materials dynamics. Public spaces along rivers offer opportunities for community gatherings and recreational activities. However, high-intensity anthropogenic activities strongly influence CDOM concentration and composition in this area in different ways; sources include increased residential/commercial wastewater, catering, water recreation facilities pollution, shipping, and a small amount of industrial discharge. In addition, it was concluded that endogenetic pollution may become the main source of internal loading in the Lanzhou reach of the Yellow River, implying that stronger endogenetic pollution control is needed to alleviate CDOM pollution and improve water quality.
Key words: chromophoric dissolved organic matter (CDOM)      parallel factor analysis (PARAFAC)      Lanzhou reach of Yellow River      absorption property      fluorescence property      cluster analysis (CA)     

有色溶解性有机质(chromophoric dissolved organic matter, CDOM)为非均质混合有机物, 是溶解性有机质(dissolved organic matter, DOM)储库中可采用紫外-可见吸收光谱和荧光光谱检测的吸光有机质[1, 2].它的主要成分是类腐殖质和类蛋白质, 普遍存在于水生环境中[3]. CDOM既可来源于沿岸土壤有机质经地表径流和淋溶的外源输入, 又可来源于水生动植物、微生物或藻类等的新陈代谢及其残体降解的内源贡献, 同时又会受到工业废水、生活污水、农田污水以及水土流失等人为外源因素的影响[4]. CDOM在生物地球化学循环中起着重要作用, 其含有的多种功能基团可与水环境中的重金属和有机污染物等相互作用, 进而影响它们的迁移、转化和生物可利用性等[5].此外, 在水文条件和污染程度不同的地区, CDOM各组分荧光强度的变化还可用来监测水质状况[6~8].

利用紫外-可见吸收光谱、三维荧光光谱(EEMs)结合平行因子分析(parallel factor analysis, PARAFAC)研究CDOM结构性质及溯源已不断应用于各类水体中[6, 8~11].平行因子分析是已知最为有效的CDOM分析技术之一, 可有效解决三维荧光光谱中不能准确识别叠加荧光峰的难题[12].利用平行因子分析对CDOM的EEMs进行解谱, 可将CDOM的各荧光组分较好地“分离”, 进而对不同组分进行有效的定性与定量分析[13].

城市河流作为地表水重要组成部分, 是珍贵的水资源.但城市的迅速发展却导致大量各种来源的污染物排放到城市水体中, 包括污水排放、工业排放、汽车、废弃物和被污染的城市景观中的雨水径流等[8], 因此研究城市河流中CDOM的组成、来源以及分布对城市水体保护与治理以及生态修复具有重要意义.目前针对城市河流中DOM(CDOM)的研究相对较少, 如Huang等[14]对美国波士顿西南部的典型城市Neponset河流的CDOM进行研究发现, CDOM的变化则取决于土地利用类型、污水排放/降水以及温度等; 邵田田等[15]研究辽河下游水体CDOM荧光特性发现其表现出较强的类蛋白质荧光, 有明显的季节性变化; 虞敏达等[16]研究了典型城市纳污河流(河北洨河)水体, 发现CDOM主要为新近微生物来源产生, 受人类活动影响较大; Zhao等[8]对中国北部与东北部地区城市水体中CDOM进行表征, 发现解析出的3种荧光组分会随着空间地域及污染程度变化.

黄河兰州段是兰州市居民生活和工业用水的唯一地表水源, 全长152 km, 由西向东呈S型横穿兰州市, 经新城桥进入, 后经包兰桥流出兰州, 对兰州市社会与经济发展有着极其重要的意义.然而, 针对黄河兰州段水体CDOM的情况鲜有报道.本研究利用紫外-可见光吸收光谱、三维荧光光谱结合平行因子分析, 对黄河兰州段水体CDOM的组成、分布和来源等情况进行分析, 以期进一步丰富城市水体CDOM的研究, 并为分析黄河流域DOM地化特征提供科学依据.

1 材料与方法 1.1 样品的采集与预处理

2017年4月期间, 用GPS定位系统对采样点精确定位, 在黄河兰州段水体中共采集32个表层水样.采样点沿河段均匀布设, 具体布设位置如图 1所示.

图 1 黄河兰州段水体采样点分布示意 Fig. 1 Distribution of sampling sites along the Lanzhou reach of the Yellow River

将采集的水样黑暗保存, 当天送回实验室并用0.45 μm玻璃纤维滤膜(标准号Q/IEFJ01-1997, 上海兴亚净化材料厂, 置于马弗炉, 450℃, 5 h)过滤, 后装入备好的50 mL棕色玻璃瓶(稀硝酸洗液浸泡24 h, 洗净后烘干, 置于马弗炉, 450℃, 5 h)中, 4℃冷藏保存. 3d内完成紫外-可见吸收光谱以及荧光光谱分析.

1.2 样品的测定 1.2.1 紫外-可见吸收光谱分析

紫外-可见吸收光谱的测定采用Evolution 300紫外可见分光光度计(Thermo Fisher Scientific, 美国).室温下在1 cm光程的石英比色皿中, 以Mill-Q水作空白, 扫描水样在190~800 nm处的吸光度.

通常将吸光度转化为吸收系数来表征DOM特性.转化公式见式(1)与(2)[17].

吸收系数的计算公式为:

(1)

作散射效应校正的公式为:

(2)

式中, a′ λ为波长λ未校正的吸收系数, m-1; Dλ为吸光度; r为光程路径, m; aλ为波长λ的吸收系数; λ为波长, nm.

光谱斜率比值SR能够定性反映DOM地化特征, 与DOM分子量呈负相关.其值越大, DOM分子量越小, DOM被光漂白及微生物降解的反应活性降低[18].

光谱斜率S的计算公式为:

(3)

光谱斜率比值SR的计算公式为:

(4)

式中, λ0是参照波长; S为光谱斜率; S275-295S350-400分别为波长范围275~295 nm和350~400 nm的S[12].

CDOM相对浓度用吸收系数a(355)表示[19].用吸收系数a(254)表示具有不饱和碳-碳键芳香族化合物的浓度水平, 这类化合物通常较难分解[20].

1.2.2 荧光光谱分析

荧光激发-发射光谱矩阵(EEMs)的测定采用Cary Eclipse型荧光光谱分析仪(美国Agilent公司).基本参数如下:150-W闪烁氙灯; PMT电压:700 V; 激发与发射的狭缝宽度都为5 nm; 响应时间:自动; 扫描速度:1200 nm ·min-1; 扫描光谱进行仪器自动校正.设置激发波长(excitation wavelength, Ex)为200~450 nm, 发射波长(emission wavelength, Em)为250~600 nm, 用1 cm石英荧光样品池测定水样.采用Mill-Q水作空白, 减少仪器条件和拉曼散射对荧光光谱的影响.

1.3 数据处理

全文图表数据处理采用Microsoft Excel 2013;全文图表数据统计与数据绘制采用Origin 8.0; EEMs光谱的平行因子分析(PARAFA)采用MATLAB 7.0的DOM荧光工具箱(www.models.life.ku.dk); 相关性分析以及聚类分析采用SPSS 18.0.

2 结果与讨论 2.1 紫外-可见吸收光谱参数分析

黄河兰州段水体CDOM浓度波动范围为1.04~3.56 m-1, 均值为(1.90±0.15) m-1. a(254)的波动范围为6.36~13.09 m-1, 均值为(9.57±0.50) m-1. SR的波动范围为0.40~1.76, 均值为1.28±0.10. SR值随着CDOM组成和来源的差异而不同[21], 因而黄河兰州段水体不同区域CDOM组成与来源存在差异.

图 2所示, 各样点CDOM、SRa(254)两两均呈显著正相关(P < 0.01), 说明CDOM含有的生色团多为小分子量芳香族化合物组成.较高芳香性DOM结构中存在生色团比例可能较大[22].自然水体中高分子有机质大多出现在降水量较为丰富的地区[8], 而兰州属于半干旱地区, 因此黄河兰州段水体中CDOM的生色团可能主要由具有不饱和碳-碳键芳香结构的小分子组成, 被光漂白及微生物降解的活性较低.这与Shao等[9]对中国辽河CDOM组成以及钱锋等[20]对太子河本溪城市段DOM组成的研究相一致.

图 2 CDOM、SRa(254)的相关性分析 Fig. 2 Correlations between CDOM, SR, and a(254)

2.2 荧光光谱特征分析 2.2.1 CDOM荧光组分特征分析

利用PARAFAC模型解析黄河兰州段水体32个水样的三维荧光光谱, 共辨识出4个荧光组分(表 1图 3), 分别为C1(240/416 nm)、C2(225/342 nm)、C3(200, 275/375 nm)和C4(265/494 nm).组分C1表示紫外类富里酸, 为短波小分子类腐殖质[12], 在天然水体中普遍存在, 不易光降解和生物降解.主要来源于地表径流、土壤渗滤液、森林地区和湿地等[23], 属于典型陆源性有机质, 对应A峰.组分C4表示腐殖酸, 为大分子疏水性长波类陆源腐殖质[13].该组分可光降解和生物降解, 主要来源为陆源, 生物降解和生物活动是潜在的二次来源[23].组分C2表示类色氨酸物质, 为低激发类蛋白质, 可结合或游离于蛋白质中, 常见于污水和垃圾渗液, 对应T峰.代表内源CDOM类酪氨酸荧光B峰未出现, 说明其降解程度较T峰高[24].组分C3为非类腐殖质, 不稳定, 为水环境下微生物和浮游植物活动产物.常与类色氨酸T峰混淆, 对应N峰.

表 1 PARAFAC鉴别出黄河兰州段水体4个荧光组分特征 Table 1 Characteristics of the four different components identified by PARAFAC in the Lanzhou reach of the Yellow River

图 3 4个荧光组分及其激发/发射波长载荷值 Fig. 3 Four different fluorescent components and their excitation/emission loading

2.2.2 CDOM荧光强度空间分布特征分析

总荧光强度能够反映CDOM含量, 荧光强度的分布差异能够揭示CDOM的空间分布.黄河兰州段水体CDOM中各组分比例不均衡, 其中类蛋白质最大, 类腐殖质次之, 非类腐殖质最低(图 4).从而说明黄河兰州段水体中CDOM属于“类蛋白质-类腐殖质”复合主导型, 以类蛋白质为主.从每个组分来看, C2(类色氨酸)最多(51.06%±3.73%); C1(类富里酸)次之(30.50%±3.33%); 第三为C3(非类腐殖质N)(12.20%±2.23%); C4(类腐殖酸)最少(6.24%±1.11%).人为污染可能导致类色氨酸在CDOM组成中占高比例[28].因此黄河兰州段水体类色氨酸比例最大的原因可能是由于人类活动产生的各种污染物输入, 使得水体微生物活性增强, 导致CDOM的内源输入增强, 表现出类蛋白质荧光峰的相对强度增加[29].

图 4 黄河兰州段水体荧光强度空间分布与各荧光组分的相对比例 Fig. 4 Spatial distribution of fluorescence intensity and relative proportions of fluorescent components in the Lanzhou reach of the Yellow River

从上游到下游(S1~S25), 总荧光强度大体是一个先降低后升高再降低的过程, CDOM分布差异较大, 而南河道支流S26~S32样点总荧光强度的空间变化较小, CDOM分布差异不大[图 4(a)].总荧光强度变化主要受到类色氨酸C2含量变化的影响, 基本与C2含量变化一致.类蛋白质荧光强度变化可用来表征河流水质污染状况[30], 其在天然河流中含量较低, 在受到污染(如工业废水和生活污水)的河流中比例会显著增高[31].因此CDOM的分布差异与河流受到的污染情况有关. S8, S9, S11和S12属于银滩湿地公园样点, S18和S19为两个景区样点, 这些地点观赏游玩人员来去流量大, 娱乐、商业活动频繁, 污染物的输入多而杂.一般大量人为干扰会使水体蛋白质含量增加[32], 所以S18和S19的色氨酸含量很高, 而银滩公园样点的色氨酸含量却很低, 其原因可能是当时湿地受到闸坝拦截, 水体停留时间长, 类蛋白质分解转化程度大于生物以及人为输入程度.类蛋白质会因生物降解与光化学作用减少[33].

2.2.3 CDOM来源分析

黄河兰州段水体CDOM的4个组分以及CDOM浓度相关性分析见表 2. 32个水样中, 除组分C2与组分C3显著相关(P < 0.01)外, 其余组分均无显著相关性(P﹥0.01).这说明类蛋白质与非类腐殖质存在共源性, 而类蛋白和类腐殖质以及2种类腐殖质的来源不同.这些表明黄河兰州段水体CDOM的来源较为复杂.一方面可能与黄河水源自身流经的周边环境类型多样有关; 另一方面受到水体本身内源的影响; 同时又与高强度的人类活动干扰密不可分.溶解性有机质的来源会因人类活动的影响而改变[12]. CDOM浓度与组分C2(类色氨酸)、组分C3(非类腐殖质)显著相关, 说明组分C2与组分C3对CDOM的含量起主要贡献作用.根据2.2.1节对组分C2与组分C3的特征分析以及实际地域情况, 判断黄河兰州段水体CDOM可能主要来源于外源输入的居民/商业污水、沿岸景观景点大量人为活动干扰和少量工业企业、农业废水的排放、污水携带的微生物活动以及水体自身的微生物和浮游植物的作用过程.

表 2 4个荧光组分与CDOM的相关关系1) Table 2 Relationship between four different fluorescent components and CDOM

不同荧光组分对应的类腐殖质和类蛋白物质的来源具有差异性[12].通过聚类分析分析各样点荧光组分异同, 将特征相似的样本聚为一类, 从而揭示水体CDOM来源情况[34].本研究对黄河兰州段水体4种荧光组分数据进行分层聚类分析(图 5), 可以看出同一区域样点很分散, 即CDOM来源并没有明显的区域特征.造成这种情况的原因可能是一方面所研究河段位于兰州市, 城市内部环境相似; 另一方面所采样点分布较为集中且均匀, 这些地区沿河人口密集, 经济较为发达, 高强度人为干扰因素使得河段中有机质成分并不稳定.以距离15为基准, 将32个样点分为Ⅲ类. Ⅲ类中各组分所占比例如表 3所示.

图 5 采样点聚类分析结果 Fig. 5 Results of cluster analysis of the sampling sites

表 3 Ⅲ类中各荧光组分所占比例/% Table 3 Relative proportions of four different fluorescent components among class Ⅲ/%

第Ⅰ类包括S2、S4、S9、S11、S12、S17、S27和S29.相比于其他两类, 组分C1所占比例最大, 组分C2与组分C3所占比例最小, 两者所占比例基本均衡.当水体受到严重污染时, 荧光强度主要由类色氨酸组分组成[8].这表明Ⅰ类样点所在区域CDOM的来源主要来自地表径流和淋溶的外源输入以及水生生物代谢活动等这些自然过程.这些区域只受到了轻微的内源污染, 受人类活动影响较小.

第Ⅱ类包括样点S1、S3、S5、S6、S7、S10、S14、S15、S16、S21~S25、S26、S28和S30~S32.组分C1所占比例明显变少, 组分C2与组分C3所占比例增大, 这表明Ⅱ类样点所在区域CDOM的来源除自然过程外, 另一部分来自居民/商业污水、少量工业企业、农田废水的排放等. Ⅱ类样点占据了绝大部分黄河兰州段区域, 说明黄河兰州段水体绝大部分受到了一定内源污染, 受人类活动影响较大.

第Ⅲ类包括样点S8、S13、S18、S19和S20.这些点大都位于旅游景点, 人口流量大, 船舶等各种水上交通工具活动频繁, 水上游乐项目多, 餐饮业发达.组分C2与组分C3所占比例很大, 表明这些区域CDOM来源除自然过程外, 主要受到水上娱乐设施、船舶运输、垃圾食品以及生活/商业污水等的影响.样点所在区域受到污染比较严重, 受人类活动影响很大.

3 结论

(1) 黄河兰州段水体CDOM的生色团可能由具有不饱和碳-碳键的芳香结构的小分子组成, 具体解析出4个组分[陆源性紫外类富里酸C1(240/416 nm)、低激发类色氨酸C2(225/342 nm)、微生物产物非类腐殖质C3(200, 275/375 nm)和长波类腐殖酸C4(265, 494 nm)].

(2) 黄河兰州段水体CDOM整体上呈现非均匀分布特征.在人口流量大, 商业性活动强的餐饮区、景区、娱乐用地处总荧光强度相对略高; 而在蛋白质降解转化程度大于生物及人为输入程度的银滩湿地公园处较低.

(3) 黄河兰州段水体CDOM中的类色氨酸含量多, 类腐殖质含量少, 属于“类蛋白质-类腐殖质”复合主导型, 以类蛋白质为主.该结果可能与水体周边的污染物输入、人类高强度活动干扰有关.黄河兰州段水体不同河段受到了不同程度人为活动的影响且在人口密集的旅游景区非常显著.

参考文献
[1] 肖骁, 何小松, 高如泰, 等. 垃圾填埋有色溶解性有机质与铜络合机制[J]. 环境科学, 2017, 38(5): 1873-1880.
Xiao X, He X S, Gao R T, et al. Complexation between copper (Ⅱ) and colored dissolved organic matter from municipal solid waste landfill[J]. Environmental Science, 2017, 38(5): 1873-1880.
[2] He X S, Xi B D, Cui D Y, et al. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 2014, 268: 256-263. DOI:10.1016/j.jhazmat.2014.01.030
[3] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. DOI:10.1016/0304-4203(95)00062-3
[4] 刘瑞霞, 李斌, 刘娜娜, 等. 辽河流域与英国中部河湖水体中溶解有机质的荧光特性[J]. 环境科学学报, 2014, 34(9): 2321-2328.
Liu R X, Li B, Liu N N, et al. Fluorescence characteristics of dissolved organic matter in freshwaters from Liaohe Basin and Midland of UK[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2321-2328.
[5] Lou T, Xie H X, Chen G H, et al. Effects of photodegradation of dissolved organic matter on the binding of benzo(a)pyrene[J]. Chemosphere, 2006, 64(7): 1204-1211.
[6] 黄廷林, 方开凯, 张春华, 等. 荧光光谱结合平行因子分析研究夏季周村水库溶解性有机物的分布与来源[J]. 环境科学, 2016, 37(9): 3394-3401.
Huang T L, Fang K K, Zhang C H, et al. Analysis of distribution characteristics and source of dissolved organic matter from Zhoucun Reservoir in summer based on fluorescence Spectroscopy and PARAFAC[J]. Environmental Science, 2016, 37(9): 3394-3401.
[7] Kong X Y, Liu Y F, Jian H M, et al. New approach for rapid assessment of trophic status of Yellow Sea and East China Sea using easy-to-measure parameters[J]. Journal of Ocean University of China, 2017, 16(5): 781-792. DOI:10.1007/s11802-017-3203-1
[8] Zhao Y, Song K S, Li S J, et al. Characterization of CDOM from urban waters in Northern-Northeastern China using excitation-emission matrix fluorescence and parallel factor analysis[J]. Environmental Science and Pollution Research, 2016, 23(15): 15381-15394. DOI:10.1007/s11356-016-6703-4
[9] Shao T T, Song K S, Jacinthe P A, et al. Characteristics and sources analysis of riverine chromophoric dissolved organic matter in Liaohe River, China[J]. Water Science and Technology, 2016, 74(12): 2843-2859. DOI:10.2166/wst.2016.457
[10] Zhu W Z, Zhang H H, Zhang J, et al. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea[J]. Journal of Marine Systems, 2018, 180: 9-23. DOI:10.1016/j.jmarsys.2017.12.003
[11] Devilbiss S E, Zhou Z Z, Klump J V, et al. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA[J]. Science of the Total Environment, 2016, 565: 742-757. DOI:10.1016/j.scitotenv.2016.05.015
[12] 陈永娟, 胡玮璇, 庞树江, 等. 北运河水体中荧光溶解性有机物空间分布特征及来源分析[J]. 环境科学, 2016, 37(8): 3017-3025.
Chen Y J, Hu W X, Pang S J, et al. Spatial distribution characteristics and source analysis of dissolved organic matter in Beiyun River[J]. Environmental Science, 2016, 37(8): 3017-3025.
[13] 周倩倩, 苏荣国, 白莹, 等. 舟山渔场有色溶解有机物(CDOM)的三维荧光-平行因子分析[J]. 环境科学, 2015, 36(1): 163-171.
Zhou Q Q, Su R G, Bai Y, et al. Characterization of chromophoric dissolved organic matter (CDOM) in Zhoushan Fishery using excitation-emission matrix spectroscopy (EEMs) and parallel factor analysis (PARAFAC)[J]. Environmental Science, 2015, 36(1): 163-171.
[14] Huang W, Chen R F. Sources and transformations of chromophoric dissolved organic matter in the Neponset River Watershed[J]. Journal of Geophysical Research, 2009, 114(G4): G00F05.
[15] 邵田田, 赵莹, 宋开山, 等. 辽河下游CDOM吸收与荧光特性的季节变化研究[J]. 环境科学, 2014, 35(10): 3755-3763.
Shao T T, Zhao Y, Song K S, et al. Seasonal variation in the absorption and fluorescence characteristics of CDOM in downstream of Liaohe River[J]. Environmental Science, 2014, 35(10): 3755-3763.
[16] 虞敏达, 何小松, 檀文炳, 等. 城市纳污河流有色溶解有机物时空演变特征[J]. 中国环境科学, 2016, 36(1): 133-142.
Yu M D, He X S, Tan W B, et al. Space-time characteristics of chromophoric dissolved organic matter from typical polluted city river[J]. China Environmental Science, 2016, 36(1): 133-142.
[17] 张春华, 黄廷林, 方开凯, 等. 同温混合初期主库区沉积物间隙水DOM的光谱特征——以周村水库为例[J]. 中国环境科学, 2016, 36(10): 3048-3055.
Zhang C H, Huang T L, Fang K K, et al. Spectral characteristics of DOM in sediment interstitial water of the main reservoir area during the initial stage of isothermal mixing:a case study of Zhoucun Reservoir[J]. China Environmental Science, 2016, 36(10): 3048-3055. DOI:10.3969/j.issn.1000-6923.2016.10.030
[18] Xiao Y H, Sara-Aho T, Hartikainen H, et al. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2013, 58(2): 653-662. DOI:10.4319/lo.2013.58.2.0653
[19] 高洁, 江韬, 李璐璐, 等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学, 2015, 36(1): 151-162.
Gao J, Jiang T, Li L L, et al. Ultraviolet-Visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservoir region[J]. Environmental Science, 2015, 36(1): 151-162.
[20] 钱锋, 吴婕赟, 于会彬, 等. 多元数理统计法研究太子河本溪城市段水体DOM紫外光谱特征[J]. 环境科学, 2016, 37(10): 3806-3812.
Qian F, Wu J Y, Yu H B, et al. UV-Visible spectra properties of DOM from Taizi River in Benxi City section by multivariable analysis[J]. Environmental Science, 2016, 37(10): 3806-3812.
[21] 王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域水体中溶解性有机质的光谱特征[J]. 环境科学, 2016, 37(6): 2082-2092.
Wang Q L, Jiang T, Zhao Z, et al. Spectral characteristics of dissolved organic matter (DOM) in waters of typical agricultural watershed of Three Gorges Reservoir areas[J]. Environmental Science, 2016, 37(6): 2082-2092.
[22] Kulovaara M, Corin N, Backlund P, et al. Impact of UV254-radiation on aquatic humic substances[J]. Chemosphere, 1996, 33(5): 783-790. DOI:10.1016/0045-6535(96)00233-0
[23] Ishii S K L, Boyer T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems:a critical review[J]. Environmental Science and Technology, 2012, 46(4): 2006-2017. DOI:10.1021/es2043504
[24] 闫金龙, 江韬, 高洁, 等. 两江交汇处水体溶解性有机质的吸收和荧光光谱特征:以渠江-嘉陵江、涪江-嘉陵江为例[J]. 环境科学, 2015, 36(3): 869-878.
Yan J L, Jiang T, Gao J, et al. Characteristics of absorption and fluorescence spectra of dissolved organic matter from confluence of rivers:case study of Qujiang River-Jialing River and Fujiang River-Jialing River[J]. Environmental Science, 2015, 36(3): 869-878.
[25] He X S, Xi B D, Gao R T, et al. Insight into the composition and degradation potential of dissolved organic matter with different hydrophobicity in landfill leachates[J]. Chemosphere, 2016, 144: 75-80. DOI:10.1016/j.chemosphere.2015.08.071
[26] Singh S, D'Sa E J, Swenson E M. Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)[J]. Science of the Total Environment, 2010, 408(16): 3211-3222. DOI:10.1016/j.scitotenv.2010.03.044
[27] Holbrook R D, Yen J H, Grizzard T J. Characterizing natural organic material from the Occoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy and PARAFAC[J]. Science of the Total Environment, 2006, 361(1-3): 249-266. DOI:10.1016/j.scitotenv.2005.11.020
[28] Bridgeman J, Baker A, Carliell-Marquet C, et al. Determination of changes in wastewater quality through a treatment works using fluorescence spectroscopy[J]. Environmental Technology, 2013, 34(23): 3069-3077. DOI:10.1080/09593330.2013.803131
[29] Massicotte P, Frenette J J. Spatial connectivity in a large river system:resolving the sources and fate of dissolved organic matter[J]. Ecological Applications, 2011, 21(7): 2600-2617. DOI:10.1890/10-1475.1
[30] 钱锋, 吴婕赟, 于会彬, 等. 荧光光谱结合多元统计分析太子河本溪段水体DOM组成及其与水质相关性[J]. 环境化学, 2016, 35(10): 2016-2024.
Qian F, Wu J Y, Yu H B, et al. Analysis of the structural composition of dissolved organic matter and its correlation with water quality at Benxi section of Taizi River utilizing fluorescence and multivariate statistics[J]. Environmental Chemistry, 2016, 35(10): 2016-2024. DOI:10.7524/j.issn.0254-6108.2016.10.2016012503
[31] 陈雪霜, 江韬, 卢松, 等. 典型水库型湖泊中CDOM吸收及荧光光谱变化特征:基于沿岸生态系统分析[J]. 环境科学, 2016, 37(11): 4168-4178.
Chen X S, Jiang T, Lu S, et al. Spectral characteristics of chromophoric dissolved organic matter (CDOM) from a typical reservoir lake from inland of Three Gorges Reservoir areas:in the view of riparian ecosystem analysis[J]. Environmental Science, 2016, 37(11): 4168-4178.
[32] Huang W, McDowell W H, Zou X M, et al. Qualitative differences in headwater stream dissolved organic matter and riparian water-extractable soil organic matter under four different vegetation types along an altitudinal gradient in the Wuyi Mountains of China[J]. Applied Geochemistry, 2015, 52: 67-75. DOI:10.1016/j.apgeochem.2014.11.014
[33] Jiang F H, Lee F S C, Wang X R, et al. The application of Excitation/Emission Matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China[J]. Marine Chemistry, 2008, 110(1-2): 109-119. DOI:10.1016/j.marchem.2008.02.010
[34] Baker D A, Inverarity R. Protein-like fluorescence intensity as a possible tool for determining river water quality[J]. Hydrological Processes, 2004, 18(15): 2927-2945. DOI:10.1002/(ISSN)1099-1085