环境科学  2018, Vol. 39 Issue (3): 1413-1420   PDF    
青藏高原中东部表层土壤中多环芳烃的分布特征、来源及生态风险评价
周雯雯1,2, 李军2, 胡健3, 朱兆洲2     
1. 天津师范大学地理与环境科学学院, 天津 300387;
2. 天津师范大学天津市水资源与水环境重点实验室, 天津 300387;
3. 中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳 550002
摘要: 2013年7~8月采集了青藏高原中东部地区55个表层土壤样品,对土壤中多环芳烃(PAHs)的分布特征、来源等进行了研究,并对表层土壤中的PAHs进行了生态风险评价.土壤样品进行超声萃取,HLB固相萃取小柱净化后,采用GC-MS对土壤中美国EPA优先控制的16种PAHs进行了检测分析.研究区域土壤中16种PAHs的总量为40.47~1276.40 μg ·kg-1,平均值为267.97 μg ·kg-1.以2~3环的PAHs为主,占PAHs的质量分数为47.15%~88.51%,平均值为70.90%,其中菲所占质量分数最高.用比值法和主成分分析法进行来源解析,结果显示青藏高原中东部土壤中PAHs主要来源于石油燃烧和生物质的燃烧.土壤中苯并(a)芘的毒性当量浓度TEQBaP范围为3.73~79.32 μg ·kg-1,平均值为12.84 μg ·kg-1.有4%的采样点超过荷兰土壤标准目标值(33.00 μg ·kg-1),青藏高原中东部少部分表层土壤存在潜在的生态风险.
关键词: 青藏高原      土壤      多环芳烃      来源      生态风险评价     
Distribution, Sources, and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils of the Central and Eastern Areas of the Qinghai-Tibetan Plateau
ZHOU Wen-wen1,2 , LI Jun2 , HU Jian3 , ZHU Zhao-zhou2     
1. College of Geography and Environmental Science, Tianjin Normal University, Tianjin 300387, China;
2. Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China;
3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Abstract: Fifty-five soil samples were collected across the central and eastern Qinghai-Tibetan Plateau during July to August in 2013. These were analyzed for the sixteen polycyclic aromatic hydrocarbons (PAHs) called out by the USA EPA. The concentration characteristics, sources, and potential ecological risk assessment of the sixteen PAHs in the soils were investigated. The soils were extracted by ultrasonic extraction, purified by an HLB solid-phase extraction column, and quantified by gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations ranged from 40.47 to 1276.40 μg·kg-1, with a mean of 267.97 μg·kg-1. Low-ring PAHs (two and three rings PAHs) were dominant in all samples, and the proportion of phenanthrene was the highest. The sources of PAHs were assessed by diagnostic ratios and a principal component analysis (PCA), which indicated that the main sources of the PAHs originated from petroleum and biomass combustion. The toxic equivalent concentration (TEQ) concentration of benzopyrene-(a)-pyrene (TEQBaP) in soils ranged from 3.73 to 79.32 μg·kg-1, with an average concentration of 12.84 μg·kg-1. The TEQBaP in 4% of the soil samplings exceeded the Dutch target reference value (33.00 μg·kg-1), suggesting that a small portion of the soils in the Qinghai-Tibetan Plateau have potential ecological risk.
Key words: Qinghai-Tibetan Plateau      soil      polycyclic aromatic hydrocarbons      source      ecological risk assessment     

多环芳烃(PAHs)是由2个或2个以上苯环连接在一起的一类具有较强致癌、致畸性和致突变的有机化合物[1].环境中的PAHs来源分为自然源和人为源, 但主要来源于人为活动, 如煤、木材、化石原料的不完全燃烧、汽车尾气排放、工业生产、石油泄漏等[2~4]. PAHs广泛存在于土壤、水体、沉积物、气溶胶、污泥和植物等中[5].

国内外学者对大气、河湖水体、沉积物、土壤中的PAHs[6~10]进行了广泛的研究.土壤是环境中PAHs的重要储存库, 环境中90%以上的PAHs都存在于土壤中[11].由于PAHs具有低水溶性、高脂溶性和难降解特性使得其极易吸附于颗粒物上, 并在土壤中进行累积, 之后可通过吸入土壤扬尘、皮肤接触或者通过植物等进入食物链的方式对人体健康构成威胁[12, 13], 因此土壤中PAHs污染及其潜在危害不容忽视.我国对土壤中PAHs的研究主要集中于东部相对发达地区[14~16], 对西部环境恶劣地区尤其是青藏地区的研究较少.近几年主要对高山湖泊和草场等地区土壤中PAHs进行了研究[17~20], 青藏高原主要位于我国西南, 平均海拔4 000 m以上, 有“世界屋脊”之称.青藏高原人烟稀少, 目前几乎无工业生产.而近几年随着青藏社会经济和旅游业的发展, 越来越多的人和车辆进入青藏高原, 青藏高原的环境受到越来越多的人类活动的影响.为了评估越来越强的人类活动对青藏高原的环境产生的影响, 本研究通过对地处青藏高原中东部的青藏公路沿线表层土壤PAHs含量、分布特征的研究, 进一步探讨其来源、评价其潜在危害, 以期为人类活动程度对青藏高原的环境质量的影响的研究提供参考, 并为全面保护和合理开发青藏高原提供数据支撑.

1 材料与实验方法 1.1 样品采集

2013年7~8月, 在青藏公路沿线地带采样, 采样点距离青藏公路约500 m, 平均100 km左右设置一个采样点, 途经都兰、格尔木、那曲、拉萨、林芝等地, 共计55个采样点(图 1), 主要采集0~20 cm的表层土壤.采集的土壤样品装入自封袋中, 尽快运回实验室, 待样品自然风干后, 剔除草根、砾石等杂物, 用玛瑙研钵研磨土样, 后过100目筛, 密封装袋备用.本研究检测了美国国家环境保护署(USEPA)列出的16种优控PAHs:萘(Nap)、苊(Acy)、二氢苊(Ace)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Fluo)、芘(Pyr)、苯并[a]蒽(BaA)、(Chr)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)、茚并[1, 2, 3-cd]芘(InP)、二苯并[a, h]蒽(DBA)和苯并[g, h, i]苝(BghiP).

图 1 青藏高原中东部表层土壤采样分布点 Fig. 1 Spatial distribution of sampling sites in the central and eastern Qinghai-Tibetan Plateau

1.2 分析方法

实验中色谱纯的正己烷、二氯甲烷以及无水硫酸钠购买于上海安谱实验科技股份有限公司, 沃特世OAsis HLB固相萃取小柱购买于美国Waters公司, 16种PAHs标准溶液、回收率指示物Nap-d8、Ace-d10、Phe-d10、Chr-d12和Pyr-d12, 均购于美国New Havan标准品公司.

准确称量5.00 g表层土壤、3.00 g无水Na2SO4(已于马弗炉中450℃灼烧4 h)于玻璃离心管中, 添加200.00 μL回收率指示物(Nap-d8、Ace-d10、Phe-d10、Chr-d12和Pyr-d12), 加入25.00 mL二氯甲烷, 超声提取30.00 min, 倒出超声后的液体, 重复操作3次, 合并3次超声后的液体旋转蒸发至1.00 mL, 再添加10.00 mL正己烷旋蒸, 转换溶剂为正己烷至1.50 mL, 然后过HLB固相萃取小柱)进行净化, 小柱用3.00 mL二氯甲烷洗脱, 重复操作3次, 收集3次洗脱液, 旋转蒸发至1.00 mL, 再转换溶剂为正己烷旋、定容至1.00 mL待测. PAHs采用气相色谱-质谱仪(Agilent GC QTOF)测定, 离子源为EI源, 电子能力70 eV, 离子源温度为230℃; 质量分析器为单四级杆; 扫描范围(m/z)35~500 u, 定量分析为选择离子扫描(SIM), 电子倍增电压, 色谱柱为(HP-5MS, 15 m×250 μm×0.25 μm).以高纯氦气为载体, 流速为1mL·min-1.升温程序为:起始温度70℃, 保持2 min, 然后以18℃·min-1的速率上升至140℃, 再以12℃·min-1的速率上升至240℃, 保持1 min, 最后以5℃·min-1的速率上升到280℃保持10 min, 不分流进样.

1.3 质量保证与质量控制

为保证实验方法的可靠性和实验数据的准确性, 实验通过方法空白、空白加标、基质加标和样品平行等来进行质量控制和保证.样品空白加标回收率为78.84%±15.84%~110.81%±8.19%.样品基质加标回收率为63.00%~119.00%, 空白样品中未检出目标污染物, 16种PAHs的方法检出限为0.012~45 μg·kg-1.

2 结果与讨论 2.1 土壤中PAHs含量及组成特征

采集的55个土壤样品中16种多环芳烃的检出率达到98.00%, 土壤中Σ16PAHs为40.47~1276.40 μg·kg-1, 平均值为267.97 μg·kg-1(表 1).根据苯环数不同, 可以将PAHs划分为低环(2~3环)、中环(4环)和高环(5~6环)PAHs[21].如图 2所示青藏高原中东部土壤中2环3环PAHs所占质量分数为47.15%~88.51%, 平均值为70.90%; 4环PAHs所占质量分数为9.06%~34.15%, 平均值为18.62%; 5~6环PAHs所占质量分数为2.02%~26.09%, 平均值为10.47%.个别采样点(1、2、9、34、42、50)中高环PAHs所占比例与低环PAHs的比例差别较小, 但是整体上仍然是以低环PAHs占据绝对优势, 青藏高原中东部土壤中PAHs以低环PAHs为主.

表 1 青藏高原中东部土壤PAHs含量及毒性当量 Table 1 Concentration and TEQBaP of PAHs in soil samples collected in the central and eastern Qinghai-Tibetan Plateau

图 2 青藏高原中东部表层土壤中不同环数PAHs所占质量分数 Fig. 2 Constitution of PAHs with a varied number of aromatic and aliphatic rings in soil samples collected from the central and eastern Qinghai-Tibetan Plateau

2.2 土壤中PAHs污染状况

Maliszewska-Kordybch等[22]在1996年将土壤中PAHs的污染程度划分为4个等级, 当土壤中PAHs含量低于200 μg·kg-1时, 土壤无污染; 含量在200~600 μg·kg-1之间, 土壤为轻度污染; 含量范围在600~1 000 μg·kg-1, 土壤为中度污染; 而当含量超过1 000 μg·kg-1时, 则土壤被认为受到了重度污染.如图 3所示, 本文所采样品的污染范围大部分位于无污染和轻度污染之间, 采样点5、9、32的PAHs的含量超过600 μg·kg-1, 达到了中度污染水平.采样点5位于两条国道相交不远处, 受交通的影响更大, 故污染水平较高.采样点9距离城市那曲不远, 那曲是藏北地区政治、经济、文化、交通、信息和通讯的中心, 人类活动较多, 达到了中度污染.而采样点32位于国道318林芝市附近, 离城镇地区较近且旅游业相对发达, 交通量和人流量相对较大, 所以造成了一定程度的污染.

图 3 青藏高原中东部土壤PAHs污染水平 Fig. 3 Degree of contamination of PAHs in soil samples collected in the central and eastern Qinghai-Tibetan Plateau

与其他地区土壤中PAHs含量(表 2)比较发现:相较于西北门户西安市(平均值2 727.00 μg·kg-1), 首都北京(平均值3 917.00 μg·kg-1), 国际大都市上海(平均值2 068.00 μg·kg-1), 发达城市深圳(平均值290.00 μg·kg-1), 国外部分国家土壤中的PAHs相比较, 研究区土壤PAHs含量总体处于较低水平, 这也进一步反映城市地区由于工业活动和人为活动较多, 造成了比较严重的环境污染.与其他青藏地区的[23~26]研究结果相比, 本研究青藏高原中东部表层土壤PAHs含量较高.

表 2 青藏高原中东部与其他地区土壤中PAHs含量的比较/μg·kg-1 Table 2 Comparison of PAHs concentrations in soils in the central and eastern Qinghai-Tibetan Plateau and other regions/μg·kg-1

2.3 PAHs来源解析

通过环数的分布特征可以作初步的来源分析, 2~3环PAHs主要来源于原油和石油产品泄漏、化石燃料不完全燃烧和生物质低温燃烧, 4~6环PAHs来源于化石和木材高温燃烧[36].由图 2所示, 研究区土壤中低环数PAHs的占比最高, 主要为石油源及化石燃料和生物质低温燃烧, 尤其是Phe和Flu含量较高.通过PAHs环数分析是比较浅显的来源分析方法, 为了进一步判断PAHs来源, 本文采用PAHs特征组分比值法和主成分分析法进行PAHs来源分析.

2.3.1 比值法

同分异构体比值法是近些年研究中比较常用的PAHs来源的判别方法[37, 38], 本研究用BaA/(BaA+Chr)的比值做来源分析.当BaA/(BaA+Chr)<0.2时为石化来源, 0.2<BaA/(BaA+Chr)<0.35为石化和燃烧混合来源, 当BaA/(BaA+Chr)>0.35时, 来源为燃烧源.若InP/(InP+BghiP)<0.2时, PAHs来源为石油源, 当0.2<InP/(InP+BghiP)<0.5, 来源为石油燃烧源, 而当InP/(InP+BghiP)>0.5时, 则其来源为煤和生物燃烧.对青藏高原中东部表层土壤中PAHs的来源用比值法进行分析(图 4), 结果显示所有采样点BaA/(BaA+Chr)和InP/(InP+BghiP)都大于0.2, 并且其中的采样点位集中于燃烧源周围, 说明其来源是燃烧源, 青藏高原中东部土壤中PAHs主要来源于煤和生物燃烧源以及石油燃烧源.

图 4 青藏高原中东部土壤中PAHs同分异构体特征比值 Fig. 4 Specific isomeric ratios of PAH species in soil samples from the central and eastern Qinghai-Tibetan Plateau

2.3.2 主成分分析

主成分分析也常被用来做来源解析[39], 用以进一步判断来源.运用SPSS软件, 对55个样品PAHs进行主成分因子分析, KMO检验结果为0.815, 说明适合进行主成分分析.如表 3, 提取累积方差贡献率89.92%.因子1中高环分子(BaA、Chr、BbF、BaP、InP和BghiP)载荷较高, 高环分子的来源主要为石油燃烧源.因子2中Flu和Phe载荷高, 这两种化合物主要是由炼焦活动产生[40].在因子3中Acy载荷最高, 其主要是薪柴燃烧的特征产物[41].根据以上3个主成分结果, 将主成分因子作为自变量(X1X2X3), 以16种多环芳烃总量为因变量进行多元线性回归, 通过回归系数得到来源的相对贡献率[22], 得出青藏高原中东部土壤PAHs来源于煤、石油等化石燃料高温燃烧占27.29%, 石油源和生物质燃烧产生PAHs占58.82%, 而由煤燃烧产生的PAHs只占13.89%(表 3).

表 3 青藏高原中东部土壤PAHs主成分分析旋转成分矩阵 Table 3 PCA results of the soil samples from the centraland eastern Qinghai-Tibetan Plateau

比值法和主成分分析法对采样点的PAHs进行来源分析结果显示:青藏高原中东部PAHs来源主要是石油燃烧源和生物燃烧源.本研究采样点位于青藏高原中东部地区, 经济不发达, 生活水平不高, 大部分地区还是以使用薪柴、牛粪等生物质能为主, 与当地能源利用情况基本符合; 而又主要沿着青藏公路采样, 交通的贡献相对较大, 所以存在石油燃烧源成分.

2.4 PAHs生态风险评价

参照荷兰土壤质量标准[22](表 1), 本研究区域的土壤中Phe的超标率达到87.27%, Fluo超标率达83.63%, Nap、Chr的超标率为5.50%, InP、BghiP的超标率达到4.00%, 尤其是毒性较大的BaP也有超标, 反映了青藏高原中东部土壤受到一定程度的PAHs污染, 应予以重视.

为了进一步确定PAHs的生态风险, 采用苯并(a)芘的毒性当量浓度TEQBaP对PAHs进行生态风险评价[42].其计算公式为:

TEQBaP= Σ组分i的浓度×组分i的毒性当量因子

表 1列出了16种PAHs的毒性当量因子.将55个采样点的浓度及毒性因子代入上式, 计算出青藏高原中东部各采样点的总体风险水平(图 5), 土壤中16种PAHs的总TEQBaP的范围在3.73~79.32 μg·kg-1, 平均值为12.84 μg·kg-1.其中大约4.00%的土样中的值超过荷兰土壤标准目标参考值(33.0 μg·kg-1), 最高值为79.32 μg·kg-1.通过图 5所示, 整体上研究区土壤的毒性较低.

图 5 青藏高原中东部各采样点苯并(a)芘毒性当量浓度 Fig. 5 Toxic equivalent concentrations of BaP in the soil samples of the central and eastern Qinghai-Tibetan Plateau

3 结论

(1) 青藏高原中东部土壤中16种PAHs含量为40.47~1 276.40 μg·kg-1, 平均值为267.97 μg·kg-1.研究区土壤PAHs主要以2~3环为主, 其中Phe的含量较高, 所占质量分数较大.

(2) 源解析结果表明青藏高原中东部土壤PAHs其污染来源主要是燃烧源, 主要是石油燃烧源和生物燃烧源..

(3) 研究区域有4.0%的土壤PAHs超过荷兰土壤质量标准和苯并(a)芘的毒性当量浓度, 大部分土壤处于无污染和轻度污染, 少部分表层土壤存在潜在的生态风险.

参考文献
[1] Zhang D, Wang J J, Zeng H. Soil polycyclic aromatic hydrocarbons across urban density zones in Shenzhen, China: occurrences, source apportionments, and spatial risk assessment[J]. Pedosphere, 2016, 26(5): 676-686. DOI:10.1016/S1002-0160(15)60076-5
[2] 师阳, 孙玉川, 梁作兵, 等. 重庆金佛山土壤中PAHs含量的海拔梯度分布及来源解析[J]. 环境科学, 2015, 36(4): 1417-1424.
Shi Y, Sun Y C, Liang Z B, et al. Altitudinal gradient distribution and source analysis of PAHs content of topsoil in Jinfo mountain, Chongqing[J]. Environmental Science, 2015, 36(4): 1417-1424.
[3] Lin H, Wang X P, Gong P, et al. The influence of climate change on the accumulation of polycyclic aromatic hydrocarbons, black carbon and mercury in a shrinking remote lake of the southern Tibetan Plateau[J]. Science of the Total Environment, 2017, 601-602: 1814-1823. DOI:10.1016/j.scitotenv.2017.06.038
[4] Nam J J, Song B H, Eom K M., et al. Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea[J]. Chemosphere, 2003, 50(10): 1281-1289. DOI:10.1016/S0045-6535(02)00764-6
[5] Hu G J, Chen S L, Shi W, et al. Identification of polycyclic aromatic hydrocarbons in soils in Taizhou, East China[J]. Environmental Geochemistry and Health, 2015, 37(3): 429-439. DOI:10.1007/s10653-014-9656-x
[6] 谢婷, 张淑娟, 杨瑞强. 青藏高原湖泊流域土壤与牧草中多环芳烃和有机氯农药的污染特征与来源解析[J]. 环境科学, 2014, 35(7): 2680-2690.
Xie T, Zhang S J, Yang R Q. Contamination levels and source analysis of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils and grasses from lake catchments in the Tibetan Plateau[J]. Environmental Science, 2014, 35(7): 2680-2690.
[7] 陈敏, 陈莉, 黄平. 乌鲁木齐土壤中多环芳烃的污染特征及生态风险评价[J]. 中国环境监测, 2015, 31(2): 84-94.
Chen M, Chen L, Huang P. Concentration and ecological risks of polycyclic aromatic hydrocarbons in the surface soils of Urumqi area, China[J]. Environmental Monitoring in China, 2015, 31(2): 84-94.
[8] 罗东霞, 张淑娟, 杨瑞强. 藏东南色季拉山土壤中有机氯农药和多环芳烃的浓度分布及来源解析[J]. 环境科学, 2016, 37(7): 2745-2755.
Luo D X, Zhang S J, Yang R Q. Distribution and source analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in soils from Shergyla mountain, southeast Tibetan Plateau[J]. Environmental Science, 2016, 37(7): 2745-2755.
[9] 周变红, 张承中, 王格慧. 西安城区大气中多环芳烃的季节变化特征及健康风险评价[J]. 环境科学学报, 2012, 32(9): 2324-2331.
Zhou B H, Zhang C Z, Wang G H. Seasonal variation and health risk of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the urban area of Xi'an[J]. Acta Scinetiae Circumstantiae, 2012, 32(9): 2324-2331.
[10] 李静雅, 吴迪, 许芸松, 等. 长江三角洲区域表土中多环芳烃的近期分布与来源[J]. 环境科学, 2016, 37(1): 253-261.
Li J Y, Wu D, Xu Y S, et al. Recent distribution and sources of polycyclic aromatic hydrocarbons in surface soils from Yangtze river delta[J]. Environmental Science, 2016, 37(1): 253-261.
[11] Wild S R, Jones K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget[J]. Environmental Pollution, 1995, 88(1): 91-108. DOI:10.1016/0269-7491(95)91052-M
[12] Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil[J]. Geoderma, 2007, 141(3-4): 157-166. DOI:10.1016/j.geoderma.2007.07.007
[13] Khan S, Cao Q. Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons[J]. Journal of Soils and Sediments, 2012, 12(2): 178-184. DOI:10.1007/s11368-011-0427-3
[14] 章迪, 曹善平, 孙建林, 等. 深圳市表层土壤多环芳烃污染及空间分异研究[J]. 环境科学, 2014, 35(2): 711-718.
Zhang D, Cao S P, Sun J L, et al. Occurrence and spatial differentiation of polycyclic aromatic hydrocarbons in surface soils from Shenzhen, China[J]. Environmental Science, 2014, 35(2): 711-718.
[15] Yin C Q, Jiang X, Yang X L, et al. Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China[J]. Chemosphere, 2008, 73(3): 389-394. DOI:10.1016/j.chemosphere.2008.05.041
[16] 林纪旺, 倪进治, 杨红玉, 等. 泉州市表层土中多环芳烃的含量、来源及其生态风险评价[J]. 环境科学, 2011, 32(7): 2074-2080.
Lin J W, Ni J Z, Yang H Y, et al. Concentrations, sources and ecological risks of polycyclic aromatic hydrocarbons in the topsoils of Quanzhou City, China[J]. Environmental Science, 2011, 32(7): 2074-2080.
[17] Wu C X, Xiong X, Huang X L, et al. Occurrence and distribution of organochlorine pesticides and polycyclic aromatic hydrocarbons in surface sediments from Qinghai Lake, northeast Qinghai-Tibet plateau, China[J]. Journal of Great Lakes Research, 2014, 40(3): 675-683. DOI:10.1016/j.jglr.2014.05.003
[18] Luo W, Gao J J, Bi X, et al. Identification of sources of polycyclic aromatic hydrocarbons based on concentrations in soils from two sides of the Himalayas between China and Nepal[J]. Environmental Pollution, 2016, 212: 424-432. DOI:10.1016/j.envpol.2015.11.018
[19] Wang C F, Wang X P, Gong P, et al. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air-soil exchange[J]. Environmental Pollution, 2014, 184: 138-144. DOI:10.1016/j.envpol.2013.08.029
[20] 李全莲, 王宁练, 武小波, 等. 青藏高原冰川雪冰中多环芳烃的分布特征及其来源研究[J]. 中国科学:地球科学, 2010, 40(10): 1399-1409.
Li Q L, Wang N L, Wu X B, et al. Sources and distribution of polycyclic aromatic hydrocarbons of different glaciers over the Tibetan Plateau[J]. Science China: Earth Science, 2010, 40(10): 1189-1198.
[21] Zhu Y D, Yang Y Y, Liu M X, et al. Concentration, distribution, source, and risk assessment of PAHs and heavy metals in surface water from the Three Gorges reservoir, China[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(6): 1593-1607. DOI:10.1080/10807039.2014.962315
[22] Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A, et al. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland[J]. Chemosphere, 2008, 73(8): 1284-1291. DOI:10.1016/j.chemosphere.2008.07.009
[23] 孙娜, 陆晨刚, 高翔, 等. 青藏高原东部土壤中多环芳烃的污染特征及来源解析[J]. 环境科学, 2007, 28(3): 664-668.
Sun N, Lu C G, Gao X, et al. Distribution and source of polycyclic aromatic hydrocarbons(PAHs) in soilsof east Qingzang Plateau[J]. Environmental Science, 2007, 28(3): 664-668.
[24] Yang R Q, Zhang S J, Li A, et al. Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles, and bark of the southeast Tibetan Plateau: implications for sources and environmental cycling[J]. Environmental Science & Technology, 2013, 47(22): 12736-12743.
[25] Yuan G L, Wu L J, Sun Y, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: distribution, sources, transport and contribution in global cycling[J]. Environmental Pollution, 2015, 203: 137-144. DOI:10.1016/j.envpol.2015.04.002
[26] Wang S, Ni H G, Sun J L, et al. Polycyclic aromatic hydrocarbons in soils from the Tibetan Plateau, China: distribution and influence of environmental factors[J]. Environmental Science: Processes & Impacts, 2013, 15(3): 661-667.
[27] Li Y T, Li F B, Chen J J, et al. The concentrations, distribution and sources of PAHs in agricultural soils and vegetables from Shunde, Guangdong, China[J]. Environmental Monitoring and Assessment, 2008, 139(1-3): 61-76. DOI:10.1007/s10661-007-9816-x
[28] Tay C K, Biney C A. Levels and sources of polycyclic aromatic hydrocarbons (PAHs) in selected irrigated urban agricultural soils in Accra, Ghana[J]. Environmental Earth Sciences, 2013, 68(6): 1773-1782. DOI:10.1007/s12665-012-1867-9
[29] 刘飞, 刘应汉, 王建武, 等. 太原市区土壤中多环芳烃污染特征研究[J]. 地学前缘, 2013, 68(5): 155-160.
Liu F, Liu Y H, Wang J W, et al. Pollution characteristics of polycyclic aromatic hydrocarbons in the topsoil of Taiyuan city, north China[J]. Earth Science Frontiers, 2013, 68(6): 1773-1782.
[30] Satya, Upreti D K, Patel D K. Rinodina sophodes (Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur City, India[J]. Environmental Monitoring and Assessment, 2012, 184(1): 229-238. DOI:10.1007/s10661-011-1962-5
[31] 胡健, 张国平, 刘頔, 等. 贵阳市表层土壤中多环芳烃的分布特征及来源解析[J]. 生态学杂志, 2011, 30(9): 1982-1987.
Hu J, Zhang G P, Liu D, et al. Distribution characteristics and source analysis of PAHs in topsoil of Guiyang city, southwest China[J]. Chinese Journal of Ecology, 2011, 30(9): 1982-1987.
[32] Chahal M K, Toor G S, Brown P. Trace metals and polycyclic aromatic hydrocarbons in an urbanized area of Florida[J]. Soil and Sediment Contamination: An International Journal, 2010, 19(4): 419-435. DOI:10.1080/15320383.2010.486048
[33] Cachada A, Pato P, Rocha-Santos T, et al. Levels, sources and potential human health risks of organic pollutants in urban soils[J]. Science of the Total Environment, 2012, 430: 184-192. DOI:10.1016/j.scitotenv.2012.04.075
[34] 邹正禹, 唐海龙, 刘阳生. 北京市郊农业土壤中多环芳烃的污染分布和来源[J]. 环境化学, 2013, 32(5): 874-880.
Zou Z Y, Tang H L, liu Y S. Source and distributioncharacteristics of polycyclic aromatic hydrocarbons in agricultural soils in Beijing suburbs[J]. Environmental Chemistry, 2013, 32(5): 874-880. DOI:10.7524/j.issn.0254-6108.2013.05.022
[35] Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B, et al. Effect of flooding on contamination of agricultural soils with metals and PAHs: the middle vistula gap case study[J]. Water, Air, & Soil Pollution, 2012, 223(2): 687-697.
[36] Edwards N T, Ross-Todd B M, Garver E G. Uptake and metabolism of 14C anthracene by soybean (Glycine max)[J]. Environmental and Experimental Botany, 1982, 22(3): 349-357. DOI:10.1016/0098-8472(82)90027-2
[37] Manoli K, Kouras A, Samara C. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece[J]. Chemosphere, 2004, 56(9): 867-878. DOI:10.1016/j.chemosphere.2004.03.013
[38] Harrison R M, Smith D J T, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U. K.[J]. Environmental Science & Technology, 1996, 30(3): 825-832.
[39] Brown A S, Brown R J C. Correlations in polycyclic aromatic hydrocarbon (PAH) concentrations in UK ambient air and implications for source apportionment[J]. Journal of Environmental Monitoring, 2012, 14(8): 2072-2082. DOI:10.1039/c2em10963h
[40] Shen G F, Tao S, Chen Y C, et al. Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China[J]. Environmental Science & Technology, 2013, 47(24): 14485-14494.
[41] Khalili N R, Scheff P A, Holsen T M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions[J]. Atmospheric Environment, 1995, 29(4): 533-542. DOI:10.1016/1352-2310(94)00275-P
[42] Agarwal T, Khillare P S, Shridhar V, et al. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 2009, 163(2-3): 1033-1039. DOI:10.1016/j.jhazmat.2008.07.058