环境科学  2017, Vol. 38 Issue (10): 4194-4211   PDF    
滦河干流水体多环芳烃与有机氯农药季节性分布、组成及源解析
王乙震1,2 , 张世禄1 , 孔凡青1 , 袁媛3     
1. 海河流域水环境监测中心, 天津 300170;
2. 南开大学环境污染过程与基准教育部重点实验室, 天津 300071;
3. 水利部海河水利委员会, 天津 300170
摘要: 为确定滦河水环境中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)和有机氯农药(organochlorine pesticides,OCPs)的季节性分布、组成及来源,分别于2015年5月(春季)和8月(夏季)采集了滦河干流14个断面春、夏两季表层水体水样,采用GC-MS/MS分析了水体中17种PAHs和15种OCPs浓度.结果表明,滦河干流春季表层水体中PAHs总浓度范围是33.33~90.65 ng·L-1,平均值为52.64 ng·L-1;夏季PAHs总浓度范围是147.68~252.68 ng·L-1,平均值为169.88 ng·L-1;春季表层水体中OCPs总浓度范围是 < 0.08~3.48 ng·L-1,平均值为1.19 ng·L-1;夏季OCPs总浓度范围是 < 0.08~5.47 ng·L-1,平均值为1.02 ng·L-1.滦河干流春、夏两季表层水体中PAHs季节性污染特征表现为夏季PAHs总浓度高于春季,OCPs季节性污染特征整体表现为滦县、大黑汀水库坝上、潘家口村、郭家屯、曲家湾和白城子等6个断面春季OCPs总浓度低于夏季,其他8个监测断面则表现为春季要普遍高于夏季.从滦河春、夏两季表层水体PAHs和OCPs组成特征来看,春、夏两季PAHs以中低环为主且不同环数PAHs组成比例差异明显,其中春季主要以三环芳烃为主,其次是四环和二环,占PAHs总浓度的比例分别为51.18%~67.55%(平均为61.39%)、11.78%~33.94%(平均为20.97%)和13.31%~27.12%(平均为16.94%);萘(Naphthalene,Nap)对滦河干流夏季表层水体中PAHs总浓度贡献最大,导致夏季PAHs以二环芳烃为主,占PAHs总浓度的比例为77.08%~90.62%(平均为83.34%),其次是三环芳烃和四环芳烃,分别占PAHs总浓度比例为7.09%~15.22%(平均为12.40%)和2.23%~7.49%(平均为3.97%);春、夏两季表层水体中OCPs只有六六六(hexachlorocyclohexanes,HCHs)和滴滴涕(dichlorodiphenyltrichloroethanes,DDTs)有不同程度检出,且呈现以HCHs为主的污染特征,大部分断面HCHs主要组成部分是β-HCH,其中春季占HCHs总浓度的43.78%~70.09%,平均比例为56.25%;夏季占HCHs总浓度的53.63.00%~64.31%,平均比例为58.37%,其他断面则以α-HCH和γ-HCH为主要组成.分析滦河春、夏两季表层水体中PAHs和OCPs的来源,PAHs同分异构体比值显示滦河干流表层水体中PAHs主要来源于燃烧源,部分监测断面还存在石油源和混合源.OCPs同分异构体比值显示滦河干流春、夏两季表层水体中HCHs主要来源于环境残留和大气的长距离传输,另外春季乌龙矶和三道河子断面、夏季大黑汀水库坝上断面可能有新的林丹或γ-HCH输入;DDTs主要来源于新源输入和环境残留,其中潘家口水库坝上、三道河子、外沟门子、白城子、正蓝旗和闪电河水库等断面DDTs污染可能是由于新源输入,姜各庄和郭家屯断面DDTs主要来源于环境残留.滦河干流表层水体中除Chr浓度超过了美国国家水质标准外,其他各单体PAHs未超过各国或组织制定的水质标准,同时各单体PAHs也未超过不同国家或组织制定的水生生物暴露安全标准,但PAHs总浓度超过了美国环境质量标准和欧盟最大允许浓度规定的水生生物暴露安全限值,表明可能会通过水生生物富集PAHs对人类健康构成一定威胁;OCPs浓度不超过不同国家和组织制定的地表水水质标准,也不超过美国环保署制定的淡水水体水生生物水质基准,但春季姜各庄、乌龙矶、曲家湾和白城子及夏季潘家口水库坝上、潘家口村、曲家湾、白城子等断面α-HCH浓度超过其人体健康水质基准,春季闪电河水库断面pp'-DDD浓度,以及姜各庄、三道河子、郭家屯和闪电河水库等断面pp'-DDE浓度均超过了其人体健康水质基准,表明α-HCH、pp'-DDD和pp'-DDE对滦河干流这些断面周边居民健康会产生潜在有害影响.
关键词: 滦河      多环芳烃      有机氯农药      分布      组成      来源分析     
Seasonal Distribution, Composition, and Source Apportionment of Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in the Main Stream of the Luanhe River
WANG Yi-zhen1,2 , ZHANG Shi-lu1 , KONG Fan-qing1 , YUAN Yuan3     
1. Haihe River Water Environmental Monitoring Center, Tianjin 300170, China;
2. Key Laboratory of Pollution Processes and Environmental Criteria(Nankai University), Ministry of Education, Tianjin 300071, China;
3. Haihe River Water Conservancy Commission, Ministry of Water Resources, Tianjin 300170, China
Abstract: Occurrence of 17 polycyclic aromatic hydrocarbons (PAHs) and 15 persistent organochlorine pesticides (OCPs) were analyzed by gas chromatography coupled to tandem mass spectrometry (GC/MS/MS) during the spring and summer of 2015 in surface water at 14 sampling sites in the mainstream of the Luanhe River to elucidate their seasonal distribution, composition, and potential sources. Results showed that total PAH concentrations in the surface water of the Luanhe River ranged from 33.33 ng·L-1 to 90.65 ng·L-1(52.64 ng·L-1 in average) in spring and 147.68 ng·L-1 to 252.68 ng·L-1 (169.88 ng·L-1 in average) in summer, respectively, and total concentrations of OCPs ranged from < 0.08 ng·L-1 to 3.48 ng·L-1 (1.19 ng·L-1 in average) in spring and < 0.08 to 5.47 ng·L-1(1.02 ng·L-1 in average) in summer, respectively. Seasonal pollution characteristics of PAHs in surface water during two different seasons showed that total PAH concentrations were much higher in summer than in spring at each sampling site on the Luanhe River. While seasonal pollution characteristics of OCPs showed that total OCP concentrations were much lower in spring than in summer at six sites including Luanxian, Daheiting reservoir dam, Panjiakou Village, Guojiatun, Qujiawan, and Baichengzi, and were higher in spring than in summer at the remaining eight sites. From the perspective of spatial and temporal variations in the composition patterns of PAHs and OCPs in surface water of the Luanhe River, the low and middle ring species of PAHs were dominant in spring and summer and the proportion of PAHs with different rings showed significant differences. Three-ring PAHs dominated the samples with 51.18% and 67.55% (61.39% on average) of total PAHs in spring, and four-ring and two-ring PAHs accounted for 11.78%-33.94% (20.97% on average) and 13.31%-27.12% (16.94% on average), respectively. In the summer, In the summer, naphthalene(Nap) was the main component of total PAHs at each sampling site and PAHs were predominated by two-ring compounds with 77.08% and 90.62% (83.34% on average) of the total, and by three-ring and four-ring compounds with 7.09%-15.22% (12.40% on average) and 2.23%-7.49% (3.97% on average), respectively. Only the residues of hexachlorocyclohexanes(HCHs) and dichlorodiphenyltrichloroethanes(DDTs) were detected in surface water of the Luanhe River at different degrees and HCHs were the dominant compounds. β-HCH was the main pollutant at most sampling sites with 43.78% and 70.09% (56.25% on average) of total HCHs in the spring and with 53.63% and 64.31% (58.37% on average) in the summer. α-HCH and γ-HCH were abundant at other sampling sites. Source analysis based on the isomer ratios indicated that PAHs in the Luanhe River mainly originated from combustion sources and also likely from petroleum processes. Ratios of OCPs confirmed that historical residues and long-range atmospheric transport were the major sources of HCHs in the study area, and new sources of lindane or γ-HCH existed at Wulongji and Sandaohezi in the spring and Daheting reservoir dam in the summer. Fresh inputs at the Panjiakou reservoir dam, Sandaohezi, Waigoumenzi, Baichengzi, Zhenglanqi, and the Shandianhe reservoir, and environmental residues at Jianggezhuang and Guojiatun were the major sources of DDTs. Concentrations of single PAHs in surface water of the Luanhe River did not exceed the water quality standards of China and other countries except that chrysene(Chr) exceeded the United States national water quality standard. Individual PAHs did not exceed any safety guidelines for aquatic organisms that are exposed to PAHs in water but total concentrations of PAHs exceeded the threshold limits set by the United States Environmental Protection Agency (EPA) and the European Union. This result indicated that consuming fish and other aquatic animals might pose a potential threat to human health due to the bioaccumulation of PAHs in aquatic organisms. The concentrations of OCPs in surface water of the Luanhe River did not exceed any water quality standards or the aquatic life threshold limits for freshwater developed by the EPA. However, the concentrations of α-HCH at Jianggezhuang, Wulongji, Qujiawan, and Baichengziand sites in the spring and at the Panjiakou reservoir dam, Panjiakou village, Qujiawan, and Baichengzi sites in the summer, and concentrations of p, p'-DDD at the Shandianhe reservoir and p, p'-DDE at Jianggezhuang, Sandaohezi, Guojiatun, and Shandianhe reservoir in the spring exceeded the human health ambient water quality criteria limit developed by the EPA. This result suggests that α-HCH, p, p'-DDE, and p, p'-DDD pose a potential health risk to the residents who live near the sampling sites on the Luanhe River.
Key words: Luanhe River      polycyclic aromatic hydrocarbons      organochlorine pesticides      distribution      composition      source apportionment     

多环芳烃(polycyclic aromatic hydrocarbons, PAHs)和有机氯农药(organochlorine pesticides, OCPs)是两类典型的持久性有机污染物. PAHs是由2个或多个芳香环连接形成、超过10 000种单个化合物组成的一类复杂混合物[1], 主要通过石油类产品的泄漏及排放、干湿沉降、地表径流及污水排放等方式进入湖泊、河流等水体[2~4].由于PAHs具有较强的疏水性和低溶解性, 其进入水生态系统后首先在细粒沉积物和悬浮颗粒物表面积累, 在水体中活化后具有生物可利用性并被水生生物所利用[5], 最后累积到更高营养级的生物体内[6], 影响无脊椎动物、鱼类和两栖类等水生生物的生殖系统发育, 并可能产生致癌、致畸和致突变现象[7, 8], 进而对人类健康构成极大威胁.正是因为PAHs具有高毒性、致畸、致突变和致癌等特性, 16种PAHs已被美国EPA和欧盟列为优先控制污染物[9]. OCPs具有难降解性、生物富集性、半挥发性和高毒性等特性, 可通过各种途径在全球迁移[10], 有研究表明一些OCPs还被认为是内分泌干扰物, 能够造成人体和野生动物内分泌系统紊乱和影响生殖系统的正常功能[11, 12]. OCPs曾在世界范围内主要在农业生产活动中被广泛使用, 虽然在20世纪80年代起六六六(hexachlorocyclohexanes, HCHs)、滴滴涕(dichlorodiphenyltrichloroethanes, DDTs)等OCPs已经被禁用并被其他低毒农药所替代, 由于其具有持久性, 至今仍广泛存在于水体、土壤、空气、鱼类等各类环境介质中[13, 14], 然而在最近十几年中, 三氯杀螨醇、林丹等OCPs还在农业活动等特定范围内被广泛应用[15, 16]. OCPs可通过地表径流、工业废水排放、大气干湿沉降或远距离传输等途径进入河流、湖泊等水体中[17, 18], 进入水环境后容易被悬浮颗粒物和沉积物吸附, 在一定条件下又会释放重新进入水体, 对水生生物和人类健康构成严重危害.正因如此, OCPs是各国环保部门制订的优先控制污染物并持续开展水环境中的检测工作.由于PAHs和OCPs在环境中可持续存在, 有关河流和湖泊水体、沉积物、悬浮颗粒物等环境介质中PAHs和OCPs污染一直受到国内外学者的极大关注并成为世界范围内的研究热点, 且开展了广泛的研究[19~21].

滦河流域位于海河流域东北部, 包括滦河干流及冀东沿海32条小河, 流域面积约4.5万km2.滦河发源于河北省丰宁县西北巴彦图古尔山麓, 流经内蒙古、辽宁、河北这3个省(自治区), 经承德到潘家口穿长城入冀东平原, 至乐亭县入渤海.滦河流域是北京、天津乃至整个华北地区的生态屏障, 也是天津、唐山等大中型城市的主要水源地.伴随着经济社会的快速发展, 滦河水资源开发利用强度日益加大, 水资源短缺与生态环境问题日趋严重, 水资源管理问题突出, 饮用水安全受到严重威胁.

研究滦河PAHs、OCPs等持久性有机污染物的环境存在, 是评估其对水生生物、人类和水生态系统的风险, 并采取有效控制策略的基础, 因此研究水环境中PAHs和OCPs的迁移、分布规律、污染水平具有重要的环境意义.目前, 关于滦河流域PAHs、OCPs污染状况, 仅见PAHs污染的少量报道, 研究区域主要集中于滦河中下游地区, 且主要体现在水体、颗粒物、沉积物等不同环境介质中PAHs污染特征、风险评价等方面[22, 23], 为掌握滦河持久性有机污染物污染状况提供了一定的数据资料, 然而针对滦河流域OCPs污染研究方面, 至今仍缺少相关资料.随着人类活动对滦河干扰程度的增大, 近几年来滦河流域水体环境状况发生了很大变化, 为有效评价滦河的持久性有机污染物的污染现状, 识别人类活动对滦河水质状况的影响, 评估持久性有机污染物对人类和生态系统的风险, 亟需进一步掌握滦河水体PAHs和OCPs的污染特征及来源.本文通过监测滦河干流表层水体中17种PAHs和15种OCPs的组成、分布及浓度, 分析整条滦河干流水体中持久性有机污染物的季节性污染特征及来源, 以期为滦河持久性有机污染物有效控制提供科学依据和技术支撑.

1 材料与方法 1.1 监测断面布设和样品采集

结合滦河流域实际情况, 从滦河入海口到上游源头范围内共布设14个能代表滦河干流水质状况的监测断面, 具体位置如图 1所示.样品分别采集于2015年的春季和夏季, 时间分别是5月19~25日和8月25~30日, 各采样点取表层(0~0.5 m)水样1 L, 用棕色玻璃瓶保存并带回实验室分析测定.

1.姜各庄; 2.滦县; 3.大黑汀水库坝上; 4.潘家口水库坝上; 5.潘家口村; 6.乌龙矶; 7.下板城; 8.三道河子; 9.郭家屯; 10.外沟门子; 11.曲家湾; 12.白城子; 13.正蓝旗; 14.闪电河水库 图 1 滦河采样断面示意 Fig. 1 Sampling sites on the Luanhe River

1.2 实验仪器与试剂

Agilent 7890A/7000B气相色谱-三重串联四级杆质谱(Agilent公司, 美国); 全自动固相萃取仪(GL Science公司, 日本); Bond Elut C18固相萃取小柱(500 mg/6 mL, Agilent公司).

萘(Naphthalene, Nap)、苊(Acenaphthene, AcP)、苊烯(Acenaphthylene, AcPy)、芴(Fluorene, FL)、菲(Phenanthrene, Phe)、蒽(Anthracene, Ant)、咔唑(Carbazole, Car)、荧蒽(Fluoranthene, Flu)、芘(Pyrene, Pyr)、苯并[a]蒽(Benz(a)anthracene, BaA)、(Chrysene, Chr)、苯并[b]荧蒽(Benz(b)fluoranthene, BbFL)、苯并[k]荧蒽(Benz(k)fluoranthene, BkFL)、苯并[a]芘(Benzo(a)pyrene, BaP)、茚并[1, 2, 3-cd]芘(Indeno(1, 2, 3, -cd)pyrene, InP)、苯并(g, h, i)苝(Benzo(g, h, i)pylene, BghiP)和二苯并(a, h)蒽(Drbenz(a, h)anbhracene, DBA)等17种PAHs标准品, 以上均购自美国Accustandard公司.

α-六六六(α-HCH)、β-六六六(β-HCH)、林丹(γ-HCH)、δ-六六六(δ-HCH)和p, p′-滴滴伊(p, p′-DDE)、p, p′-滴滴滴(p, p′-DDD)、o, p′-滴滴涕(o, p′-DDT)和p, p′-滴滴涕(p, p′-DDT)等8种OCPs混标, 购自环境保护部标准样品研究所; 七氯(Heptachlor)、环氧七氯(Heptachlor epoxide)、艾氏剂(Aldrin)、狄氏剂(Dieldrin)、异狄氏剂(Isodrin)、α-硫丹(α-Endosulfan)和β-硫丹(β-Endosulfan)等7种OCPs单标, 购自农业部环境保护科学研究所.

色谱纯乙酸乙酯和二氯甲烷均购自韩国Duksan公司; 色谱纯甲醇购自美国Baker公司.

1.3 水体中多环芳烃与有机氯农药的测定 1.3.1 前处理条件

使用Bond Elut C18固相萃取小柱对水样进行富集.小柱经5 mL流速为3 mL·min-1的二氯甲烷和乙酸乙酯洗涤、10 mL流速为5 mL·min-1的甲醇和高纯水活化后, 经净化后的1000 mL水样以15 mL·min-1流速通过小柱, 富集完成后氮吹干燥, 再用2 mL乙酸乙酯、2 mL二氯甲烷和2 mL二氯甲烷, 分别以1 mL·min-1、1 mL·min-1和2 mL·min-1的流速依次洗脱小柱, 合并收集洗脱液.经干燥浓缩后, 用二氯甲烷定容至1 mL, 摇匀后, 上机分析.

1.3.2 气相色谱-质谱条件

气相色谱条件:HP-5MS毛细管柱(30m×0.25mm×0.25 μm); 传输线温度:280℃; 载气:高纯氦气(>99.999%), 柱流量:1.2 mL·min-1; 进样压力11.681 psi(恒压模式); 进样模式:不分流进样; 进样体积1 μL.

PAHs检测升温程序为:80℃保持1 min, 以20 ℃·min-1升至250℃, 再以10 ℃·min-1升至300℃, 保持5.5 min, 总分析时间为20 min; 进样口温度:270℃.

OCPs检测升温程序为:80℃保持1 min, 以20 ℃·min-1升至230℃, 保持6 min, 总分析时间为14.5 min; 进样口温度:270℃.

质谱条件:EI源, 能量70 eV, 温度230℃; 四极杆温度:150℃; 碰撞气为高纯氮气; 参数优化方式为SCAN模式和productor模式; 检测方式为MRM模式.

1.3.3 质量控制和质量保证

样品分析过程中参考USEPA和《水环境监测规范》(SL 219-2013) 中QA/QC要求, 通过方法空白、空白加标、样品加标、样品平行样等方法保证监测结果质量.本研究水样中OCPs回收率范围为70.30%~115.10%, 相对标准偏差(RSD)为0.60%~12.20%;检出限范围为0.08~0.38 ng·L-1. PAHs回收率范围69.80%~111.60%之间, 相对标准偏差(RSD)为4.90%~12.60%;检出限范围为0.10~0.25 ng·L-1.样品进样后利用Agilent 7890A/7000B气相色谱-三重串联四级杆质谱的Mass Hunter数据采集软件对17种PAHs和15种OCPs进行定量分析.

1.4 数据处理

采用SPSS 17.0统计软件进行数据分析.

2 结果与讨论 2.1 滦河干流水体PAHs的季节性分布、组成及来源 2.1.1 滦河干流不同季节水体PAHs浓度

滦河干流春、夏两季表层水体中17种PAHs浓度分析结果如表 1所示.从中可以看出, 滦河干流春季表层水体中PAHs总浓度范围是33.33~90.65 ng·L-1, 平均值为52.64 ng·L-1, 最高浓度出现在姜各庄断面, 主要原因是该断面位于滦河下游并且接近入海口, 主要承接上游工业城市唐山市排放的生活污水和工业废水; 夏季PAHs总浓度范围是147.68~252.68 ng·L-1, 平均值为169.88 ng·L-1, 最高浓度出现在潘家口水库坝上断面, 可能原因是夏季该采样断面水体受库区机动船舶的影响更大, 采样点附近停放的大小船舶所需柴油、汽油等油料的燃烧、泄漏及尾气排放等均会带来PAHs污染, 这与PAHs同分异构体比值得出的结果也一致. 17种PAHs中, 春季除BaP、InP、BghiP和DBA等4种均未检出外, 其他13种全部检出, 检出浓度较高的3种PAHs依次是Phe、Nap和AcP, 分别占总浓度的29.50%、14.72%和13.43%, 可见Phe对滦河干流春季表层水体中PAHs总浓度贡献最大; 夏季除InP、BghiP和DBA等3种均未检出外, 其他14种全部检出, 检出浓度较高的两种PAHs依次是Nap、Phe和Flu, 分别占总浓度的82.98%、6.65%和1.91%, 可见Nap对滦河干流夏季表层水体中PAHs总浓度贡献最大.

表 1 滦河干流表层水体中PAHs污染状况1)/ng·L-1 Table 1 Concentrations of polycyclic aromatic hydrocarbons in experimental water body of the Luanhe River/ng·L-1

分析滦河干流各监测断面表层水体中PAHs季节性污染差异, 各监测断面春、夏两季表层水体中17种PAHs总浓度如图 2所示.从中可以看出, 由于各监测断面夏季表层水体中Nap浓度普遍较高, 其范围为120.85~227.75 ng·L-1, 占PAHs总浓度的比例范围为75.71%~90.14%, 造成滦河干流各监测断面夏季PAHs总浓度要远高于春季PAHs总浓度, 并呈现出显著差异(P<0.05).在研究水环境中PAHs浓度季节性变化过程时, 根据低环数PAHs在水-气界面的交换作用, 一般春季低环数PAHs浓度以及PAHs总浓度均要高于其夏季浓度, 主要原因是由于Nap等低环数PAHs具有较高的蒸气压, 且春季温度较低, 大气中以气态形式存在的低环数PAHs通过水-气交换大量进入水体中, 导致水体中低环数PAHs浓度升高[24~26]; 另外, 夏季强光照作用造成的PAHs光降解也能导致夏季PAHs浓度比春季浓度要低[26].滦河干流各监测断面PAHs季节性污染特征同北京市枯水和丰水季水源水体中PAHs分布特征[27]、以及西江水体中PAHs的季节分布特征[28]相似, 其表层水体中夏季PAHs总浓度要远高于春季PAHs总浓度.地表径流是PAHs很重要的来源[29], 水体PAHs污染往往呈现面源污染的特征.滦河流域夏季处于丰水期, 一般在径流量较大的丰水期, 水流对周边表层土壤及河流沉积物的侵蚀作用加强, 水体悬浮颗粒物质量浓度和浊度增加, 更多来自于沉积物和土壤中的PAHs从颗粒相中进入溶解相中, 导致滦河干流水体中PAHs浓度增高.有研究表明[28], 溶解相和颗粒相中PAHs的浓度都与悬浮颗粒物的含量呈线性关系, 即随悬浮颗粒物的含量增加而增加.另外, 由于夏季温度高, PAHs从沉积物和悬浮颗粒物上解吸附作用增强, 也是导致滦河干流水体中PAHs浓度升高的原因之一.

图 2 滦河干流各断面水体中PAHs总浓度 Fig. 2 Concentrations of total PAHs in surface waters of the Luanhe River

2.1.2 滦河干流不同季节水体PAHs组成特征

滦河干流春、夏两季表层水体中17种PAHs污染组成特征如图 3所示.从滦河干流春、夏两季表层水体17种PAHs组成上看, 春季主要以三环芳烃为主, 其次是四环和二环, 占PAHs总浓度的比例分别为51.18%~67.55%(平均为61.39%)、11.78%~33.94%(平均为20.97%)和13.31%~27.12%(平均为16.94%), 闪电河水库断面三环芳烃所占比例最高, 达到67.55%;与春季PAHs组成比例相比, 滦河干流夏季以二环芳烃为主, 占PAHs总浓度的比例为77.08%~90.62%(平均为83.34%), 这还是由于各监测断面二环芳烃Nap浓度高造成, 其次是三环芳烃和四环芳烃, 分别占PAHs总浓度比例为7.09%~15.22%(平均为12.40%)和2.23%~7.49%(平均为3.97%); 滦河干流春、夏两季表层水体中其他各环芳烃浓度均不超过PAHs总浓度的1%.

图 3 滦河干流各断面水体中PAHs组成比例 Fig. 3 Compositions of PAHs with different ring numbers in the surface water of the Luanhe River

总体来看, 滦河干流春、夏两季表层水体中PAHs的组成均以中低环芳烃为主, 主要原因在于高分子量PAHs的辛醇-水分配系数大, 其疏水性更强, 更易于向沉积物和颗粒物相分配, 低分子量PAHs的辛醇-水分配系数则相对较小, 疏水性较小, 相对而言更易于在水相中赋存; 另外可能与滦河PAHs的污染源有关, 研究表明低分子量(2~3环)的PAHs则主要来源于石油类产品和化石燃料不完全燃烧或成岩作用, 4环及以上的PAHs主要来源于化石燃料高温燃烧与裂解[30, 31].

2.1.3 滦河干流不同季节水体PAHs来源分析

PAHs人为来源主要包括燃烧源和石油源, 燃烧源包含煤、石油等化石燃料、生物燃料等的不完全燃烧、机动车尾气的排放, 以及人类工业活动等, 石油源包含石油开采、运输、生产、使用过程的泄漏与排放[32, 33].由于不同来源的PAHs具有特定组成特征, 常用其同分异构体比值来解析在环境介质中的来源[33, 34]. Ant、Phe、Flu、Pyr、BaA、Chr等PAHs性质相对稳定, Ant/(Phe+Ant), Flu/(Pyr+Flu)和BaA/(BaA+Chr)值被广泛用于指示其来源[34].当Ant/(Phe+Ant)比值小于0.1时, 表示PAHs主要来自于石油源, 大于0.1表示主要为燃烧源, 一般在机动车尾气排放和原油、柴油、煤炭、焦炉、木材燃烧过程产生的物质中Ant/(Phe+Ant)比值均大于0.1[35]; 当Flu/(Flu+Pyr)比值小于0.4时, 表示其主要来源为石油源, 介于0.4和0.5之间为液态石油类产品(汽油、煤油、原油等)的燃烧, 大于0.5为煤和草、木材等生物燃料的燃烧; 当BaA/(BaA+Chr)比值小于0.2时, 表示其主要来源为石油源, 大于0.35为燃烧源, 介于0.2和0.35之间为混合源[34, 35].

分别计算滦河干流春、夏两季表层水体中Ant/(Phe+Ant), Flu/(Pyr+Flu)和BaA/(BaA+Chr)比值, 以Ant/(Phe+Ant)为X轴, Flu/(Pyr+Flu)为Y轴, BaA/(BaA+Chr)为Z轴作PAHs来源诊断图, 结果如图 4所示.从中可以看出, 在滦河干流春季表层水体中, 所有监测断面Ant/(Phe+Ant)比值均大于0.1; Flu/(Pyr+Flu)比值在姜各庄断面介于0.4和0.5之间, 其他监测断面均大于0.5; BaA/(BaA+Chr)比值在三道河子断面大于0.35, 在姜各庄、潘家口水库坝上、潘家口村、郭家屯、外沟门子和曲家湾等6个断面小于0.2, 在其他断面介于0.2和0.35之间; 在滦河干流夏季表层水体中, 所有监测断面Ant/(Phe+Ant)比值均大于0.1, Flu/(Pyr+Flu)比值均大于0.5, BaA/(BaA+Chr)比值小于0.2的断面是滦县, 大于0.35的断面有乌龙矶、下板城和三道河子, 其他断面介于0.2~0.35之间.可见从PAHs同分异构体比值诊断结果来看, 滦河干流表层水体中PAHs主要来源于燃烧源, 部分监测断面如春季姜各庄、潘家口水库坝上、潘家口村、郭家屯、外沟门子、曲家湾和夏季滦县还可能存在石油源, 以及春季滦县、大黑汀水库坝上、乌龙矶、下板城、三道河子、白城子、正蓝旗闪电河水库和夏季除滦县、乌龙矶和三道河子外的其他断面可能存在混合源, 并且在春、夏两季无明显差别.该诊断结果与滦河干流实际情况相符, 滦河上游人口相对稀少, 主要以村庄、县城为主, 中下游地区人口众多, 主要有承德、唐山等大中型城市, 滦河流域居民日常生活中的煤炭、草、木柴等燃料的燃烧, 交通运输活动过程中机动车所需柴油、汽油等油料的燃烧、泄漏及尾气排放, 以及每天产生大量的生活污水和工业废水, 上述原因构成滦河干流表层水体PAHs的主要来源.

图 4 滦河干流春、夏两季水体中PAHs来源诊断三维图 Fig. 4 Plots of PAHs isomer pair ratios for source identification in surface water of the Luanhe River

2.1.4 滦河干流表层水体PAHs污染水平

表 2列出的是中国地表水环境质量标准[36]、美国环保署颁布的国家水质标准[37]、欧盟水框架指令[38]和加拿大环境质量准则[39]中规定的PAHs浓度限值.通过PAHs水质标准可反映其在滦河干流水体中的污染水平, 本研究中滦河干流春季滦县断面表层水体中Chr浓度为8.12 ng·L-1, 从表 2可以看出, 该值超过了美国国家水质标准(限值为3.80 ng·L-1), 除此之外其他断面均不超过上述标准规定的限值.

表 2 不同国家或组织PAHs水质标准1)/ng·L-1 Table 2 Water quality standards for PAHs/ng·L-1

一些国家和国际组织通过大量毒理学实验数据及一系列外推计算制定了水生生物暴露于PAHs污染水体的安全标准[40](如表 3).从表 3中可见, 滦河干流春、夏两季表层水体中各单体PAHs均未超过各国制定的水生生物暴露安全标准, 但PAHs总浓度超过了美国环境质量标准和欧盟最大允许浓度规定的水生生物暴露安全限值, 表明可能会通过水生生物富集PAHs对人类健康构成一定威胁.

表 3 水生生物暴露PAHs水体的安全标准1)/μg·L-1 Table 3 Safety guidelines for aquatic organisms exposed to PAHs in water/μg·L-1

表 4是滦河干流及国内外其他重要河流水体中PAHs的污染状况比较.从中可以看出, 滦河干流水体PAHs污染水平与其在2008~2009年的历史水平相当.与国内其他重要河流水体PAHs污染状况相比, 滦河干流水体PAHs污染水平要高于漳卫南运河、松花江、长江(重庆段)、珠江三角洲、珠江、东江、西江和珠江口(2003年), 其中, 滦河干流水体PAHs浓度约为松花江、长江(重庆段)、珠江三角洲、珠江、东江水体PAHs浓度的2~5倍; 滦河干流水体PAHs污染水平要低于大辽河、黄河中下游、黄河(河南段)、长江(武汉段)、长江口、嘉陵江(重庆段)、钱塘江和珠江口(2005~2006年), 其中, 黄河中下游、长江口和钱塘江水体PAHs浓度约为滦河干流水体PAHs浓度的2~3倍, 大辽河、黄河(河南段)和嘉陵江(重庆段)水体PAHs浓度约为滦河干流水体PAHs浓度的6~7倍, 长江(武汉段)水体PAHs浓度约为滦河干流水体PAHs浓度的10倍.与国外部分河流水体PAHs相比, 滦河干流PAHs污染水平与匈牙利Danube河、智利Biobio河和巴基斯坦Soan河相当; 高于法国Seine河、意大利Tiber河、美国Mississipi河和York河、俄罗斯Moscow河以及澳大利亚Brisbane河PAHs浓度的2~10倍; 要低于美国Anacostia河、伊朗Soltan Abad河和Kor河、印度Yamuna河和Gomti河、孟加拉国Bangsai河、巴基斯坦Chenab河和波兰Odra河, 其中滦河干流水体PAHs浓度要比印度Yamuna河和Gomti河水体PAHs浓度低1~2个数量级, 比孟加拉国Bangsai河水体PAHs浓度低3~5个数量级.

表 4 滦河干流及国内外其他河流水体PAHs污染状况1)/ng·L-1 Table 4 Concentrations of PAHs in surface water of other rivers in China and abroad for comparison/ng·L-1

2.2 滦河干流水体OCPs的季节性分布、组成及来源 2.2.1 滦河干流不同季节水体OCPs浓度

滦河干流春、夏两季表层水体中15种OCPs污染浓度分析结果如表 5所示.从中可以看出, 滦河干流春、夏两季表层水体中只有HCHs和DDTs有不同程度检出, 其他几种OCPs均未检出.其中, 春季有3种HCHs和3种DDTs被检出, HCHs占OCPs总浓度的73.06%(质量分数), DDTs占OCPs总浓度的26.94%;夏季只有3种HCHs被检出, 占OCPs总浓度的100%.可见滦河干流春、夏两季表层水体的OCPs污染主要以HCHs为主, 其他OCPs的贡献很小.

表 5 滦河干流表层水体OCPs污染状况1)/ng·L-1 Table 5 Concentrations of organochlorine pesticides in surface water of the Luanhe River/ng·L-1

从季节变化上看, 由表 5可见, 春季表层水体中OCPs总浓度范围是<0.08~3.48 ng·L-1, 平均值为1.19 ng·L-1; 夏季表层水体中OCPs总浓度范围是<0.08~5.47 ng·L-1, 平均值为1.02 ng·L-1.从空间分布上看, 由图 5可见, 除滦县、大黑汀水库坝上、潘家口村、郭家屯、曲家湾和白城子等6个断面春季OCPs总浓度低于夏季OCPs总浓度外, 其他8个监测断面春季OCPs总浓度普遍要高于夏季OCPs总浓度.春、夏两季OCPs总浓度最高值分别为3.48 ng·L-1和5.47 ng·L-1, 断面分别是闪电河水库和白城子.

图 5 滦河干流各断面水体中OCPs总浓度 Fig. 5 Concentrations of total OCPs in surface water of the Luanhe River

在研究水环境中OCPs浓度季节性变化过程中, 一般在径流量较大的丰水期, 水流对土壤的侵蚀作用加强, 土壤残留的OCPs随农田地表径流进入水体, 使丰水期表层水体中OCPs浓度升高, 因此很多研究表明OCPs污染呈现面源污染的特征[74~76].滦河干流春季和夏季分别为枯水期和丰水期, 从图 5中可见, 滦县、大黑汀水库坝上、潘家口村、郭家屯、曲家湾和白城子等6个断面春季OCPs总浓度低于夏季OCPs总浓度, 即枯水期低于丰水期, 尤其是白城子断面夏季α-HCH和β-HCH浓度出现大幅增加, 上述6个断面OCPs污染呈现出面源污染的特征; 而姜各庄、潘家口水库坝上、乌龙矶、下板城、三道河子、外沟门子、正蓝旗和闪电河水库等8个监测断面表层水体OCPs浓度变化却表现为春季高于夏季, 并没有呈现面源污染特征, 分析原因可能是这几个断面丰水期由于降雨量增大或由此带来的上游来水对水体的稀释作用造成.从滦河干流春、夏两季表层水体中HCHs和DDTs的组成上看, HCHs夏季含量高于春季, 面源污染占主导; 而DDTs夏季则全部未检出, 低于春季含量, 表明稀释作用占主导.

2.2.2 滦河干流不同季节水体OCPs组成特征

根据上述分析, 从滦河干流春、夏两季表层水体中15种OCPs的检出情况来看主要以HCHs为主, 因此本研究主要分析滦河干流春、夏两季表层水体中HCHs污染组成特征.滦河干流春、夏两季表层水体HCHs组成特征如图 6所示.从中可以看出, 春季各监测断面表层水体中, 姜各庄、大黑汀水库坝上、潘家口水库坝上、潘家口村、乌龙矶、下板城、郭家屯等7个断面HCHs以β-HCH为主, 占HCHs总浓度的43.78%~70.09%, 平均比例为56.25%;外沟门子、曲家湾、白城子和闪电河水库等4个断面HCHs以α-HCH为主, 占HCHs总浓度的50.04%~65.59%, 平均比例为58.01%;三道河子HCHs以γ-HCH为主, 占HCHs总浓度的77.79%.夏季各监测断面表层水体中, 姜各庄、滦县、乌龙矶、下板城、三道河子、外沟门子、闪电河水库等7个监测断面HCHs以β-HCH为主, 占HCHs总浓度的53.63.00%~64.31%, 平均比例为58.37%;潘家口水库坝上、潘家口村、郭家屯、曲家湾、白城子等5个断面HCHs以α-HCH为主, 占HCHs总浓度的39.22%~64.42%, 平均比例为52.26%;大黑汀水库坝上HCHs以γ-HCH为主, 占HCHs总浓度的42.35%.水体中HCHs以β-HCH为主的原因主要取决于β-HCH的自身结构, 其物理性质相对于其他HCHs组分更为稳定, 水溶性和挥发性较低, 是最不容易被降解的HCH异构体; HCHs以α-HCH为主的原因主要是取决于工业品HCHs的组成, α-HCH一般占工业品HCHs的55%~80%[77], 同时γ-HCH易降解为α-HCH; 而HCHs以γ-HCH为主的原因可能主要是有新的林丹或γ-HCH输入.

图 6 滦河干流各断面水体中HCHs组成比例 Fig. 6 Composition of HCHs in surface water of the Luanhe River

2.2.3 滦河干流不同季节水体OCPs来源分析

通常用α-HCH与γ-HCH的浓度比值来判别HCHs的来源[77, 78], 一般情况下在工业品HCHs中该比值的范围为3~7, 当有林丹或γ-HCH输入时, 该比值可能接近或小于1;若该比值高于7, 可能是由于HCHs的长距离传输或者工业品HCHs在环境中的反复循环和降解, 这是因为α-HCH比γ-HCH的半衰期长约25%[79].另外, 在大气的长距离传输过程中, γ-HCH在光化学作用下可转化为α-HCH, 这也可能使α-HCH与γ-HCH的浓度比值高于7[79, 80].滦河干流春、夏两季各监测断面表层水体α-HCH/γ-HCH比值如表 6所示, 从中可见, 滦河干流春、夏两季大部分监测断面表层水体中α-HCH/γ-HCH比值要大于7, 表明这些断面表层水体中HCHs主要来源于环境残留和大气的长距离传输.而春季乌龙矶和三道河子断面α-HCH/γ-HCH比值接近或小于1, 夏季大黑汀水库坝上断面α-HCH/γ-HCH比值小于1, 表明这3个断面可能有新的林丹或γ-HCH输入.

表 6 滦河干流春夏两季表层水体α-HCH/γ-HCH比值1) Table 6 Ratios of α-HCH/γ-HCH in surface water of the Luanhe River

根据工业品DDTs的组成和DDTs在自然界中的转化情况, 通常用DDT/DDE的值来预估DDT的使用年限[81~83].一般在禁用DDT后, 随着DDT降解为DDE和DDD, DDT浓度与DDE、DDD浓度之和的比值应小于1, 如果该比值大于1, 则说明有新源输入[78, 84].本研究中滦河干流表层水体只有在春季检出p, p′-DDE、p, p′-DDD和o, p′-DDT这3种DDTs, 在潘家口水库坝上、三道河子、外沟门子、白城子、正蓝旗和闪电河水库等6个断面DDT浓度与DDE、DDD浓度之和的比值大于1, 说明这部分断面DDTs污染主要原因可能是新源输入; 姜各庄和郭家屯断面DDT浓度与DDE、DDD浓度之和的比值小于1, 说明这两个断面DDTs污染主要原因是环境残留(表 7).

表 7 滦河干流春夏两季表层水体DDT/(DDD+DDE)比值1) Table 7 Ratios of α-HCH/γ-HCH in surface water of the Luanhe River

2.2.4 滦河干流表层水体OCPs污染水平

表 8是中国地表水环境质量标准[36]、美国环保署颁布的国家水质标准[37]、欧盟水框架指令[38]和加拿大环境质量准则[39]中规定的部分OCPs浓度限值.从中可以看出, 滦河干流春、夏两季表层水体OCPs浓度均远低于上述标准规定的限值.

表 8 不同国家或组织OCPs水质标准1)/μg·L-1 Table 8 Standards for water quality of OCPs developed by different countries or organizations/μg·L-1

为保护人类和水生生物健康, 根据获取的毒理学数据和一系列数值计算, 美国环保署制定了OCPs人体健康水质基准和水生生物水质基准, 如表 9所示.参考该基准中的浓度限值, 虽然滦河干流春、夏两季表层水体中OCPs浓度不超过淡水水体水生生物水质基准, 但春季中姜各庄、乌龙矶、曲家湾、白城子等以及夏季潘家口水库坝上、潘家口村、曲家湾、白城子等各4个断面表层水体中α-HCH浓度超过人体健康水质基准, 春季中闪电河水库断面表层水体中p, p′-DDD浓度, 以及姜各庄、三道河子、郭家屯和闪电河水库等4个断面表层水体中p, p′-DDE浓度均超过了人体健康水质基准. α-HCH、p, p′-DDD和p, p′-DDE通过食物链被富集于鱼类、贝类等水生生物体内, 进而通过饮水、皮肤接触、食用鱼类或贝类等途径进入人体内, 对滦河干流这些断面附件居民健康会产生潜在有害影响, 尤其是潘家口水库作为天津、唐山等大中型城市的重要饮用水源地, 所属范围内潘家口水库坝上和潘家口村两个代表断面的表层水体中α-HCH浓度超过人体健康水质基准, 对人体健康产生的潜在影响更不容忽视.

表 9 美国环保署OCPs人体健康水质基准和水生生物水质基准1)/μg·L-1 Table 9 Human health surface water quality criteria and aquatic life criteria by EPA/μg·L-1

表 10是滦河干流及国内外其他河流水体中OCPs的污染状况比较.从中可以看出, 滦河干流水体OCPs污染水平与国内其他重要河流水体OCPs污染状况相比, 滦河干流水体OCPs污染水平与潮河和钱塘江(杭州段)相当, 低于海河(2008年)、大辽河、黄河、长江(武汉段)、长江下游、汉江、淮河、珠江和晋江, 更要远远低于海河(2004年)、黄浦江和钱塘江中OCPs污染水平, 其中, 黄浦江水体中OCPs浓度要比滦河干流水体高1~2个数量级, 海河(2004年)和钱塘江水体中OCPs浓度要比滦河干流水体高3个数量级; 与国外部分河流水体OCPs相比, 滦河干流OCPs污染状况属于低污染水平, 滦河干流水体中OCPs浓度要略低于西班牙Ebro河, 与越南Red河、俄罗斯Moscow河和巴西Cuiaba河相比低1个数量级, 与马来西亚Selangor河、印度Yamuna河和Giomti河、土耳其KüÇük Menderes河、加纳Densu河、尼日利亚Edo State河和Warri河、阿根廷Suquia河以及希腊北部河流相比, 其浓度要低2~3个数量级.

表 10 滦河干流及国内外其他河流水体OCPs污染状况1)/ng·L-1 Table 10 Concentrations of OCPs in surface water of other rivers in China and abroad for comparison/ng·L-1

3 结论

(1) 滦河干流春、夏两季表层水体中PAHs季节性污染特征表现为夏季PAHs总浓度高于春季PAHs总浓度, 其中, 滦河干流春季表层水体中PAHs总浓度范围是33.33~90.65 ng·L-1, 平均值为52.64 ng·L-1; 夏季PAHs总浓度范围是147.68~252.68 ng·L-1, 平均值为169.88 ng·L-1.从PAHs组成特征来看, 滦河干流春、夏两季表层水体中PAHs以中低环为主且不同环数PAHs组成比例差异明显, 春季主要以三环芳烃为主, 其次是四环和二环, 占PAHs总浓度的比例分别为51.18%~67.55%(平均为61.39%)、11.78%~33.94%(平均为20.97%)和13.31%~27.12%(平均为16.94%); 与春季PAHs组成比例相比, 滦河干流夏季以二环芳烃为主, 占PAHs总浓度的比例为77.08%~90.62%(平均为83.34%), 其次是三环芳烃和四环芳烃, 分别占PAHs总浓度比例为7.09%~15.22%(平均为12.40%)和2.23%~7.49%(平均为3.97%); 滦河干流春、夏两季表层水体中其他各环芳烃浓度均不超过PAHs总浓度的1%. PAHs同分异构体比值显示滦河干流表层水体中PAHs主要来源于燃烧源, 部分监测断面还存在石油源和混合源.滦河干流水体PAHs污染水平与其在2008~2009年的历史水平相当, 同国内部分河流PAHs污染水平相比, 滦河干流春、夏两季表层水体中PAHs污染水平要高, 与国外部分河流水体中PAHs污染水平相比滦河干流污染水平要低; 滦河干流春、夏两季表层水体中除Chr浓度超过了美国国家水质标准外, 其他各单体PAHs未超过各国或组织制定的水质标准, 同时各单体PAHs也未超过不同国家或组织制定的水生生物暴露安全标准, 但PAHs总浓度超过了美国环境质量标准和欧盟最大允许浓度的规定限值, 表明可能会通过水生生物富集PAHs对人类健康构成一定威胁.

(2) 滦河干流春、夏两季表层水体中OCPs季节性污染特征整体表现为滦县、大黑汀水库坝上、潘家口村、郭家屯、曲家湾和白城子等6个断面春季OCPs总浓度低于夏季, 其他8个监测断面表现为春季要普遍要高于夏季.其中, 春季表层水体中OCPs总浓度范围是<0.08~3.48 ng·L-1, 平均值为1.19 ng·L-1; 夏季OCPs总浓度范围是<0.08~5.47 ng·L-1, 平均值为1.02 ng·L-1.从OCPs组成特征来看, 滦河干流春、夏两季表层水体中OCPs只有HCHs和DDTs有不同程度检出, 且呈现以HCHs为主的污染特征, 大部分断面HCHs主要组成部分是β-HCH, 其中春季占HCHs总浓度的43.78%~70.09%, 平均比例为56.25%;夏季占HCHs总浓度的53.63.00%~64.31%, 平均比例为58.37%, 其他断面则以α-HCH和γ-HCH为主要组成. OCPs同分异构体比值显示滦河干流春、夏两季表层水体中HCHs主要来源于环境残留和大气的长距离传输, 另外春季乌龙矶和三道河子断面、夏季大黑汀水库坝上断面可能有新的林丹或γ-HCH输入; DDTs主要来源于新源输入和环境残留, 其中潘家口水库坝上、三道河子、外沟门子、白城子、正蓝旗和闪电河水库等断面DDTs污染可能是由于新源输入, 姜各庄和郭家屯断面DDTs主要来源于环境残留.同国内外部分河流OCPs污染水平相比, 滦河干流春、夏两季表层水体中OCPs污染水平均要偏低, 其浓度不超过不同国家和组织制定的地表水水质标准, 也不超过美国环保署制定的淡水水体水生生物水质基准, 但春季姜各庄、乌龙矶、曲家湾和白城子及夏季潘家口水库坝上、潘家口村、曲家湾、白城子等断面α-HCH浓度超过其人体健康水质基准, 春季闪电河水库断面p, p′-DDD浓度, 以及姜各庄、三道河子、郭家屯和闪电河水库等断面p, p′-DDE浓度均超过了其人体健康水质基准, 表明α-HCH、p, p′-DDD和p, p′-DDE对滦河干流这些断面周边居民健康会产生潜在有害影响.

参考文献
[1] Logan D T. Perspective on ecotoxicology of PAHs to fish[J]. Human and Ecological Risk Assessment: An International Journal, 2007, 13(2): 302-316. DOI:10.1080/10807030701226749
[2] Eganhouse R P, Simoneit B R T, Kaplan I P. Extractable organic matter in urban stormwater runoff. 2. Molecular characterization[J]. Environmental Science & Technology, 1981, 15(3): 315-326.
[3] Dickhut R M, Gustafson K E. Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to Southern Chesapeake Bay[J]. Marine Pollution Bulletin, 1995, 30(6): 385-396. DOI:10.1016/0025-326X(94)00196-G
[4] Heemken O P, Stachel B, Theobald N, et al. Temporal variability of organic micropollutants in suspended particulate matter of the river Elbe at Hamburg and the river Mulde at Dessau, Germany[J]. Archives of Environmental Contamination and Toxicology, 2000, 38(1): 11-31. DOI:10.1007/s002449910003
[5] Wetzel D L, Van Vleet E S. Accumulation and distribution of petroleum hydrocarbons found in mussels (Mytilus galloprovincialis) in the canals of Venice, Italy[J]. Marine Pollution Bulletin, 2004, 48(9-10): 927-936. DOI:10.1016/j.marpolbul.2003.11.020
[6] Arias A H, Spetter C V, Freije R H, et al. Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca estuary, Argentina[J]. Estuarine, Coastal and Shelf Science, 2009, 85(1): 67-81. DOI:10.1016/j.ecss.2009.06.008
[7] Skarphéeinsdóttir H, Ericson G, Svavarsson J, et al. DNA adducts and polycyclic aromatic hydrocarbon (PAH) tissue levels in blue mussels (Mytilus spp.) from Nordic coastal sites[J]. Marine Environmental Research, 2007, 64(4): 479-491. DOI:10.1016/j.marenvres.2007.03.007
[8] Engraff M, Solere C, Smith K E C, et al. Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: Linking toxic effects to chemical activity[J]. Aquatic Toxicology, 2011, 102(3-4): 142-149. DOI:10.1016/j.aquatox.2011.01.009
[9] Manoli E, Samara C, Konstantinou I, et al. Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of Northern Greece[J]. Chemosphere, 2000, 41(12): 1845-1855. DOI:10.1016/S0045-6535(00)00134-X
[10] Shete A, Gunale V R, Pandit G G. Organochlorine pesticides in Avicennia marina from the Mumbai mangroves, India[J]. Chemosphere, 2009, 76(11): 1483-1485. DOI:10.1016/j.chemosphere.2009.06.055
[11] Briz V, Molina-Molina J M, Sánchez-Redondo S, et al. Differential estrogenic effects of the persistent organochlorine pesticides dieldrin, endosulfan, and lindane in primary neuronal cultures[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2011, 120(2): 413-427. DOI:10.1093/toxsci/kfr019
[12] Xue N D, Wang H B, Xu X B. Progress in study on endocrine disrupting pesticides (EDPs) in aquatic environment[J]. Chinese Science Bulletin, 2005, 50(20): 2257-2266. DOI:10.1007/BF03183731
[13] Tanabe S, Iwata H, Tatsukawa R. Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals[J]. Science of the Total Environment, 1994, 154(2-3): 163-177. DOI:10.1016/0048-9697(94)90086-8
[14] Wu C F, Luo Y M, Gui T, et al. Concentrations and potential health hazards of organochlorine pesticides inshallow groundwater of Taihu Lake region, China[J]. Science of the Total Environment, 2014, 470 -471: 1047-1055. DOI:10.1016/j.scitotenv.2013.10.056
[15] Li Y F, Cai D J, Shan Z J, et al. Gridded usage inventories of technical hexachlorocyclohexane and lindane for China with 1/6° Latitude by 1/4° longitude resolution[J]. Archives of Environmental Contamination and Toxicology, 2001, 41(3): 261-266. DOI:10.1007/s002440010247
[16] Li J, Zhang G, Qi S H, et al. Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China[J]. Science of the Total Environment, 2006, 372(1): 215-224. DOI:10.1016/j.scitotenv.2006.09.023
[17] Doong R A, Sun Y C, Liao P L, et al. Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan[J]. Chemosphere, 2002, 48(2): 237-246. DOI:10.1016/S0045-6535(02)00066-8
[18] Feng J L, Zhai M X, Liu Q, et al. Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River, East China[J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2252-2259. DOI:10.1016/j.ecoenv.2011.08.001
[19] Kafilzadeh F. Distribution and sources of polycyclic aromatic hydrocarbons in water and sediments of the Soltan Abad River, Iran[J]. The Egyptian Journal of Aquatic Research, 2015, 41(3): 227-231. DOI:10.1016/j.ejar.2015.06.004
[20] Liu F, Niu L, Chen H, et al. Seasonal changes of polycyclic aromatic hydrocarbons in response to hydrology and anthropogenic activities in the Pearl River estuary, China[J]. Marine Pollution Bulletin, 2017, 117(1-2): 255-263. DOI:10.1016/j.marpolbul.2017.01.061
[21] Eremina N, Paschke A, Mazlova E A, et al. Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia[J]. Environmental Pollution, 2016, 210: 409-418. DOI:10.1016/j.envpol.2015.11.034
[22] Bai Y J, Li X Q, Liu W X, et al. Polycyclic aromatic hydrocarbon (PAH) concentrations in the dissolved, particulate, and sediment phases in the Luan River watershed, China[J]. Journal of Environmental Science and Health, Part A, 2008, 43(4): 365-374. DOI:10.1080/10934520701795517
[23] 曹治国, 刘静玲, 栾芸, 等. 滦河流域多环芳烃的污染特征、风险评价与来源辨析[J]. 环境科学学报, 2010, 30(2): 246-253.
Cao Z G, Liu J L, Luan Y, et al. Pollution characteristics, risk assessment and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments and water of the Luan River, China[J]. Acta Scientiae Circumstantiae, 2010, 30(2): 246-253.
[24] Park J S, Wade T L, Sweet S. Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA[J]. Atmospheric Environment, 2001, 35(19): 3241-3249. DOI:10.1016/S1352-2310(01)00080-2
[25] Park J S, Wade T L, Sweet S T. Atmospheric deposition of PAHs, PCBs, and organochlorine pesticides to Corpus Christi Bay, Texas[J]. Atmospheric Environment, 2002, 36(10): 1707-1720. DOI:10.1016/S1352-2310(01)00586-6
[26] 李海燕, 段丹丹, 黄文, 等. 珠江三角洲表层水中多环芳烃的季节分布、来源和原位分配[J]. 环境科学学报, 2014, 34(12): 2963-2972.
Li H Y, Duan D D, Huang W, et al. Seasonal distribution, sources, and in-situ partitioning of polycyclic aromatic hydrocarbons in water and suspended particulate matters from the Pearl River Delta[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 2963-2972.
[27] 李霞, 王东红, 王金生, 等. 北京市枯水季和丰水季水源水中持久性有机污染物的水平分析[J]. 环境科学学报, 2015, 35(2): 437-442.
Li X, Wang D H, Wang J S, et al. Analysis of persistent organic pollutants (POPs)levels in dry and wet seasons in source water of municipal waterworks in Beijing[J]. Acta Scientiae Circumstantiae, 2015, 35(2): 437-442.
[28] 邓红梅, 陈永亨. 西江水体中多环芳烃的分布特征及来源[J]. 生态环境学报, 2009, 18(2): 435-440.
Deng H M, Chen Y H. Distribution characters and sources of polycyclic aromatic hydrocarbons (PAHs) in the Xijiang river[J]. Ecology and Environmental Sciences, 2009, 18(2): 435-440.
[29] Lipiatou E, Saliot A. Fluxes and transport of anthropogenic and natural polycyclic aromatic hydrocarbons in the western Mediterranean Sea[J]. Marine Chemistry, 1991, 32(1): 51-71. DOI:10.1016/0304-4203(91)90025-R
[30] Mai B X, Fu J M, Sheng G Y, et al. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China[J]. Environmental Pollution, 2002, 117(3): 457-474. DOI:10.1016/S0269-7491(01)00193-2
[31] Zeng Y E, Vista C L. Organic pollutants in the coastal environment off San Diego, California. Ⅰ. Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons[J]. Environmental Toxicology and Chemistry, 1997, 16(2): 179-188. DOI:10.1002/etc.v16:2
[32] Garban B, Blanchoud H, Motelay-Massei A, et al. Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites[J]. Atmospheric Environment, 2002, 36(34): 5395-5403. DOI:10.1016/S1352-2310(02)00414-4
[33] Wu Y L, Wang H X, Li Y Y, et al. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China[J]. Marine Pollution Bulletin, 2011, 63(5-12): 459-463. DOI:10.1016/j.marpolbul.2011.03.008
[34] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. DOI:10.1016/S0146-6380(02)00002-5
[35] Baumard P, Budzinski H, Michon Q, et al. Origin and bioavailability of PAHs in the Mediterranean sea from mussel and sediment records[J]. Estuarine, Coastal and Shelf Science, 1998, 47(1): 77-90. DOI:10.1006/ecss.1998.0337
[36] GB 3838-2002, 地表水环境质量标准[S].
GB 3838-2002, Environmental quality standards for surface water[S].
[37] US EPA. National Recommended Water Quality Criteria[S]. Washington, DC: US EPA, Office of Water, Office of Science and Technology, 2009.
[38] European Council, Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption [EB/OL]. http://dwi.defra.gov.uk/stakeholders/legislation/eudir98_83_EC.pdf, 1998
[39] Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life [EB/OL]. http://st-ts.ccme.ca/en/index.html, 2015.
[40] Law R J, Dawes V J, Woodhead R J, et al. Polycyclic aromatic hydrocarbons (PAH) in seawater around England and Wales[J]. Marine Pollution Bulletin, 1997, 34(5): 306-322. DOI:10.1016/S0025-326X(96)00096-3
[41] Cao Z G, Liu J L, Luan Y, et al. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China[J]. Ecotoxicology, 2010, 19(5): 827-837. DOI:10.1007/s10646-010-0464-5
[42] 曹治国, 刘静玲, 王雪梅, 等. 漳卫南运河地表水中溶解态多环芳烃的污染特征、风险评价与来源辨析[J]. 环境科学学报, 2010, 30(2): 254-260.
Cao Z G, Liu J L, Wang X M, et al. Pollution characteristics, ecological risk assessment and sources of polycyclic aromatic hydrocarbons (PAHs) in surface water from the Zhangweinan River[J]. Acta Scientiae Circumstantiae, 2010, 30(2): 254-260.
[43] 马万里, 刘丽艳, 齐虹, 等. 松花江流域冰封期水体中多环芳烃的污染特征研究[J]. 环境科学, 2012, 33(12): 4220-4225.
Ma W L, Liu L Y, Qi H, et al. Pollution characteristics of polycyclic aromatic hydrocarbons in water of Songhua River basin during the icebound season[J]. Environmental Science, 2012, 33(12): 4220-4225.
[44] Ma W L, Liu L Y, Qi H, et al. Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Basin, China[J]. Environmental Monitoring and Assessment, 2013, 185(10): 8399-8409. DOI:10.1007/s10661-013-3182-7
[45] Zheng B H, Wang L P, Lei K, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China[J]. Chemosphere, 2016, 149: 91-100. DOI:10.1016/j.chemosphere.2016.01.039
[46] Li G C, Xia X H, Yang Z F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China[J]. Environmental Pollution, 2006, 144(3): 985-993. DOI:10.1016/j.envpol.2006.01.047
[47] Sun J H, Wang G L, Chai Y, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China[J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1614-1624. DOI:10.1016/j.ecoenv.2008.05.010
[48] 王超, 谭丽, 吕怡兵, 等. 长江重庆段表层水体中多环芳烃的分布及来源分析[J]. 环境化学, 2015, 34(1): 18-22.
Wang C, Tan L, Lv Y B, et al. Distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in surface water from Chongqing section of the Yangtze River[J]. Environmental Chemistry, 2015, 34(1): 18-22. DOI:10.7524/j.issn.0254-6108.2015.01.2014032003
[49] 冯承莲, 夏星辉, 周追, 等. 长江武汉段水体中多环芳烃的分布及来源分析[J]. 环境科学学报, 2007, 27(11): 1900-1908.
Feng C L, Xia X H, Zhou Z, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the Wuhan section of the Yangtze River[J]. Acta Scientiae Circumstantiae, 2007, 27(11): 1900-1908. DOI:10.3321/j.issn:0253-2468.2007.11.025
[50] Zhang L F, Dong L, Ren L J, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China[J]. Journal of Environmental Sciences, 2012, 24(2): 335-342. DOI:10.1016/S1001-0742(11)60782-1
[51] Yu W W, Liu R M, Xu F, et al. Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Estuary, China[J]. Marine Pollution Bulletin, 2016, 104(1-2): 347-354. DOI:10.1016/j.marpolbul.2016.01.036
[52] 蔡文良, 罗固源, 许晓毅, 等. 嘉陵江重庆段表层水体多环芳烃的污染特征[J]. 环境科学, 2012, 33(7): 2341-2346.
Cai W L, Luo G Y, Xu X Y, et al. Contamination characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface water from Jialing River in Chongqing[J]. Environmental Science, 2012, 33(7): 2341-2346.
[53] Chen Y Y, Zhu L Z, Zhou R B. Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China[J]. Journal of Hazardous Materials, 2007, 141(1): 148-155. DOI:10.1016/j.jhazmat.2006.06.106
[54] Li H Y, Lu L, Huang W, et al. In-situ partitioning and bioconcentration of polycyclic aromatic hydrocarbons among water, suspended particulate matter, and fish in the Dongjiang and Pearl Rivers and the Pearl River Estuary, China[J]. Marine Pollution Bulletin, 2014, 83(1): 306-316. DOI:10.1016/j.marpolbul.2014.04.036
[55] Deng H M, Peng P A, Huang W L, et al. Distribution and loadings of polycyclic aromatic hydrocarbons in the Xijiang River in Guangdong, South China[J]. Chemosphere, 2006, 64(8): 1401-1411. DOI:10.1016/j.chemosphere.2005.12.027
[56] Wang J Z, Guan Y F, Ni H G, et al. Polycyclic aromatic hydrocarbons in riverine runoff of the Pearl River Delta (China): concentrations, fluxes, and fate[J]. Environmental Science & Technology, 2007, 41(16): 5614-5619.
[57] 罗孝俊, 陈社军, 余梅, 等. 多环芳烃在珠江口表层水体中的分布与分配[J]. 环境科学, 2008, 29(9): 2385-2391.
Luo X J, Chen S J, Yu M, et al. Distribution and partition of polycyclic aromatic hydrocarbons in surface water from the Pearl River Estuary[J]. Environmental Science, 2008, 29(9): 2385-2391.
[58] Fernandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary[J]. Marine Pollution Bulletin, 1997, 34(11): 857-867. DOI:10.1016/S0025-326X(97)00063-5
[59] Patrolecco L, Ademollo N, Capri S, et al. Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy)[J]. Chemosphere, 2010, 81(11): 1386-1392. DOI:10.1016/j.chemosphere.2010.09.027
[60] Hwang H M, Foster G D. Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA[J]. Environmental Pollution, 2006, 140(3): 416-426. DOI:10.1016/j.envpol.2005.08.003
[61] Mitra S, Bianchi T. A preliminary assessment of polycyclic aromatic Hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico[J]. Marine Chemistry, 2003, 82(3-4): 273-288. DOI:10.1016/S0304-4203(03)00074-4
[62] Countway R E, Dickhut R M, Canuel E A. Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary[J]. Organic Geochemistry, 2003, 34(2): 209-224. DOI:10.1016/S0146-6380(02)00162-6
[63] Kafilzadeh F, Shiva A H, Malekpour R. Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River, Iran[J]. Middle-East Journal of Scientific Research, 2011, 10(1): 1-7.
[64] Shabeer A T P, Saha A, Gajbhiye V T, et al. Optimization and validation of LLE/HPLC-DAD method to determine the residues of selected PAHs in surface water[J]. International Journal of Agriculture, Environment & Biotechnology, 2013, 6(2): 241-248.
[65] Malik A, Verma P, Singh A K, et al. Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India[J]. Environmental Monitoring and Assessment, 2011, 172(1): 529-545.
[66] Hossain M A, Yeasmin F, Rahman S M M, et al. Gas chromatograph-mass spectrometry determination of carcinogenic naphthalene, anthracene, phenanthrene and fluorene in the Bangsai river water of Bangladesh[J]. Arabian Journal of Chemistry, 2016, 9(S1): S109-S113.
[67] Aziz F, Syed J H, Malik R N, et al. Occurrence of polycyclic aromatic hydrocarbons in the Soan River, Pakistan: Insights into distribution, composition, sources and ecological risk assessment[J]. Ecotoxicology and Environmental Safety, 2014, 109: 77-84. DOI:10.1016/j.ecoenv.2014.07.022
[68] Farooq S, Eqani S A M A S, Malik R N, et al. Occurrence, finger printing and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Chenab River, Pakistan[J]. Journal of Environmental Monitoring, 2011, 13(11): 3207-3215. DOI:10.1039/c1em10421g
[69] Shaw M, Tibbetts I R, Müller J F. Monitoring PAHs in the Brisbane River and Moreton Bay, Australia, using semipermeable membrane devices and EROD activity in yellowfin bream, Acanthopagrus australis[J]. Chemosphere, 2004, 56(3): 237-246. DOI:10.1016/j.chemosphere.2004.03.003
[70] Wolska L, Zygmunt B, Namie Dśnik J. Organic pollutants in the Odra river ecosystem[J]. Chemosphere, 2003, 53(5): 561-569. DOI:10.1016/S0045-6535(03)00368-0
[71] Nagy A S, Simon G, Vass I. Monitoring of polycyclic aromatic hydrocarbons (PAHs) in surface water of the Hungarian upper section of the Danube river[J]. Nova Biotechnologica et Chimica, 2012, 11(1): 27-36.
[72] Nagy A S, Simon G, Szabó J, et al. Polycyclic aromatic hydrocarbons in surface water and bed sediments of the Hungarian upper section of the Danube River[J]. Environmental Monitoring and Assessment, 2013, 185(6): 4619-4631. DOI:10.1007/s10661-012-2892-6
[73] Barra R, Quiroz R, Saez K, et al. Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Biobio River in south central Chile[J]. Environmental Chemistry Letters, 2009, 7(2): 133-139. DOI:10.1007/s10311-008-0148-z
[74] 杨清书, 麦碧娴, 傅家谟, 等. 珠江干流河口水体有机氯农药的时空分布特征[J]. 环境科学, 2004, 25(2): 150-156.
Yang Q S, Mai B X, Fu J M, et al. Spatial and temporal distribution of organochlorine pesticites (OCPs) in surface water from the pearl river artery estuary[J]. Environmental Science, 2004, 25(2): 150-156.
[75] 肖春艳, 邰超, 赵同谦, 等. 黄河湿地孟津段水体及沉积物中有机氯农药的分布特征[J]. 环境科学, 2009, 30(6): 1614-1620.
Xiao C Y, Tai C, Zhao T Q, et al. Distribution characteristics of organoclorine pesticides in surface water and sediments from the Mengjin wetland[J]. Environmental Science, 2009, 30(6): 1614-1620.
[76] 唐访良, 张明, 徐建芬, 等. 千岛湖库区及其主要入库河流水中有机氯农药残留污染特征及健康风险评价[J]. 环境科学, 2014, 35(5): 1735-1741.
Tang F L, Zhang M, Xu J F, et al. Pollution characteristics and health risk assessment of organochlorine pesticides (OCPs) in the water of lake Qiandao and its major input rivers[J]. Environmental Science, 2014, 35(5): 1735-1741.
[77] Qiu X H, Zhu T, Li J, et al. Organochlorine pesticides in the air around the Taihu Lake, China[J]. Environmental Science & Technology, 2004, 38(5): 1368-1374.
[78] Gao J, Zhou H F, Pan G Q, et al. Factors influencing the persistence of organochlorine pesticides in surface soil from the region around the Hongze Lake, China[J]. Science of the Total Environment, 2013, 443: 7-13. DOI:10.1016/j.scitotenv.2012.10.086
[79] Willet K L, Ulrich E M, Hites R A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers[J]. Environmental Science & Technology, 1998, 32(15): 2197-2207.
[80] Barrie L A, Gregor D, Hargrave B, et al. Arctic contaminants: sources, occurrence and pathways[J]. Science of the Total Environment, 1992, 122(1-2): 1-74. DOI:10.1016/0048-9697(92)90245-N
[81] Zhu Y F, Liu H, Xi Z Q, et al. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China[J]. Chemosphere, 2005, 60(6): 770-778. DOI:10.1016/j.chemosphere.2005.04.018
[82] Heberer T, Dünnbier U. DDT metabolite bis (chlorophenyl) acetic acid: the neglected environmental contaminant[J]. Environmental Science & Technology, 1999, 33(14): 2346-2351.
[83] Bidleman T F. Atmospheric transport and air-surface exchange of pesticides[J]. Water, Air, and Soil Pollution, 1999, 115(1-4): 115-166.
[84] Wang X, Ren N Q, Qi H, et al. Levels, distributions, and source-acceptor relationship of organochlorine pesticides in the topsoils in Northeastern China[J]. Journal of Environmental Sciences, 2009, 21(10): 1541-1546.
[85] 迟杰. 有机氯农药在海河干流水体和菹草中的浓度分布[J]. 环境科学研究, 2009, 22(9): 1008-1012.
Chi J. Distribution of organochlorine pesticides in water and Potamogeton crispus L. from the Haihe River[J]. Research of Environmental Sciences, 2009, 22(9): 1008-1012.
[86] 王泰, 张祖麟, 黄俊, 等. 海河与渤海湾水体中溶解态多氯联苯和有机氯农药污染状况调查[J]. 环境科学, 2007, 28(4): 734-735.
Wang T, Zhang Z L, Huang J, et al. Occurrence of dissolved polychlorinated biphenyls and organic chlorinated pesticides in the surface water of Haihe River and Bohai Bay, China[J]. Environmental Science, 2007, 28(4): 734-735.
[87] Yu Y, Li Y X, Shen Z Y, et al. Occurrence and possible sources of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) along the Chao River, China[J]. Chemosphere, 2014, 114: 136-143. DOI:10.1016/j.chemosphere.2014.03.095
[88] Tan L, He M C, Men B, et al. Distribution and sources of organochlorine pesticides in water and sediments from Daliao River estuary of Liaodong Bay, Bohai Sea (China)[J]. Estuarine, Coastal and Shelf Science, 2009, 84(1): 119-127. DOI:10.1016/j.ecss.2009.06.013
[89] 孙剑辉, 柴艳, 张干, 等. 黄河中下游水体中有机氯农药含量与分布[J]. 人民黄河, 2009, 31(1): 43-45.
Sun J H, Chai Y, Zhang G, et al. Content and distribution of organic chlorine pesticide in the middle and lower Yellow River[J]. Yellow River, 2009, 31(1): 43-45.
[90] Tang Z W, Yang Z F, Shen Z Y, et al. Residues of organochlorine pesticides in water and suspended particulate matter from the Yangtze River catchment of Wuhan, China[J]. Environmental Monitoring and Assessment, 2008, 137(1-3): 427-439. DOI:10.1007/s10661-007-9778-z
[91] Tang Z W, Huang Q F, Yang Y F, et al. Organochlorine pesticides in the lower reaches of Yangtze River: occurrence, ecological risk and temporal trends[J]. Ecotoxicology and Environmental Safety, 2013, 87: 89-97. DOI:10.1016/j.ecoenv.2012.10.001
[92] Sun H W, Giesy J P, Jin X W, et al. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China[J]. Science of the Total Environment, 2017, 586: 163-173. DOI:10.1016/j.scitotenv.2017.01.194
[93] 夏凡, 胡雄星, 韩中豪, 等. 黄浦江表层水体中有机氯农药的分布特征[J]. 环境科学研究, 2006, 19(2): 11-15.
Xia F, Hu X X, Han Z J, et al. Distribution characteristics of organochlorine pesticides in surface water from the Huangpu river[J]. Research of Environmental Sciences, 2006, 19(2): 11-15.
[94] Zhou R B, Zhu L Z, Yang K, et al. Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China[J]. Journal of Hazardous Materials, 2006, 137(1): 68-75. DOI:10.1016/j.jhazmat.2006.02.005
[95] Zhou R B, Zhu L Z, Chen Y Y. Levels and source of organochlorine pesticides in surface waters of Qiantang River, China[J]. Environmental Monitoring and Assessment, 2008, 136(1-3): 277-287.
[96] 唐访良, 张明, 徐建芬, 等. 钱塘江(杭州段)水中有机氯农药残留污染特征及健康风险评价[J]. 环境科学学报, 2015, 35(11): 3595-3603.
Tang F L, Zhang M, Xu J F, et al. Pollution characteristics and health risk assessment of organochlorine pesticides (OCPs) in Qiantang River, Hangzhou Section[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3595-3603.
[97] Wang B, Yu G, Huang J, et al. Tiered aquatic ecological risk assessment of organochlorine pesticides and their mixture in Jiangsu reach of Huaihe River, China[J]. Environmental Monitoring and Assessment, 2009, 157(1-4): 29-42. DOI:10.1007/s10661-008-0512-2
[98] Guan Y F, Wang J Z, Ni H G, et al. Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: assessment of mass loading, input source and environmental fate[J]. Environmental Pollution, 2009, 157(2): 618-624. DOI:10.1016/j.envpol.2008.08.011
[99] Luo X J, Mai B X, Yang Q S, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China[J]. Marine Pollution Bulletin, 2004, 48(11-12): 1102-1115. DOI:10.1016/j.marpolbul.2003.12.018
[100] Yang D, Qi S H, Zhang J Q, et al. Organochlorine pesticides in soil, water and sediment along the Jinjiang River mainstream to Quanzhou Bay, southeast China[J]. Ecotoxicology and Environmental Safety, 2012, 89: 59-65.
[101] Fernández M A, Alonso C, González M J, et al. Occurrence of organochlorine insecticides, PCBs and PCB congeners in waters and sediments of the Ebro River (Spain)[J]. Chemosphere, 1999, 38(1): 33-43. DOI:10.1016/S0045-6535(98)00167-2
[102] Leong K H, Tan L L B, Mustafa A M. Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003[J]. Chemosphere, 2007, 66(6): 1153-1159. DOI:10.1016/j.chemosphere.2006.06.009
[103] Hung D Q, Thiemann W. Contamination by selected chlorinated pesticides in surface waters in Hanoi, Vietnam[J]. Chemosphere, 2002, 47(4): 357-367. DOI:10.1016/S0045-6535(01)00342-3
[104] Kaushik C P, Sharma H R, Jain S, et al. Pesticide residues in river Yamuna and its canals in Haryana and Delhi, India[J]. Environmental Monitoring and Assessment, 2008, 144(1-3): 329-340. DOI:10.1007/s10661-007-9996-4
[105] Singh K P, Malik A, Mohan D, et al. Distribution of persistent organochlorine pesticide residues in Gomti River, India[J]. Bulletin of Environmental Contamination and Toxicology, 2005, 74(1): 146-154. DOI:10.1007/s00128-004-0561-3
[106] Turgut C. The contamination with organochlorine pesticides and heavy metals in surface water in Küçük Menderes River in Turkey, 2000-2002[J]. Environment International, 2003, 29(1): 29-32. DOI:10.1016/S0160-4120(02)00127-7
[107] Kuranchie-Mensah H, Atiemo S M, Palm L M N D, et al. Determination of organochlorine pesticide residue in sediment and water from the Densu river basin, Ghana[J]. Chemosphere, 2012, 86(3): 286-292. DOI:10.1016/j.chemosphere.2011.10.031
[108] Ize-Iyamu O K, Asia I O, Egwakhide P A. Concentrations of residues from organochlorine pesticide in water and fish from some rivers in Edo State Nigeria[J]. International Journal of Physical Sciences, 2007, 2(9): 237-241.
[109] Ezemonye L I, Ikpesu T O, Tongo I. Distribution of endosulfan in water, sediment and fish from Warri river, Niger delta, Nigeria[J]. African Journal of Ecology, 2009, 48(1): 248-254.
[110] Laabs V, Amelung W, Pinto A A, et al. Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal basin, Brazil[J]. Journal of Environmental Quality, 2002, 31(5): 1636-1648. DOI:10.2134/jeq2002.1636
[111] Bonansea R I, Améa M V, Wunderlin D A. Determination of priority pesticides in water samples combining SPE and SPME coupled to GC-MS. A case study: Suquía River basin (Argentina)[J]. Chemosphere, 2013, 90(6): 1860-1869. DOI:10.1016/j.chemosphere.2012.10.007
[112] Golfinopoulos S K, Nikolaou A D, Kostopoulou M N, et al. Organochlorine pesticides in the surface waters of Northern Greece[J]. Chemosphere, 2003, 50(4): 507-516. DOI:10.1016/S0045-6535(02)00480-0