环境科学  2017, Vol. 38 Issue (9): 3569-3574   PDF    
不同空气质量等级下环境空气颗粒物及其碳组分变化特征
方小珍1 , 吴琳1 , 张静1 , 李怀瑞2 , 毛洪钧1 , 宋从波1     
1. 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071;
2. 廊坊市海宏环保科技有限公司, 廊坊 065000
摘要: 为研究不同空气质量等级下环境空气颗粒物及其碳组分变化特征,于2016年3月在廊坊市对环境空气中PM10、PM2.5和PM1质量浓度及PM2.5中碳组分质量浓度进行了在线监测.结果表明,监测期间廊坊市PM10、PM2.5和PM1质量浓度较高,其分别为204.1、107.9和87.8 μg·m-3,日变化趋势呈双峰型分布.总体来说,当空气质量越好,PM10、PM2.5、PM1及其碳组分(OC、EC、SOC和POC)质量浓度越低,PM1/PM2.5、PM1/PM10和PM2.5/PM10比值越小.但"中度污染"时,PM10质量浓度最高,且PM1/PM10和PM2.5/PM10达到谷底值;同时OC质量浓度比"轻度污染"略低,而明显低于"重度污染",且主要出现在13:00~23:00,表明"中度污染"时细颗粒物和超细颗粒物占比下降,与其对应的首要污染物相一致.此外,OC/EC比值大于2.0,通过最小OC/EC比值法估算PM2.5中SOC和POC,其浓度均值分别为12.2 μg·m-3和5.0 μg·m-3.
关键词: 空气质量等级      颗粒物      碳组分      在线监测      廊坊市     
Characteristics of Particulate Matter and Carbonaceous Species in Ambient Air at Different Air Quality Levels
FANG Xiao-zhen1 , WU Lin1 , ZHANG Jing1 , LI Huai-rui2 , MAO Hong-jun1 , SONG Cong-bo1     
1. Centre for Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China;
2. Langfang Haihong Environmental Protection S & T Co., Ltd., Langfang 065000, China
Abstract: This study describes the characteristics of particulate matter and carbonaceous species at different air quality levels. The concentrations of PM10, PM2.5, PM1, and carbonaceous species in PM2.5 were monitored on-line in Langfang City on March 1-22, 2016. The PM10, PM2.5, and PM1 concentrations were 204.1 μg·m-3, 107.9 μg·m-3, and 87.8 μg·m-3, respectively. Diurnal variations in particulate matter concentrations showed a bimodal distribution. In general, the mass concentrations of particulate matter and carbonaceous species (OC, EC, SOC, and POC) and the ratios of PM1/PM10 and PM2.5/PM10 were lower on better air quality periods. However, the mass concentration of PM10 was the highest on moderately polluted times. The ratios of PM1/PM10 and PM2.5/PM10 reached minimum values on moderately polluted times.The mass concentration of OC was slightly lower in moderately polluted periods than slightly polluted times; it was significantly lower in moderately polluted periods compared to severely polluted time periods. Hourly concentrations of OC and EC were lower between the hours of 13:00 and 23:00 compared to slightly polluted and severely polluted periods. The proportion of PM2.5 and PM1 decreased in moderately polluted time periods, consistent with the corresponding primary pollutants. Besides, the value of OC/EC was larger than 2.0. The concentrations of SOC and POC estimated using the minimum OC/EC ratio were 12.2 μg·m-3 and 5.0 μg·m-3, respectively.
Key words: air quality levels      particulate matter      carbonaceous fraction      on-line monitoring      Langfang City     

大气颗粒物是我国城市主要环境空气污染物之一[1~4].有学者研究结果表明颗粒物能导致很多疾病, 尤其是呼吸系统相关疾病[5~8].同时, 颗粒物还会对全球气候变化和能见度造成一定影响[9].近几年, 由于公众对环境空气质量及霾的关注, 引起了国家的高度重视, 并出台了许多相关法规与政策.同时, 我国于2012年12月28日起在全国城市空气质量实时发布平台开始实时公布各城市环境空气质量监测数据.实施空气质量新标准, 在线监测城市个数也从最开始的74个城市、496个国家环境空气监测网监测点位增至338个地级及以上城市、1436个国家环境空气质量监测点, 由此可见我国对环境空气质量监测的重视, 也表明环境空气污染物在线监测正逐渐成为主流监测方式[10~13].

随着霾的频发, 颗粒物的相关研究也越来越多[14, 15].其中, 作为颗粒物的主要组分之一的碳组分, 许多学者对其进行了研究[16~20], 在PM2.5中的质量分数为20%~60%[21].颗粒物载带的碳组分主要存在形式包括有机碳(organic carbon, OC)和元素碳(elemental carton, EC).有机碳包括两部分:一次有机碳(primary organic carbon, POC)和二次有机碳(secondary organic carbon, SOC). POC来自一次排放源, 而SOC主要是由VOCs等通过气-粒转化生成[22].元素碳主要来自化石燃料和生物质等的不完全燃烧[23].

京津冀地区一直是国家、公众和研究学者关注的重点区域.廊坊市地处北京、天津两大直辖市之间, 也是重要的交通枢纽, 可造成颗粒物区域污染[24, 25].目前颗粒物及其碳组分研究多采用离线滤膜采样方式研究, 而在线监测研究相对较少.同时, 颗粒物及其碳组分研究多是集中研究其时空变化[14~19, 26, 27]、重污染期间[28, 29]或特定时期[2, 30, 31]等污染特征, 而其他空气质量等级下的污染特征研究较少.因此, 本研究选取廊坊市为研究对象, 研究不同空气质量下在线颗粒物及其碳组分变化特征, 以期为颗粒物污染防治工作提供基础性研究.

1 材料与方法

于2016年3月1~22日在廊坊市开发区第二管委会楼顶采用德国GRIMM气溶胶技术公司研制的EDM 180型在线环境颗粒物监测/气溶胶粒径谱仪获取环境空气PM10、PM2.5和PM1的质量浓度.同时, 采用美国Sunset实验室研发的RT-4型有机碳元素碳分析仪在线观测环境空气PM2.5中有机碳和元素碳的质量浓度, 其具体工作原理和程序见文献[32].

2 结果与讨论 2.1 颗粒物浓度水平

监测期间廊坊市PM10、PM2.5和PM1的日平均浓度均值分别为204.1、107.9和87.8 μg·m-3.如图 1所示, 廊坊市PM10、PM2.5和PM1的日平均浓度变化趋势基本一致, 且PM10日平均浓度明显高于PM2.5和PM1, PM2.5和PM1日平均浓度比较接近, 这与PM1/PM2.5(0.8)、PM1/PM10(0.4) 和PM2.5/PM10(0.5) 相一致, 说明细粒子和超细粒子是颗粒物的主要部分.对比廊坊市其他研究[33, 34]发现, 本研究PM10污染水平高于2010年、2011年春季, 且PM10和PM2.5污染水平高于2015秋季, 低于2013年、2014年同期[35], 这与冬春季廊坊市颗粒物污染较重保持一致[35].

图 1 颗粒物浓度逐日变化趋势 Fig. 1 Diurnal trends of particulate matter concentration

分析监测期间PM10、PM2.5和PM1的小时质量浓度变化趋势(见图 2), 发现PM10日变化趋势呈双峰型, 分别在早08:00~10:00和19:00~23:00出现峰值, 在13:00出现最低值; PM2.5和PM1的日变化趋势与PM10基本一致, 呈双峰型, 在13:00~16:00出现低值, 16:00之后开始明显上升.

图 2 24-h颗粒物浓度变化趋势 Fig. 2 24-h variations of particulate matter concentration

2.2 不同空气质量等级下颗粒物污染特征

根据国家环境保护部发布的《环境空气质量指数(AQI)技术规定(试行)》(HJ 633-2012), 空气质量等级可划分为6个等级, 分别为:优(AQI:0~50)、良(AQI:51~100)、轻度污染(“轻”, AQI:101~150)、中度污染(“中”, AQI:151~200, )、重度污染(“重”, AQI:201~300) 和严重污染(“严重”, AQI:>300).根据国家环保部数据中心发布的《全国城市空气质量日报》, 可知监测期间有2 d空气质量为“优”, 7 d为“良”, 5 d为“轻”, 3 d为“中”, 5 d为“重”, 但没有出现“严重”天气.其中, 空气质量为“轻”和“重”时主要以PM2.5为首要污染物, 而“良”和“中”时主要以PM10为首要污染物, 与郭立平等人[35]研究结果一致.

不同空气质量等级下, 颗粒物的质量浓度及颗粒物间比值变化特征如图 3所示.除“中”外, 空气质量等级从“优”~“重”, PM10、PM2.5和PM1的质量浓度呈递增趋势, PM1/PM2.5、PM1/PM10和PM2.5/PM10比值也呈递增趋势, 说明细粒子在颗粒物中的比重随污染等级加重而增加, 与周敏等人研究[10]结果接近.且同一粒径颗粒物在不同空气质量等级下的日均浓度相差较大, 相邻两个空气质量等级颗粒物日均浓度相差11.6~106.3 μg·m-3.但“中”时PM10质量浓度高于“重”, PM1质量浓度略低于“轻”, PM1/PM2.5、PM1/PM10和PM2.5/PM10比值均达到谷底值, 与监测期间廊坊市空气质量为“中”时, 首要污染物以PM10为主, 而“轻”和“重”时, 首要污染物主要为PM2.5是相对应的.以上表明监测期间廊坊市空气质量为“中”时主要是由PM10引起的, 而“重”和“轻”时主要是由PM2.5和PM1引起的.

图 3 不同空气质量等级下不同粒径颗粒物浓度及其比值特征 Fig. 3 Characteristics and variations of particulate matter concentrations with different sizes at different air quality levels

2.3 不同空气质量等级下环境空气颗粒物中碳组分污染特征

研究期间廊坊市环境空气PM2.5中TC、OC和EC浓度均值分别为23.8、20.1和3.7 μg·m-3.空气质量从“优”~“重”, 碳组分浓度总体呈递增趋势(见表 1), 且碳组分浓度上升幅度较大.其中, “重”时TC、OC、EC浓度分别是“优”的6.4、6.0和8.4倍.对比分析邻近两个空气质量等级的碳组分浓度差值, “良”和“优”时的碳组分浓度差值最大, “良”时TC、OC和EC浓度分别是“优”时的2.4、2.3和2.4倍; “中”和“轻”碳组分变化差值最小.与“轻”相比, “中”时TC和OC浓度均值略低, EC浓度略高.有研究表明[36], 碳组分为燃烧源排放标识物, 且主要存在于≤2.5 μm颗粒物中, 也说明监测期间廊坊市中度污染主要是由PM10引起的, 与上述结果一致.与其他重污染过程在线监测研究结果对比, 发现本研究重度污染时OC浓度低于北京[36]、上海[10]; EC浓度低于上海[10].

表 1 不同空气质量等级下PM2.5中碳组分浓度/μg·m-3 Table 1 Concentrations of carbonaceous species in PM2.5 at different air quality levels/μg·m-3

本研究OC/EC比值均远大于2.0(见表 1), 说明有二次有机碳的生成[16, 37, 38].与其他在线监测研究结果相比, 本研究OC/EC比值高于武汉[12].此外, 与滤膜采样分析获得的OC/EC比值[34, 36, 39, 40]相比, 本研究在线监测碳组分OC/EC比值偏大.

分析不同空气质量等级下的碳组分小时浓度变化趋势(见图 4)可知, 总体来说空气质量越差, OC和EC小时浓度越高, 与PM2.5浓度变化趋势基本一致. “优”和“良”时OC和EC浓度在下半夜差异较大, “轻”和“中”时在04:00~11:00时差异相对较大, 且在13:00~23:00时“中”对应的OC和EC浓度低于“轻”. “重”时OC和EC浓度在12:00~23:00, 明显高于其他等级, 相比“中”时OC和EC差值范围分别为6.1~22.7 μg·m-3和2.5~5.3 μg·m-3.

图 4 不同空气质量等级下24-h碳组分浓度变化趋势 Fig. 4 The 24-h variations in concentrations of carbonaceous species at different air quality levels

2.4 不同空气质量等级下环境空气颗粒物中一次和二次有机碳的估算

目前由于难以采集和测定二次有机碳, 学者多采用间接方法对一次和二次有机碳进行估算.本研究通过最小OC/EC比值法对细颗粒物中POC和SOC进行估算[41, 42], 其计算方法如公式(1) 和(2) 所示.

(1)
(2)

式中, (OC)pri为直接排放的有机碳, 即POC; EC为元素碳的观测值; (OC/EC)min为OC/EC最小比值; (OC)sec为二次反应生成的有机碳, 即SOC; (OC)tot为分析所得总有机碳.结合实验结果, 本研究中(OC/EC)min取1.5, 分别计算不同空气质量等级下SOC和POC的估算浓度(见图 5), 其浓度均值分别为12.2 μg·m-3和5.0 μg·m-3.整体来说, 随着空气质量越好, SOC和POC浓度越低, 且同一空气质量等级下, SOC浓度高于POC浓度.但“中”时SOC略低于“轻”, 与OC浓度变化趋势相一致.对比分析, 发现SOC浓度高于武汉[12]、上海春季[43]和珠三角地区[17]的SOC估算值.

图 5 不同空气质量等级下颗粒物中SOC与POC估算浓度 Fig. 5 Estimated concentrations of SOC and POC in particulate matter at different air quality levels

3 结论

(1) 通过对廊坊市3月颗粒物及其碳组分的在线监测, PM10、PM2.5和PM1的日平均浓度变化趋势基本一致, PM1/PM2.5、PM1/PM10和PM2.5/PM10分别为0.8、0.4、0.5.颗粒物日变化呈双峰型变化趋势.

(2) 不同空气质量等级下, 空气质量越好, PM10、PM2.5、PM1和碳组分质量浓度越低.且PM1/PM2.5、PM1/PM10和PM2.5/PM10比值变化基本一致, OC/EC比值均大于2.0.且在13:00~23:00时“中”OC和EC浓度明显低于“轻”和“高”.

(3) 空气质量为“中”时主要是由PM10引起的, 而空气质量为“重”和“轻”时主要是由PM2.5和PM1引起的, 与本研究出现“中”时主要以PM10为首要污染物而“轻”和“重”主要以PM2.5为首要污染物相一致.

(4) 通过最小OC/EC比值法估算不同空气质量等级下PM2.5中SOC和POC, 发现SOC浓度高于POC, 且“重”时SOC浓度最高.

参考文献
[1] Wang X H, Bi X H, Sheng G Y, et al. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China[J]. Environmental Monitoring and Assessment, 2006, 119(1-3): 425-439. DOI:10.1007/s10661-005-9034-3
[2] Streets D G, Fu J S, Jang C J, et al. Air quality during the 2008 Beijing olympic games[J]. Atmospheric Environment, 2007, 41(3): 480-492. DOI:10.1016/j.atmosenv.2006.08.046
[3] Han B, Bi X H, Xue Y H, et al. Source apportionment of ambient PM10 in urban areas of Wuxi, China[J]. Frontiers of Environmental Science & Engineering in China, 2011, 5(4): 552-563.
[4] Bi X H, Feng Y C, Wu J H, et al. Source apportionment of PM10 in six cities of northern China[J]. Atmospheric Environment, 2007, 41(5): 903-912. DOI:10.1016/j.atmosenv.2006.09.033
[5] WHO. Global health risks:mortality and burden of disease attributable to selected major risks[R]. Geneva, Switzerland:World Health Organization, 2009.
[6] U.S. EPA. Air quality criteria for particulate matter (Final Report, 2004)[S]. U.S. Environmental Protection Agency, Washington, DC, EPA 600/P-99/002aF-bF, 2004.
[7] Pope Ⅲ C A, Dockery W D. Health effects of fine particulate air pollution:lines that connect[J]. Journal of the Air & Waste Management Association, 2006, 56(6): 709-742.
[8] Cohen A J, Anderson H R, Ostro B, et al. The global burden of disease due to outdoor air pollution[J]. Journal of Toxicology and Environmental Health, Part A, 2005, 68(13-14): 1301-1307. DOI:10.1080/15287390590936166
[9] Law K S, Stohl A. Arctic air pollution:origins and impacts[J]. Science, 2007, 315(5818): 1537-1540. DOI:10.1126/science.1137695
[10] 周敏, 陈长虹, 乔利平, 等. 2013年1月中国中东部大气重污染期间上海颗粒物的污染特征[J]. 环境科学学报, 2013, 33(11): 3118-3126.
Zhou M, Chen C H, Qiao L P, et al. The chemical characteristics of particulate matters in Shanghai during heavy air pollution episode in Central and Eastern China in January 2013[J]. Acta Scientiae Circumstantiae, 2013, 33(11): 3118-3126.
[11] 路娜, 李治国, 周静博, 等. 2015年石家庄市采暖期一次重污染过程细颗粒物在线来源解析[J]. 环境科学, 2017, 38(3): 884-893.
Lu N, Li Z G, Zhou J B, et al. Online source analysis of particulate matter (PM2.5) in a heavy pollution process of Shijiazhuang city during heating period in 2015[J]. Environmental Science, 2017, 38(3): 884-893.
[12] 钟章雄, 陈怡, 叶飞, 等. 武汉市PM2. 5中有机碳元素碳含量变化特征分析[A]. 见: 2015年中国环境科学学会学术年会论文集(第二卷)[C]. 深圳: 中国环境科学学会, 2015. 3287-3293.
[13] 董海燕, 古金霞, 陈魁, 等. 一次连续在线观测分析天津市细颗粒物污染特征[J]. 环境监测管理与技术, 2010, 22(6): 42-45, 50.
Dong H Y, Gu J X, Chen K, et al. Characteristics analysis of air fine particles pollution by a continuous on-line monitoring in Tianjin[J]. The Administration and Technique of Environmental Monitoring, 2010, 22(6): 42-45, 50.
[14] Chan C Y, Xu X D, Li Y S, et al. Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing[J]. Atmospheric Environment, 2005, 39(28): 5113-5124. DOI:10.1016/j.atmosenv.2005.05.009
[15] Chow J C, Watson J G, Fujita E M, et al. Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern California air quality study[J]. Atmospheric Environment, 1994, 28(12): 2061-2080. DOI:10.1016/1352-2310(94)90474-X
[16] Cao J J, Wu F, Chow J C, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China[J]. Atmospheric Chemistry and Physics, 2005, 5(11): 3127-3137. DOI:10.5194/acp-5-3127-2005
[17] Cao J J, Lee S C, Ho K F, et al. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China[J]. Atmospheric Environment, 2004, 38(27): 4447-4456. DOI:10.1016/j.atmosenv.2004.05.016
[18] Cao J J, Lee S C, Chow J C, et al. Spatial and seasonal distributions of carbonaceous aerosols over China[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D22): D22S11.
[19] Shi G L, Tian Y Z, Han S Q, et al. Vertical characteristics of carbonaceous species and their source contributions in a Chinese mega city[J]. Atmospheric Environment, 2012, 60: 358-365. DOI:10.1016/j.atmosenv.2012.06.069
[20] Wu L, Feng Y C, Wu J H, et al. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China[J]. Journal of Environmental Sciences, 2009, 21(10): 1353-1362. DOI:10.1016/S1001-0742(08)62426-2
[21] Gu J X, Bai Z P, Liu A X, et al. Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China[J]. Aerosol and Air Quality Research, 2010, 10(2): 167-176.
[22] Lewandowska A, Falkowska L, Murawiec D, et al. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia)[J]. Science of the Total Environment, 2010, 408(20): 4761-4769. DOI:10.1016/j.scitotenv.2010.06.017
[23] Han Y M, Cao J J, Chow J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC[J]. Chemosphere, 2007, 69(4): 569-574. DOI:10.1016/j.chemosphere.2007.03.024
[24] Wu Q Z, Wang Z F, Gbaguidi A, et al. A numerical study of contributions to air pollution in Beijing during CAREBeijing-2006[J]. Atmospheric Chemistry and Physics, 2011, 11(12): 5997-6011. DOI:10.5194/acp-11-5997-2011
[25] 孙志强, 吉东生, 宋涛, 等. 奥运时段北京及近周边区域空气污染观测与比对分析[J]. 环境科学, 2010, 31(12): 2852-2859.
Sun Z Q, Ji D S, Song T, et al. Observations and comparison analysis of air pollution in Beijing and nearly surrounding areas during Beijing 2008 olympic games[J]. Environmental Science, 2010, 31(12): 2852-2859.
[26] Liu Z R, Hu B, Wang L L, et al. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing:analyses from a 9-year study[J]. Environmental Science and Pollution Research, 2014, 22(1): 627-642.
[27] Li T C, Wu C Y, Chen W H, et al. Diurnal variation and chemical characteristics of atmospheric aerosol particles and their source fingerprints at Xiamen Bay[J]. Aerosol and Air Quality Research, 2013, 13(2): 596-607.
[28] 谭吉华, 赵金平, 段菁春, 等. 广州典型灰霾期有机碳和元素碳的污染特征[J]. 环境污染与防治, 2009, 31(3): 105-108.
Tan J H, Zhao J P, Duan J C, et al. Characteristics of organic carbon and elemental carbon during a typical haze episode in Guangzhou[J]. Environmental Pollution and Control, 2009, 31(3): 105-108.
[29] 魏欣, 毕晓辉, 董海燕, 等. 天津市夏季灰霾与非灰霾天气下颗粒物污染特征与来源解析[J]. 环境科学研究, 2012, 25(11): 1193-1200.
Wei X, Bi X H, Dong H Y, et al. Characteristics and sources of particulate matter during hazy and non-hazy episodes in Tianjin city in summer[J]. Research of Environmental Sciences, 2012, 25(11): 1193-1200.
[30] 于海斌, 薛荔栋, 郑晓燕, 等. APEC期间京津冀及周边地区PM2.5中碳组分变化特征及来源[J]. 中国环境监测, 2015, 31(2): 48-52.
Yu H B, Xue L D, Zheng X Y, et al. Characterization and sources of carbonaceous components in PM2.5 during the APEC in Beijing-Tianjin-Hebei region[J]. Environmental Monitoring in China, 2015, 31(2): 48-52.
[31] 周变红, 张承中, 王格慧. 春节期间西安城区碳气溶胶污染特征研究[J]. 环境科学, 2013, 34(2): 448-454.
Zhou B H, Zhang C Z, Wang G H. Study on pollution characteristics of carbonaceous aerosols in Xi'an City during the spring festival[J]. Environmental Science, 2013, 34(2): 448-454.
[32] 元洁. RT-4型有机碳元素碳分析仪的使用与日常维护[J]. 分析仪器, 2015(5): 85-88.
Yuan J. Use and maintenance of RT-4 OCEC carbon analyzer[J]. Analytical Instrumentation, 2015(5): 85-88.
[33] 邵平. 张家口、北京和廊坊大气污染联合观测研究[D]. 南京: 南京信息工程大学, 2012.
Shao P. The network observation and research on air pollution in Zhangjiakou, Beijing and Langfang[D]. Nanjing:Nanjing University of Information Science & Technology, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10300-1012369275.htm
[34] 方小珍, 吴琳, 刘明月, 等. 廊坊市秋季环境空气中颗粒物组分昼夜变化特征研究[J]. 环境科学学报, 2017, 37(4): 1243-1250.
Fang X Z, Wu L, Liu M Y, et al. Diurnal variation of ambient PM2.5 and PM10 compositions in autumn in Langfang City[J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1243-1250.
[35] 郭立平, 乔林, 石茗化, 等. 河北廊坊市连续重污染天气的气象条件分析[J]. 干旱气象, 2015, 33(3): 497-504.
Guo L P, Qiao L, Shi M H, et al. Analysis about meteorological conditions of continuous heavy pollution episodes in Langfang of Hebei province[J]. Journal of Arid Meteorology, 2015, 33(3): 497-504.
[36] 刘庆阳, 刘艳菊, 杨峥, 等. 北京城郊冬季一次大气重污染过程颗粒物的污染特征[J]. 环境科学学报, 2014, 34(1): 12-18.
Liu Q Y, Liu Y J, Yang Z, et al. Daily variations of chemical properties in airborne particulate matter during a high pollution winter episode in Beijing[J]. Acta Scientiae Circumstantiae, 2014, 34(1): 12-18.
[37] Zhang F W, Zhao J P, Chen J S, et al. Pollution characteristics of organic and elemental carbon in PM2.5 in Xiamen, China[J]. Journal of Environmental Sciences, 2011, 23(8): 1342-1349. DOI:10.1016/S1001-0742(10)60559-1
[38] Chow J C, Watson J G, Lu Z Q, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 1996, 30(12): 2079-2112. DOI:10.1016/1352-2310(95)00402-5
[39] 吴琳, 冯银厂, 戴莉, 等. 天津市大气中PM10、PM2.5及其碳组分污染特征分析[J]. 中国环境科学, 2009, 29(11): 1134-1139.
Wu L, Feng Y C, Dai L, et al. Characteristics of PM10, PM2.5 and their carbonaceous species in Tianjin City[J]. China Environmental Science, 2009, 29(11): 1134-1139. DOI:10.3321/j.issn:1000-6923.2009.11.003
[40] 宋娜, 徐虹, 毕晓辉, 等. 海口市PM2.5和PM10来源解析[J]. 环境科学研究, 2015, 28(10): 1501-1509.
Song N, Xu H, Bi X H, et al. Source apportionment of PM2.5 and PM10 in Haikou[J]. Research of Environmental Sciences, 2015, 28(10): 1501-1509.
[41] Castro L M, Pio C A, Harrison R M, et al. Carbonaceous aerosol in urban and rural European atmospheres:estimation of secondary organic carbon concentrations[J]. Atmospheric Environment, 1999, 33(17): 2771-2781. DOI:10.1016/S1352-2310(98)00331-8
[42] 朱坦, 冯银厂. 大气颗粒物来源解析:原理、技术及应用[M]. 北京: 科学出版社, 2012.
[43] Feng Y L, Chen Y J, Guo H, et al. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China[J]. Atmospheric Research, 2009, 92(4): 434-442. DOI:10.1016/j.atmosres.2009.01.003