环境科学  2017, Vol. 38 Issue (7): 2819-2827   PDF    
北京市水环境中精神活性物质污染特征
张艳1, 张婷婷2, 陈卫平3, 郭昌胜1, 花镇东2, 张远1, 徐建1    
1. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012;
2. 公安部禁毒情报技术中心, 北京 100193;
3. 中国科学院生态环境研究中心, 北京 100085
摘要: 为评价北京市水环境中精神活性物质的污染水平和生态环境风险,利用高效液相色谱-质谱联用法检测了该地区地表水和地下水中6种典型精神活性物质[甲基苯丙胺(METH)、苯丙胺(AMP)、氯胺酮(KET)、麻黄碱(EPH)、甲卡西酮(MC)和羟亚胺(HY)]的质量浓度.结果表明,北京市地表水中共检测出3种目标药物,其质量浓度范围为低于检出限n.d.~70.9 ng·L-1.EPH的检出频率和质量浓度平均值最高,分别为42%和10.1 ng·L-1;其次为METH,检出频率为25%,质量浓度平均值为1.8 ng·L-1.地下水样品中只检测到了AMP,检出频率21%,质量浓度水平在n.d.~2.2 ng·L-1之间.与国内外其他研究相比,北京市水环境中精神活性物质的污染浓度总体处于较低水平.METH和EPH浓度最高值均出现在北京市第二大排污河和南城主要污灌渠凉水河.风险评估结果显示,北京市地表水中6种目标药物的风险熵值均小于0.10,表明存在较低的环境风险,但考虑到精神活性物质具有较强的生物活性,它们对水生生态系统的长期和综合风险值得关注.
关键词: 精神活性物质      地表水      地下水      环境风险      北京     
Distribution Characteristics of Drugs of Abuse and Their Metabolites in Aqueous Environment of Beijing, China
ZHANG Yan1, ZHANG Ting-ting2, CHEN Wei-ping3, GUO Chang-sheng1, HUA Zhen-dong2, ZHANG Yuan1, XU Jian1    
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security, Beijing 100193, China;
3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract: This work investigated the occurrence and distribution of six drugs of abuse and their metabolites, i.e. methamphetamine(METH), amphetamine(AMP), ketamine(KET), ephedrine(EPH), methcathinone(MC) and hydroxylimine(HY) in the surface water and groundwater in Beijing, China. Forty-three samples were collected and analyzed by solid-phase extraction and high performance liquid chromatography coupled to tandem mass spectrometry(SPE-HPLC-MS/MS). The result showed that KET, MC and HY were not detected in any of the analyzed samples. EPH was the most abundant and ubiquitous compound in the surface water, with the detection frequency of 42% and average concentration of 10.1 ng·L-1, followed by METH(25%, average 1.8 ng·L-1). Only trace amount of AMP was detected in some groundwater samples(n.d.-2.2 ng·L-1), with detection frequency of 21%. Spatial variation of target drug concentrations in the aqueous environment was also studied, and the highest levels of METH and EPH were observed in Liangshui River. Risk assessment suggested that the RQ values of target compounds were lower than 0.10. Although no toxic effects could be expected at the current levels, further studies are needed to assess the long-term effect of drugs of abuse and their metabolites on organisms as well as the joint toxic effect.
Key words: drugs of abuse      surface water      groundwater      environmental risk      Beijing     

精神活性物质被人类吸食或注射后,经过新陈代谢,以药物母体或其代谢产物的形式经尿液和粪便被排泄到体外,经由下水道进入当地的废水处理系统[1, 2].然而,有研究表明大部分污水处理厂无法有效削减精神活性物质,导致大量药物及其代谢产物进入地表水中.在流速较快的水体,流水可以稀释污水处理厂的出水,减弱精神活性物质对水生生态系统可能存在的影响,然而,在像北京这类水资源短缺的地区,水体的稀释作用非常有限[3, 4].另外,污水再生利用已成为城市水资源补给的重要组成部分,常规水处理工艺去除不了的精神活性物质也会进入到地表水中[5].在欧洲、日本和拉丁美洲等国家的研究发现,较高浓度的精神活性物质会随水流进入地下含水层,甚至污染饮用水[6~8].

近年来,在世界各地的河流、湖泊、近岸海域等天然水体中均检测出了精神活性物质污染[9~12]. Baker等[13]在英国的一条接纳污水处理厂出水的河流中,检出了苯丙胺、氯胺酮及麻黄碱等,浓度在几个ng ·L-1到几十ng ·L-1之间. Ferrey等[14]在美国明尼苏达州随机选出的50个湖泊中,检出了浓度高达5.26 ng ·L-1的可卡因. Mendoza等[15]在西班牙马德里的地表水中检出了高浓度的麻黄碱(30.6~1 020.0 ng ·L-1),甲基苯丙胺的检出浓度虽然不高( < 16.6 ng ·L-1),但是检出频率大于57%. Jiang等[16]在台湾西南部沿岸的海水中检测出氯胺酮,浓度在n.d.~23.3 ng ·L-1之间,检出频率高达65%.水环境中精神活性物质的污染水平还与区域人口密度、经济发展、以及重大的节假日和娱乐活动等存在着一定的相关性[17~19]. Li等[17]对北京市13家污水处理厂进水中精神活性物质的检测结果表明,位于城市中心的5家污水处理厂的进水中METH的浓度明显较高( > 147.3 ng ·L-1±45.4 ng ·L-1).台湾青年节(Youth Festival)节日期间,举办地附近地表水中3, 4-亚甲基二氧甲基苯丙胺(俗称摇头丸)的浓度从89.1 ng ·L-1剧增到940 ng ·L-1,咖啡因浓度从3 733 ng ·L-1增加到13 633 ng ·L-1.因为具有较强的极性和生物活性,不易挥发且难以被生物降解[20],精神活性物质进入水环境后对水生生物的毒性也被不断证实[21~23].研究发现环境浓度(0.004 μmol ·L-1)的甲基苯丙胺和氯胺酮混合药物能够显著延缓青鳉鱼的胚胎孵化时间、改变幼鱼的游泳行为(如最大速度和相对转向角)[23].然而,目前有限的研究主要针对高浓度的精神活性物质对生物个体毒性的影响,在环境暴露条件下它们对水生态系统结构和功能的影响还知之甚少.

根据国务院新闻办公室发布的中国毒品形势报告[24, 25],2014年执法部门共查缴甲基苯丙胺13.7 t,氯胺酮11.2 t,甲基苯丙胺、氯胺酮和苯丙胺在我国吸毒人员中使用的比例逐年增多.麻黄碱和羟亚胺分别是制造甲基苯丙胺和氯胺酮的中间药品[20];甲卡西酮是近年来出现的一种新型毒品.本研究以甲基苯丙胺(METH)、苯丙胺(AMP)、氯胺酮(KET)、麻黄碱(EPH)、甲卡西酮(MC)和羟亚胺(HY)为目标物质,采用高效液相色谱-质谱(HPLC-MS/MS)法对北京市地表水及地下水中的6种精神活性物质进行定量检测,分析北京市不同水环境介质中精神活性物质的污染特征,并利用风险熵值法评估目标物质的环境风险,以期为进一步分析精神活性物质在水环境中的来源、环境行为及最终归趋提供科学依据.

1 材料与方法 1.1 仪器与试剂

METH、AMP、KET、EPH、MC和HY均购自Cerilliant公司(Round Rock, TX, 美国),其基本理化性质见表 1. HY需要少量甲醇溶解,其余药品直接用Milli-Q水溶解稀释,制成10 mg ·L-1的贮备液,在4℃下保存备用.氨水(25%~28%)和浓盐酸(分析纯)购于国药集团化学试剂有限公司(北京),甲醇购自Fisher公司(Poole, 英国),Milli-Q水由Milli-Q系统(Millipore, MA, 美国)制备.固相萃取柱Oasis MCX(60 mg, 3 mL)购自Waters公司(Milford,MA,美国),玻璃纤维滤纸(GF/CTM filters, 直径47 mm,孔径1.2 μm)购自Whatman公司(Meitesi, 英国).

表 1 目标物质基本理化性质1) Table 1 Basic physicochemical properties of the target compounds

1.2 样品采集

2016年6月,在北京市16个市辖区共布设43个采样点.地表水样品24个(JS1~JS24),其中地表水源地水体8个,包括密云水库九松山取水口、怀柔水库、八渡、团城湖调节池(南水北调)、官厅水库坝前、三家店、白河堡水库和海子水库;城市景观水域6个,包括颐和园昆明湖、圆明园、北海、园博湖、门城湖和龙潭湖;城市河流7个,包括八里庄、东直门、榆林庄闸、马驹桥、乐家花园、沙河闸和北关闸;高碑店污水处理厂出水和清河污水处理厂出水2个站点;怀柔水产养殖场排水1个站点.地下水样品19个(DXS1~DXS19),包括在14个区各取1点,共14个点,北京农业污灌区地下水4个站点(通州和大兴各2眼),南水北调顺义回灌区1个站点.所有采样点位置如图 1所示.每个采样点取水样1 L,置于提前用甲醇和Milli-Q水洗净并烘干的棕色玻璃瓶中.采样结束后立即运回实验室于4℃冷藏.全部样品在48 h内处理完毕.

图 1 北京市地表水及地下水采样点分布 Fig. 1 Location of the sampling sites in surface water and groundwater in Beijing

1.3 样品处理

取1 L水样经0.45 μm玻璃纤维滤膜过滤.用盐酸(5 mol ·L-1)调节pH至3,水样以1 mL ·min-1的速度进Oasis MCX柱萃取富集.上样前,MCX柱依次用5 mL甲醇和5 mL超纯水进行活化平衡.萃取柱用4 mL含5%氨水的甲醇溶液洗脱.洗脱液收集于10 mL离心管中,在40℃水浴中弱氮气流吹干;用1 mL甲醇定容,0.22 μm尼龙膜过滤,上HPLC-MS/MS测定.

1.4 HPLC-MS/MS测定条件

液相色谱分析柱为WATERS ACQUITY UPLC BEH HILIC色谱柱(2.1 mm×100 mm, 1.7 μm)(Waters, Milford, MA, 美国).流动相A为10 mmol ·L-1的甲酸铵和2‰甲酸的水溶液,流动相B为10 mmol ·L-1的甲酸铵,2‰甲酸和乙腈-水溶液(9 :1,体积比).梯度淋洗程序:0~0.10 min,100%B;0.11~4.90 min,30%A;4.91~6.00 min,50% A;6.01~9.00 min,100% B.流速0.4 mL ·min-1.柱温30℃,进样量1 μL.

质谱分析采用Triple Quad 6500三重四极杆质谱分析仪(AB SCIEX, USA),在多反应监控(MRM)模式下对目标物质进行定量分析.电离源采用电喷雾正离子模式(ESI+),毛细管电压5.5 kV,离子源温度550℃,碰撞气9 Psi(62 kPa),气帘气35 Psi(240 kPa).详细质谱参数见表 2.

表 2 目标物质的特征选择离子及质谱条件 Table 2 Analyte ions for LC-MS/MS monitoring, and conditions of collision voltage and declustering potential

作为手性药物,伪麻黄碱和麻黄碱的理化性质基本相似,并且具有相同的电离和裂解模式[27~29].本文采用的检测方法不区分这两种药物,以麻黄碱(EPH)代表这两种药物的总量.

1.5 方法回收率及质量控制

配制一系列质量浓度范围在0.5~100 μg ·L-1的混合标准溶液并测定,得到质量浓度-峰面积标准工作曲线,相关系数大于0.998.以自来水、Milli-Q水、地表水和污水为基质进行加标回收实验,加标水平为20 ng ·L-1(n=5).相应地,其回收率分别为78%~91%、76%~83%、70%~91%和72%~76%.在地表水中3个不同加标浓度(5、20和50 ng ·L-1)的回收实验显示,目标物质的回收率在71%~95%之间,方法的相对标准偏差均小于10%,重复性较好.采用内标法定量,检测限为信噪比3 :1,定量限为信噪比10 :1.目标药物在地表水中的检出限在0.30~0.80 ng ·L-1之间,定量限为1.00~2.68 ng ·L-1.

2 结果与讨论 2.1 北京市水环境中精神活性物质的浓度水平 2.1.1 地表水

北京市地表水6种目标药物的浓度及检出频率见表 3. KET、MC和HY在所有样品中均未被检出. EPH的检出率和浓度均最高, 检出频率达42%, 浓度范围在n.d.~70.9 ng ·L-1之间. EPH是制造METH的原料,同时也是处方药中的常见成分,具有扩张支气管、抗过敏和镇咳作用[30]. EPH在北京市地表水中普遍存在,可能和处方药的大量使用有关.在北京市开展的城市河流中精神活性物质污染水平的调查研究也发现,夏季(7月)EPH的检出频率高达94%,浓度在n.d.~50.8 ng ·L-1之间[31].与国外已有研究相比,北京市地表水中EPH的污染浓度水平远低于西班牙的Llobregat、Ebro、Jucar、Guadalquivir河流(n.d.~145 ng ·L-1)[1, 32]和马德里Jarama和Manzanares河流(30.6~1020.0 ng ·L-1)[15],与西班牙马德里地区的Henares河流(51~90 ng ·L-1)[33]以及英国的一条主要河流(n.d.~28.9 ng ·L-1)[34]相差不大,但稍高于英国马斯登的Calder河( < 16.5 ng ·L-1)[13]和西班牙Tagus流域(浓度1.8~14.7 ng ·L-1)[35].

表 3 北京市地表水及地下水中精神活性物质的质量浓度1) Table 3 Concentrations of drugs of abuse in water samples from surface water and groundwater in Beijing

METH的检出频率为25%,浓度水平在n.d.~13.5 ng ·L-1之间.该结果和我国毒品形势的现状分析一致[24, 25],但是稍低于7月北京市城市河流中METH的浓度水平(n.d.~80.6 ng ·L-1)[20],这与采样点的位置分布有关. Li等[17]在北京市的13家主要污水处理厂(高碑店、清河和酒仙桥污水处理厂等)的进、出水中均检测出了相对高浓度的METH,浓度范围分别为15.3~456.8 ng ·L-1和n.d.~20.6 ng ·L-1. Li等[36]对全国的49个湖泊和4条主要河流(松花江、黄河、扬子江、珠江)的调查结果表明,除在滇池浓度最高达95.9 ng ·L-1以外,其他湖泊中METH的浓度水平较低,在n.d.~3.5 ng ·L-1之间;地表水中的浓度则较高,在 < LOQ(0.1 ng ·L-1)~(58.2±18.6) ng ·L-1之间. Wang等[37]在渤海和北黄海区域的36条主要河流采样调查发现,METH的检出频率高达92%,浓度在 < 0.1~42.0 ng ·L-1之间.目前已有的研究表明,我国大陆地区地表水中METH的浓度水平远低于台湾(n.d.~917 ng ·L-1)[18, 38],但是稍高于西班牙(n.d.~5.0 ng ·L-1)[15, 32, 33, 39],英国(n.d.~0.3 ng ·L-1)[9, 13, 34, 39],意大利(0.9 ng ·L-1)[9],爱尔兰(n.d.)[40], 瑞士(n.d.)[41]等欧洲国家以及美国(n.d.)[42, 43].

AMP的检出频率和浓度都相对较低,检出频率仅8%,浓度水平在n.d.~2.6 ng ·L-1之间. AMP是METH的主要代谢产物,同时也是治疗帕金森病的处方药——司来吉兰的主要成分[44].有研究表明METH经人体代谢后转化为AMP排出的转换率在4%~7%之间[45],由此推断,当AMP的浓度较低,且和METH的浓度比在0.04~0.1之间时,AMP主要来源于METH的转化.本研究中AMP与METH的浓度比远大于0.1,表明AMP的出现更可能和处方药司来吉兰的使用有关.北京市地表水中的AMP浓度和国内其他地区一致,均小于10 ng ·L-1[31, 36],远低于台湾(n.d.~90.3 ng ·L-1)[16].和国外已有研究相比,远低于西班牙首都马德里地表水(309 ng ·L-1)[33],与英国、意大利、瑞典和西班牙大部分地区相近[9, 13, 32, 34, 41, 46, 47].

2.1.2 地下水

除AMP外,北京市地下水中其余5种药物均未被检出(表 3). AMP的检出频率为21%,但是浓度水平较低,在n.d.~2.2 ng ·L-1之间.目前国内还没有关于地下水中精神活性物质浓度的报道,国外的研究也相对比较缺乏. Jurado等[48]首次在西班牙巴塞罗那和东北区域部分大都市地区的地下水中测出了低浓度的EPH(n.d.~7.3 ng ·L-1), 没有检出AMP和METH. Boleda等[49]在饮用水中检测到了低浓度的AMP,浓度范围在n.d.~1.7 ng ·L-1,检出频率仅有2%.地下水中精神活性物质的出现,可能是由于部分区域地下水来源于地表水的补给[48],精神活性物质随被污染的地表水进入到地下水中.

2.2 北京市水环境中精神活性物质的分布特征

表 4可见,METH和EPH质量浓度的最高值都出现在凉水河通州段,具体分别在城市河流马驹桥(JS7) 和榆林庄闸(JS8) 采样点.凉水河位于水资源较为紧缺的北京市东南郊地区,隶属于海河流域北运河水系,其干流发源于石景山区,源头是首钢污水处理厂的出水口,流经海淀、朝阳和通州等区县,在榆林庄闸(JS8) 上游汇入北运河.北京市地表水系流向为自西北流向东南,因此位于北京市水网下游河段的通州区河流受到上游各区县的污染.此外,通州区也是北京市主要的居民生活区和工业生产区.北京市凉水河管理处资料显示,多年来凉水河的排水河道雨污合流,沿线共有排污口1 031个(其中常年排污口多达705个),年排放污水高达3亿多吨[50]. AMP仅在高碑店污水厂排水口(JS18) 和沙河闸(JS23) 两个采样点被检出,浓度较低,分别为2.1 ng ·L-1和2.6 ng ·L-1.结果和北京市的其他研究的结论一致[31].

表 4 北京市地表水中精神活性物质质量浓度空间分布1)/ng ·L-1 Table 4 Spatial distribution of the concentrations of drugs of abuse in surface water in Beijing/ng ·L-1

AMP在北京市地下水的污染分布见表 5.所有地下水采样点中仅有4个点检测到AMP,分别为密云(田西各庄,DXS11)、王四营(东南郊水务管理处,DXS12)、马池口(DXS14) 和永乐店(DXS18),浓度分别为2.1、2.2、2.1和2.2 ng ·L-1.

表 5 北京市地下水中精神活性物质质量浓度空间分布/ng ·L-1 Table 5 Spatial distribution of the concentrations of drugs of abuse in groundwater in Beijing/ng ·L-1

2.3 北京市水环境中精神活性物质的环境风险评估

采用风险熵值(risk quotients, RQ)来表征精神活性物质可能的环境风险. RQ定义为预测环境浓度(measured environmental concentration, MEC)与预测无效应浓度(PNEC)的比值.当0.01≤RQ < 0.10时为低风险,0.10≤RQ < 1.00为中等风险,RQ≥1.00为高风险[51]. PNEC是半致死浓度/半效应浓度(LC50/EC50)或无可见效应浓度(NOEC)与评价因子(assessment factor, AF)的比值.由于外推过程的许多不确定性, 需要通过比较3个营养级水平(藻类、水蚤、鱼类)不同物种的毒性试验LC50或EC50确定最小值.根据欧盟的评价因子体系,只有鱼类、水蚤、藻类3类生物对化合物的急性毒性数据时,AF选1000,PNEC值是最小的急性毒性数据LC50或EC50与评价因子AF的比值.

除MC和HY的半效应浓度(EC50)数据不可获得,其余4种目标药物的EC50通过文献或ECOSAR软件计算求得,见表 6.结果表明,北京市地表水及地下水中4种精神活性物质的风险较低,RQ均小于0.10,说明其对水生生物不会造成较大的威胁. Mastroianni等[1]采用风险熵值法评估了22种精神活性物质对西班牙Ebro、Guadalquivir和Llobregat河流的环境风险,发现只有美沙酮的代谢产物EDDP在两个采样点(共77个采样点)的RQ值大于1,存在较高的环境风险.虽然从目前国内外已有的研究来看[15, 31],精神活性物质的环境风险较小,但由于其具有生物活性和毒性,未来的研究需要进一步评估它对水生生态系统的长期慢性毒性效应和多种药物的联合毒性效应.

表 6 鱼类、水蚤、藻类的预测无效应浓度1) Table 6 Predicted no effect concentrations(PNECs)(mg ·L-1) for fish, daphnid and green algae

3 结论

(1) 研究了北京市水环境中精神活性物质的污染水平和分布特征.地表水中检出的精神活性物质含量水平明显高于地下水,浓度范围在n.d.~70.9 ng ·L-1之间.其中,EPH的检出频率(42%)和质量浓度平均值(10.1 ng ·L-1)均最高,METH次之(25%,n.d.~13.5 ng ·L-1).

(2) 北京市地下水中仅AMP在4个点位(共19个采样点位)被检出,且浓度较低( < 2.2 ng ·L-1),表明地下水受精神活性物质的污染并不明显.

(3) 风险熵值法评估的北京水体中精神活性物质的风险较小(RQ < 0.10),但鉴于精神活性物质具有较强的生物活性和极性,其对水生生态系统潜在的慢性毒性效应和多种药物的联合毒性效应应该引起重视.

参考文献
[1] Mastroianni N, Bleda M J, de Alda M L, et al. Occurrence of drugs of abuse in surface water from four Spanish river basins:Spatial and temporal variations and environmental risk assessment[J]. Journal of Hazardous Materials, 2016, 316: 134–142. DOI: 10.1016/j.jhazmat.2016.05.025
[2] Subedi B, Kannan K. Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis[J]. Environmental Science & Technology, 2014, 48(12): 6661–6670.
[3] Xu J, Xu Y, Wang H M, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere, 2015, 119: 1379–1385. DOI: 10.1016/j.chemosphere.2014.02.040
[4] Xu Y, Guo C S, Luo Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environmental Pollution, 2016, 213: 833–840. DOI: 10.1016/j.envpol.2016.03.054
[5] Xu J, Wu L S, Chang A C, et al. Impact of long-term reclaimed wastewater irrigation on agricultural soils:a preliminary assessment[J]. Journal of Hazardous Materials, 2010, 183(1-3): 780–786. DOI: 10.1016/j.jhazmat.2010.07.094
[6] Zuccato E, Castiglioni S. Illicit Drugs in the Environment[J]. Philosophical Transactions, 2009, 367(1904): 3965. DOI: 10.1098/rsta.2009.0107
[7] Peng Y, Hall S, Gautam L. Drugs of abuse in drinking water-a review of current detection methods, occurrence, elimination and health risks[J]. TrAC Trends in Analytical Chemistry, 2016, 85: 232–240. DOI: 10.1016/j.trac.2016.09.011
[8] Mendoza A, Zonja B, Mastroianni N, et al. Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region(central Spain):A case study to analyse their occurrence and human health risk characterization[J]. Environment International, 2016, 86: 107–118. DOI: 10.1016/j.envint.2015.11.001
[9] Zuccato E, Castiglioni S, Bagnati R, et al. Illicit drugs, a novel group of environmental contaminants[J]. Water Research, 2008, 42(4-5): 961–968. DOI: 10.1016/j.watres.2007.09.010
[10] Alygizakis N A, Gago-Ferrero P, Borova V L, et al. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater[J]. Science of the Total Environment, 2016, 541: 1097–1105. DOI: 10.1016/j.scitotenv.2015.09.145
[11] Van der Aa M, Bijlsma L, Emke E, et al. Risk assessment for drugs of abuse in the Dutch watercycle[J]. Water Research, 2013, 47(5): 1848–1857. DOI: 10.1016/j.watres.2013.01.013
[12] Pal R, Megharaj M, Kirkbride K P, et al. Illicit drugs and the environment-a review[J]. Science of the Total Environment, 2013, 463-464: 1079–1092. DOI: 10.1016/j.scitotenv.2012.05.086
[13] Baker D R, Kasprzyk-Hordern B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(12): 1620–1631. DOI: 10.1016/j.chroma.2011.01.060
[14] Ferrey M L, Heiskary S, Grace R, et al. Pharmaceuticals and other anthropogenic tracers in surface water:a randomized survey of 50 Minnesota lakes[J]. Environmental Toxicology and Chemistry, 2015, 34(11): 2475–2488. DOI: 10.1002/etc.3125
[15] Mendoza A, Rodríguez-Gil J L, González-Alonso S, et al. Drugs of abuse and benzodiazepines in the Madrid Region(Central Spain):seasonal variation in river waters, occurrence in tap water and potential environmental and human risk[J]. Environment International, 2014, 70: 76–87. DOI: 10.1016/j.envint.2014.05.009
[16] Jiang J J, Lee C L, Fang M D. Emerging organic contaminants in coastal waters:anthropogenic impact, environmental release and ecological risk[J]. Marine Pollution Bulletin, 2014, 85(2): 391–399. DOI: 10.1016/j.marpolbul.2013.12.045
[17] Li J, Hou L L, Du P, et al. Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis[J]. Science of the Total Environment, 2014, 490: 724–732. DOI: 10.1016/j.scitotenv.2014.05.042
[18] Jiang J J, Lee C L, Fang M D, et al. Impacts of emerging contaminants on surrounding aquatic environment from a youth festival[J]. Environmental Science & Technology, 2014, 49(2): 792–799.
[19] Lai F Y, Bruno R, Leung H W, et al. Estimating daily and diurnal variations of illicit drug use in Hong Kong:a pilot study of using wastewater analysis in an Asian metropolitan city[J]. Forensic Science International, 2013, 233(1-3): 126–132. DOI: 10.1016/j.forsciint.2013.09.003
[20] 张艳, 张婷婷, 郭昌胜, 等. 北京市城市河流中精神活性物质的污染水平及环境风险[J]. 环境科学研究, 2016, 29(6): 845–853. Zhang Y, Zhang T T, Guo C S, et al. Pollution status and environmental risks of illicit drugs in the urban rivers of Beijing[J]. Research of Environmental Sciences, 2016, 29(6): 845–853.
[21] Binelli A, Pedriali A, Riva C, et al. Illicit drugs as new environmental pollutants:Cyto-genotoxic effects of cocaine on the biological model Dreissena polymorpha[J]. Chemosphere, 2012, 86(9): 906–911. DOI: 10.1016/j.chemosphere.2011.10.056
[22] Gagné F, Blaise C, Fournier M, et al. Effects of selected pharmaceutical products on phagocytic activity in Elliptio complanata mussels[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 143(2): 179–186.
[23] Liao P H, Hwang C C, Chen T H, et al. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish[J]. Aquatic Toxicology, 2015, 165: 84–92. DOI: 10.1016/j.aquatox.2015.05.010
[24] 中国国家禁毒委员会. 2014年中国毒品形势报告[R]. 北京: 中国国家禁毒委员会, 2015.
[25] 中国国家禁毒委员会. 2015年中国毒品形势报告[R]. 北京: 中国国家禁毒委员会, 2016.
[26] Showing metabocard for Methcathinone(HMDB41927)[EB/OL]. http://www.hmdb.ca/metabolites/HMDB41927, 2017-03-02.
[27] Evans S E, Davies P, Lubben A, et al. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry[J]. Analytica Chimica Acta, 2015, 882: 112–126. DOI: 10.1016/j.aca.2015.03.039
[28] Reid M J, Derry L, Thomas K V. Analysis of new classes of recreational drugs in sewage:synthetic cannabinoids and amphetamine-like substances[J]. Drug Testing and Analysis, 2014, 6(1-2): 72–79. DOI: 10.1002/dta.1461
[29] Senta I, Krizman I, Ahel M, et al. Multiresidual analysis of emerging amphetamine-like psychoactive substances in wastewater and river water[J]. Journal of Chromatography A, 2015, 1425: 204–212. DOI: 10.1016/j.chroma.2015.11.043
[30] 张琳, 张福成, 王朝虹, 等. 固相萃取-超高效液相色谱-电喷雾串联质谱法同时检测尿样中的麻黄碱和N-甲基麻黄碱[J]. 色谱, 2013, 31(9): 898–902. Zhang L, Zhang F C, Wang C H, et al. Simultaneous determination of ephedrine and N-methylephedrine in urine by solid phase extraction-ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2013, 31(9): 898–902.
[31] Zhang Y, Zhang T T, Guo C S, et al. Drugs of abuse and their metabolites in the urban rivers of Beijing, China:occurrence, distribution, and potential environmental risk[J]. Science of the Total Environment, 2016, 579: 305–313.
[32] Postigo C, de Alda M J L, Barceló D. Drugs of abuse and their metabolites in the Ebro River basin:occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation[J]. Environment International, 2010, 36(1): 75–84. DOI: 10.1016/j.envint.2009.10.004
[33] Bueno M J M, Uclés S, Hernando M D, et al. Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC-MS/MS[J]. Talanta, 2011, 85(1): 157–166. DOI: 10.1016/j.talanta.2011.03.051
[34] Baker D R, Kasprzyk-Hordern B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment:new developments[J]. Science of the Total Environment, 2013, 454-455: 442–456. DOI: 10.1016/j.scitotenv.2013.03.043
[35] Valcárcel Y, Martínez F, González-Alonso S, et al. Drugs of abuse in surface and tap waters of the Tagus River basin:heterogeneous photo-Fenton process is effective in their degradation[J]. Environment International, 2012, 41: 35–43. DOI: 10.1016/j.envint.2011.12.006
[36] Li K Y, Du P, Xu Z Q, et al. Occurrence of illicit drugs in surface waters in China[J]. Environmental Pollution, 2016, 213: 395–402. DOI: 10.1016/j.envpol.2016.02.036
[37] Wang D G, Zheng Q D, Wang X P, et al. Illicit drugs and their metabolites in 36 rivers that drain into the Bohai Sea and north Yellow Sea, north China[J]. Environmental Science and Pollution Research, 2016, 23(16): 16495–16503. DOI: 10.1007/s11356-016-6824-9
[38] Lin A Y C, Wang X H, Lin C F. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters[J]. Chemosphere, 2010, 81(5): 562–570. DOI: 10.1016/j.chemosphere.2010.08.051
[39] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography-electrospray tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2008, 391(4): 1293–1308. DOI: 10.1007/s00216-008-1854-x
[40] Bones J D, Thomas K V, Paull B. Using environmental analytical data to estimate levels of community consumption of illicit drugs and abused pharmaceuticals[J]. Journal of Environmental Monitoring, 2007, 9(7): 701–707. DOI: 10.1039/b702799k
[41] Berset J D, Brenneisen R, Mathieu C. Analysis of llicit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatography-electrospray tandem mass spectrometry(HPLC-MS/MS)[J]. Chemosphere, 2010, 81(7): 859–866. DOI: 10.1016/j.chemosphere.2010.08.011
[42] Bartelt-Hunt S L, Snow D D, Damon T, et al. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska[J]. Environmental Pollution, 2009, 157(3): 786–791. DOI: 10.1016/j.envpol.2008.11.025
[43] Loganathan B, Phillips M, Mowery H, et al. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant[J]. Chemosphere, 2009, 75(1): 70–77. DOI: 10.1016/j.chemosphere.2008.11.047
[44] Postigo C, de Alda M J L, Barceló D. Analysis of drugs of abuse and their human metabolites in water by LC-MS2:a non-intrusive tool for drug abuse estimation at the community level[J]. TrAC Trends in Analytical Chemistry, 2008, 27(11): 1053–1069. DOI: 10.1016/j.trac.2008.10.002
[45] Du P, Li K Y, Li J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology[J]. Water Research, 2015, 84: 76–84. DOI: 10.1016/j.watres.2015.07.025
[46] Huerta-Fontela M, Galceran M T, Martin-Alonso J, et al. Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain[J]. Science of the Total Environment, 2008, 397(1-3): 31–40. DOI: 10.1016/j.scitotenv.2008.02.057
[47] Vazquez-Roig P, Andreu V, Blasco C, et al. SPE and LC-MS/MS determination of 14 illicit drugs in surface waters from the Natural Park of L'Albufera(València, Spain)[J]. Analytical and Bioanalytical Chemistry, 2010, 397(7): 2851–2864. DOI: 10.1007/s00216-010-3720-x
[48] Jurado A, Mastroianni N, Vàzquez-Suñé E, et al. Drugs of abuse in urban groundwater. A case study:Barcelona[J]. Science of the Total Environment, 2012, 424: 280–288. DOI: 10.1016/j.scitotenv.2012.02.074
[49] Boleda M R, Huerta-Fontela M, Ventura F, et al. Evaluation of the presence of drugs of abuse in tap waters[J]. Chemosphere, 2011, 84(11): 1601–1607. DOI: 10.1016/j.chemosphere.2011.05.033
[50] 帅伟. 北京凉水河(通州段)水环境污染特征及多环芳烃萘的吸附解吸研究[D]. 广州: 华南理工大学, 2010. Shuai W. Pollution characteristics of water environment and naphthalene sorption-desorption process in sediments of Tongzhou section of Liangshui River, Beijing[D]. Guangzhou:South China University of Technology, 2010.
[51] Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334–342. DOI: 10.1016/j.talanta.2005.09.037
[52] Lilius H, Isomaa B, Holmstr m T. A comparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and Daphnia magna[J]. Aquatic Toxicology, 1994, 30(1): 47–60. DOI: 10.1016/0166-445X(94)90005-1
[53] Sanderson H, Johnson D J, Reitsma T, et al. Ranking and prioritization of environmental risks of pharmaceuticals in surface waters[J]. Regulatory Toxicology and Pharmacology, 2004, 39(2): 158–183. DOI: 10.1016/j.yrtph.2003.12.006