2. 中国科学院大学, 北京 100049
2. University of Chinese Academy of Sciences, Beijing 100049, China
亚硝胺类物质(NAs)由于具有强致癌效力,并在饮用水和废水中频繁检出,被多个国家列为法定监测指标[1].近些年,我国也曾经多次在水体中检测出亚硝胺[2~6],特别是最近清华大学对我国饮用水系统中亚硝胺类消毒副产物进行的普查,引起了国内媒体和管理层的关注.中国是世界上亚硝胺检出情况最多样的国家,其中N-亚硝基二甲胺(NDMA)的浓度最高.亚硝胺在中国出厂水和龙头水中的检出率是美国环保署在2012年公开的一项大规模普查结果的3.6倍,而西欧国家的饮用水亚硝胺浓度处于较低水平[7]. NDMA的毒性极强,被国际癌症研究机构(IARC)认证为2A级[8],被美国环境保护署综合风险信息系统(US EPA IRIS)列为B2级[9].饮水中若存在NDMA,即使浓度很低,也有产生遗传毒性的风险[10].流行病学研究已经表明,NAs污染严重的饮用水与消化系统的癌症密切相关[11~13].
亚硝胺已被列为饮用水中重要的消毒副产物之一,特别是NDMA,但是我国尚缺乏饮用水中的管理标准.目前部分发达国家和地区建立了饮用水中NDMA的标准.世界卫生组织在2006年提出了100 ng·L-1的推荐值,加拿大、澳大利亚都有了国家标准,分别是40 ng·L-1、100 ng·L-1,加拿大安大略省、美国麻省和加州的标准更加严格,分别是9、10、10 ng·L-1[14~17].虽然我国饮用水中部分地区亚硝胺检出情况很严重,由于缺乏对饮用水中亚硝胺类物质进行的风险评估,至今尚未制定相关水质标准.
健康风险评价过程中,伤残调整寿命年(DALYs)常被选作风险评价的终点.该指标以时间作为度量单位,综合考虑从患病到死亡所损失的全部健康寿命年,能够对致癌性和非致癌性的污染进行风险定量和比较,便于进行优先控制污染物及标准制定[18].
本研究根据近7年来在重点城市的水厂进行的水质连续调查中NDMA的浓度数据,评估导致肝癌的发病率,以DALYs作为健康风险评价的终点,计算饮水途径摄入NDMA导致的疾病负担,并提供水质标准所存在的合理范围,以期为我国饮用水水质标准提供支持.
1 材料与方法 1.1 数据来源本研究的数据来源于2009年11月~2012年5月在我国35个城市进行的两次大规模水质调查,以及陈超等人2012~2014年对我国23个省市进行的水体亚硝胺检测[7],共计146个出厂水NDMA浓度数据.采样地点、水样采集、准备、分析及质量控制等细节可以参考文献[7, 19].
1.2 暴露评价根据NDMA的浓度数据进行暴露参数分布拟合.由于目前没有充分的证据认为呼吸和皮肤摄入是其致癌的重要途径,所以只考虑饮水暴露途径[20, 21].慢性每日摄入量(chronic daily intake,CDI)即个体终生暴露于某种致癌物质下单位时间单位体重的平均日摄取量.饮水暴露途径的CDI可以通过公式(1) 计算[22]:
![]() |
(1) |
式中,cw表示饮用水中NDMA的浓度(ng·L-1),IR表示饮水量(L·d-1)[23],BW表示人体体重(kg)[24],AT表示平均暴露时间(d)[24],EF表示暴露频率(d·a-1)[22],ED表示暴露时长(a)[24].
在整个风险评价过程中,采用蒙特卡洛模拟软件(Oracle© Crystal Ball 11.1.1.3.00) 进行随机模拟,并进行不确定性分析.
1.3 疾病终点的确定自来水的消毒过程是饮用水中NDMA的主要来源[25].目前,NDMA导致的人类癌症仍缺乏相关的流行病学数据积累,因此采用动物毒性数据来确定致癌的强度. NDMA会引起小鼠肝癌发病率的升高[26], 所以将肝癌确定为疾病终点.
1.4 终身癌症发病率的计算将慢性每日摄入量乘以致癌斜率因子(slope factor,SF)可以获得NDMA饮水暴露途径导致的癌症风险(终身癌症发病率)CR:
![]() |
(2) |
SF是使用各种模型拟合动物毒性数据估计得出的癌症效能的95%置信区间的上限值[27].因此,CR可以被认为是人类终身暴露于致癌物发生癌症的概率的上限值[28]. NDMA的致癌斜率因子采用IRIS中的数据,即51 (kg·d)·mg-1[29].
1.5 疾病模型及DALYs的计算为评估饮用水中NDMA的疾病负担,将肝癌发病率估计结合WHO设计的两阶段疾病模型[28, 30]计算DALYs.疾病模型是整个疾病历程的简化.癌症一般会带来两种结果,即死亡或存活(可能伴有后遗症),疾病历程如图 1所示,需要分别考虑相应的死亡损失或失能损失.
![]() |
图 1 两阶段疾病模型 Fig. 1 Two-stage disease history model |
死亡损失(years of life lost,YLLs)和失能损失(years of lived with disability,YLDs)的计算公式如式(3) 和式(4) 所示[31], DALYs是两部分损失之和.
![]() |
(3) |
![]() |
(4) |
![]() |
(5) |
其中,x即年龄阶段(划分为18个年龄组:0~5,5~10,10~15,…,80~85,85及以上);y即肝癌不同的疾病阶段;n即人口数,基于2011年我国人口结构的调查数据[32];P即肝癌发病率,S即肝癌生存率,利用我国癌症登记地区的肝癌年龄别发病率和死亡率计算[33];e*即标准期望寿命,基于我国模型寿命表[34];TD即肝癌死亡经历的病程时间[35];DW即失能权重[28];L即肝癌病程持续时间,划分为诊断和初步治疗期(LD)、治疗控制期(LR)、临终期(LM)和终期(LT)[31].计算过程和参数值参考文献[28].
2 结果与分析 2.1 NDMA的浓度分布本研究共计146个出厂水NDMA浓度数据.浓度范围为ND~162.9ng·L-1,平均值为8.97 ng·L-1,中值为2.90 ng·L-1.浓度数据的最佳拟合分布为对数正态分布,拟合参数为Lnorm(1.37, 0.55),如图 2所示.
![]() |
图 2 NDMA浓度拟合分布 Fig. 2 Distribution plot of NDMA concentration |
NDMA的致癌斜率因子高达51 (kg·d)·mg-1,因此,在NDMA浓度较高的水体里,其致癌风险值得关注.通过计算得到,NDMA造成的肝癌发病率中值为5.69×10-6,为美国EPA规定的癌症的可接受水平(1×10-6)的5.69倍[36],其5%及95%分位数分别为0.68×10-6和49.96×10-6.采用蒙特卡洛模拟的分布及累积分布如图 3所示.
![]() |
图 3 NDMA导致的肝癌发病率的分布及其累积分布 Fig. 3 Distribution plot and cumulative probability distribution of incidence of liver cancer caused by NDMA |
将肝癌发病率中值代入疾病模型,计算年龄别DALYs,结果如图 4所示.总的死亡损失和失能损失的对比如图 5所示.将各年龄组的DALYs损失相加并除以总人口数可以获得人均DALYs损失.
![]() |
基于肝癌发病率中值 图 4 年龄别疾病负担 Fig. 4 Age-specific DALYs losts |
![]() |
基于肝癌发病率中值 图 5 死亡损失和失能损失对比 Fig. 5 Comparison of YLLs and YLDs |
NDMA导致的肝癌总疾病负担为844.15(100.88,7 411.94) 人·a-1,人均疾病负担为6.27×10-7(7.49×10-8,5.50×10-6)人·a-1,其中死亡损失为818.31(97.79,7 185.04) 人·a-1,占96.9%,失能损失为25.84(3.09,226.90) 人·a-1,占3.1%(括号中的数值表示其5th分位数和95th分位数).肝癌死亡率高,而治愈率不足5%[33],因此死亡损失明显大于失能损失.疾病负担最大的年龄组为55~60岁(129.40人·a-1),其次是45~50岁(120.44人·a-1),中年和老年的疾病负担较高,这部分人群是饮水摄入NDMA造成健康风险的高危人群,应特别注意防范. WHO的《饮用水水质准则》中规定疾病负担的参考水平为10-6人·a-1[37],而NDMA导致的肝癌人均DALYs损失没有超过该参考水平.据2010年全球疾病负担报道,我国肝癌人均DALYs损失为659.7×10-5人·a-1,因此本研究估计的NDMA造成的DALYs损失不足其万分之一.
3 讨论我国饮水中NDMA浓度的中值和均值不高,导致的肝癌人均DALYs损失也处于较低的水平.实际上,亚硝胺的主要来源是腌制食品和烟草等而非饮用水[37].我国内蒙巴盟河套地区的调查显示,当地腌肉和酸菜中的亚硝胺含量可达80 000 ng·kg-1,是水中亚硝胺平均浓度的几千倍[38].另外,在火腿中检测出的亚硝胺类化合物平均含量达到8 500 ng·kg-1,咸鱼及其制品普遍在3 000 ng·kg-1以上[37, 39].所以NDMA在不同途径的摄入风险仍需进一步研究.虽然我国集中供水的NDMA健康风险整体水平较低,但局部地区水厂的NDMA浓度较高,最高的甚至达到了100 ng以上[7],将可能造成1.48×10-5的肝癌发病率以及1.63×10-6人·a-1的人均DALYs损失,超过了WHO规定的疾病负担参考水平,须引起关注.
我国至今还没有提出关于NDMA的饮用水水质安全标准. WHO表示,在一个不吸烟的家庭中,饮用水暴露途径的慢性每日摄入量为0.000 3~0.001 μg·kg-1,而食物途径为0.004 3~0.011 μg·kg-1,饮水摄入量在总摄入量中所占比例低于10%[40],并利用动物实验数据的TD05(Tumorigenic Dose 05,引起5%癌变的剂量)在癌症发病率为10-5水平下计算,推荐NDMA的饮用水安全值为100 ng·L-1 [41],仅考虑了危害的响应级别.加拿大安大略省及美国加州政府环境健康危害评估处(OEHHA)基于癌症发病率为10-6的水平,分别制订了10 ng·L-1的NDMA安全浓度,考虑了当前非常低的检测限及饮用水处理去除NDMA的效果,所以标准更为严格[42, 43].我国在具体制定本国标准时还需结合自己的国情. WHO饮用水水质准则中指出,10-6人·a-1的风险参考水平基本等同于10-5的终身癌症发病率[44].以WHO所推荐的风险参考水平(DALYs,10-6人·a-1)来制定我国饮用水中NDMA浓度安全基准,应为6.12 ng·L-1.所以从降低健康风险的角度可以首先考虑把6 ng·L-1设置为NDMA水质安全标准的下限.但是若仅依此制定标准则会导致约30%水厂超标.
消毒是保障水质安全必不可少的环节[45], 饮用水中的NDMA主要是在氯消毒的过程中产生的. NDMA的去除技术有紫外照射、臭氧氧化、高级氧化、生物降解、物理吸附、反渗透膜等[46],其中紫外照射是目前应用最广泛的方法,去除率达95%以上,但紫外线对污水中多数的NDMA前体物基本没有去除效果,即在后续用氯消毒过程中仍然会有NDMA重新生成的可能性[47],而且费用过高,去除90%的NDMA所需的UV剂量是灭活病毒和细菌所需剂量的10倍,因此紫外照射法去除NDMA可行但不经济[45].臭氧去除的主要问题是效率太低,7.7 mg·L-1的臭氧对NDMA的氧化率小于25%,同时臭氧和高级氧化技术的去除率都受到羟基自由基的限制[45].生物降解的机制尚不明确,且容易受到复杂环境因素的影响,去除效果很不稳定[48].碳质活性炭是相对最佳的吸附剂,但吸附能力易受进水NDMA浓度的影响,当NDMA浓度大于50 ng·L-1时吸附能力最强[48].反渗透膜的去除率为56%到70%,但在实际运行过程中的膜污染会使去除率下降[46].所以现阶段无法通过NDMA的去除技术直接大幅降低其浓度,达到较为严格的水质标准.由图 6可知,随着NDMA浓度标准的放宽,水厂超标率不断下降,但癌症风险不断增加.当NDMA的浓度标准达到40 ng·L-1时,大约可以使95%以上的水厂达标,保证了正常的饮用水消毒处理,这种情况造成的人均DALYs损失为6.52×10-6,与WHO的疾病负担参考水平(10-6)比较,致癌风险没有达到十万分之一的变化.因此考虑到我国的水处理技术水平及经济条件限制,可以把40ng·L-1作为NDMA水质安全标准的上限.
![]() |
图 6 水厂超标率及人均肝癌风险 Fig. 6 Percentage of water treatment plants over standard and averaged liver cancer risk caused by concentration of NDMA |
综上所述,认为NDMA的饮用水安全标准设为6~40 ng·L-1范围内更符合我国国情,一方面可以控制NDMA的浓度,尽可能减少健康风险,另一方面也能够保证饮用水消毒处理的效果.未来是否将NDMA等亚硝胺类物质纳入水质标准,以及如何制定标准是一个极具争议的话题,还须进行多领域、多学科的研究论证.
4 结论我国集中供水的NDMA浓度整体不高,仅有局部地区的水厂浓度很高.饮水途径摄入NDMA造成的肝癌发病率为5.69×10-6,人均DALYs损失为6.27×10-7人·a-1,整体风险水平不高且符合相关风险参考水平.针对NDMA潜在的健康威胁,结合我国的水处理技术水平及经济发展状况,认为未来NDMA的水质标准设在6~40 ng·L-1范围内较为合理.今后还须进一步进行相关研究,以控制NDMA,保障我国饮用水安全.
[1] | Krasner S W, Mitch W A, McCurry D L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water:a review[J]. Water Research, 2013, 47(13): 4433–4450. DOI: 10.1016/j.watres.2013.04.050 |
[2] | Luo Q, Wang D H, Wang Z J. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China[J]. Science of the Total Environment, 2012, 437: 219–225. DOI: 10.1016/j.scitotenv.2012.08.023 |
[3] | 梁闯, 徐斌, 夏圣骥, 等. SPE/LC/MS/MS检测水中痕量二甲基亚硝胺[J]. 中国给水排水, 2009, 25(14): 82–86. Liang C, Xu B, Xian S J, et al. Detection of trace NDMA in drinking water by SPE/LC/MS/MS[J]. China Water & Wastewater, 2009, 25(14): 82–86. DOI: 10.3321/j.issn:1000-4602.2009.14.022 |
[4] | Wang C K, Zhang X J, Wang J, et al. Detecting N-nitrosamines in water treatment plants and distribution systems in China using ultra-performance liquid chromatography-tandem mass spectrometry[J]. Frontiers of Environmental Science & Engineering, 2012, 6(6): 770–777. |
[5] | Wang W F, Hu J Y, Yu J W, et al. Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS[J]. Journal of Environmental Sciences, 2010, 22(10): 1508–1512. DOI: 10.1016/S1001-0742(09)60281-3 |
[6] | Wang W F, Ren S Y, Zhang H F, et al. Occurrence of nine nitrosamines and secondary amines in source water and drinking water:Potential of secondary amines as nitrosamine precursors[J]. Water Research, 2011, 45(16): 4930–4938. DOI: 10.1016/j.watres.2011.06.041 |
[7] | Bei E, Shu Y Y, Li S X, et al. Occurrence of nitrosamines and their precursors in drinking water systems around mainland China[J]. Water Research, 2016, 98: 168–175. DOI: 10.1016/j.watres.2016.04.013 |
[8] | WHO IARC. IARC monographs on the evaluation of carcinogenic risks to humans:some N-Nitroso compounds, volume 17[EB/OL]. http://monographs.iarc.fr/ENG/Monographs/vo117/volumel7.pdf, 2013-04-10. |
[9] | US EPA IRIS. A-Z list of substances[EB/OL]. http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&listtype=alpha&view=N, 2013-04-10. |
[10] | Liviac D, Creus A, Marcos R. Genotoxic evaluation of the non-halogenated disinfection by-products nitrosodimethylamine and nitrosodiethylamine[J]. Journal of Hazardous Materials, 2011, 185(2-3): 613–618. DOI: 10.1016/j.jhazmat.2010.09.062 |
[11] | Chen C S. Investigation on nitrosamine in drinking water in Huang Shi-a high-risk area of stomach cancer in Fujian province[J]. Chinese Journal of Epidemiology, 1989, 10(6): 359–362. |
[12] | 范允舟, 明星, 王玮玮, 等. 中国消化道癌症与饮水相关危险因素Meta分析[J]. 现代预防医学, 2013, 40(11): 2000–2004,2015. Fan Y Z, Ming X, Wang W W, et al. Meta-analysis of drinking water-related risk factors on digestive tract cancer in China[J]. Modern Preventive Medicine, 2013, 40(11): 2000–2004,2015. |
[13] | Lu S H, Montesano R, Zhang M S, et al. Relevance of N-nitrosamines to esophageal cancer in China[J]. Journal of Cellular Physiology, 1986, 4: 51–58. |
[14] | California Department of Public Health. NDMA and other nitrosamines-drinking water issues[EB/OL]. http://www.cdph.ca.gov/certlic/drinkingwater/pages/NDMA.aspx, 2013-04-15. |
[15] | Government of Ontario. Safe drinking water act[S]. Ontario Regulation, 2002. |
[16] | Jurado-Sánchez B, Ballesteros E, Gallego M. Screening of N-nitrosamines in tap and swimming pool waters using fast gas chromatography[J]. Journal of Separation Science, 2010, 33(4-5): 610–616. DOI: 10.1002/jssc.v33:4/5 |
[17] | 李婷. 饮用水中N-亚硝胺类消毒副产物的研究[D]. 南京: 南京大学, 2013. Li T. Study on N-nitrosamines, a type of disinfection byproducts in drinking waters[D]. Nanjing:Nanjing University, 2013. |
[18] | Murray C J. Quantifying the burden of disease:the technical basis for disability-adjusted life years[J]. Bulletin of the World Health Organization, 1994, 72(3): 429–445. |
[19] | Ding H H, Meng L P, Zhang H F, et al. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China[J]. Environmental Science:Processes & Impacts, 2013, 15(7): 1424–1429. |
[20] | IRIS. N-Nitrosodimethylamine; CASRN 62-75-9.[EB/OL]. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0045_summary.pdf. |
[21] | IRIS. Bromate; CASRN 15541-45-4.[EB/OL]. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/1002_summary.pdf. |
[22] | Lee S C, Guo H, Lam S M J, et al. Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong[J]. Environmental Research, 2004, 94(1): 47–56. DOI: 10.1016/S0013-9351(03)00067-7 |
[23] | 郑婵娟, 赵秀阁, 黄楠, 等. 我国成人饮水摄入量研究[J]. 环境与健康杂志, 2014, 31(11): 967–970. Zheng C J, Zhao X G, Huang N, et al. Investigation of drinking water intake rate of adults in China[J]. Journal of Environment and Health, 2014, 31(11): 967–970. |
[24] | National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2004. |
[25] | 陈忠林, 殷世忠, 杨磊, 等. 新型消毒副产物N-亚硝基二甲胺的研究进展[J]. 中国给水排水, 2007, 23(22): 6–11. Chen Z L, Yin S Z, Yang L, et al. N-Nitrosodimethylamine:a new disinfection by-product in water[J]. China Water & Wastewater, 2007, 23(22): 6–11. DOI: 10.3321/j.issn:1000-4602.2007.22.002 |
[26] | US EPA. Technical fact sheet-N-Nitrosodimethylamine (NDMA)[EB/OL]. https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_ndma_january2014_final.pdf. |
[27] | Hrudey S E. Chlorination disinfection by-products, public health risk tradeoffs and me[J]. Water Research, 2009, 43(8): 2057–2092. DOI: 10.1016/j.watres.2009.02.011 |
[28] | Pan S L, An W, Li H Y, et al. Cancer risk assessment on trihalomethanes and haloacetic acids in drinking water of China using disability-adjusted life years[J]. Journal of Hazardous Materials, 2014, 280: 288–294. DOI: 10.1016/j.jhazmat.2014.07.080 |
[29] | IRIS. Integrated risk information system[EB/OL]. http://www.epa.gov/IRIS/, 2013-05-18. |
[30] | Mathers C, Boschi-Pinto C. Global burden of cancer in the year 2000:version 1 estimates[R]. Geneva:World Health Organization, 2003. |
[31] | Soerjomataram I, Lortet-Tieulent J, Ferlay J, et al. Estimating and validating disability-adjusted life years at the global level:a methodological framework for cancer[J]. BMC Medical Research Methodology, 2012, 12: 125. DOI: 10.1186/1471-2288-12-125 |
[32] | National Bureau of Statistics of China. China statistical yearbook[EB/OL]. Beijing:China Statistics Press, http://www.stats.gov.cn/tjsj/ndsj/2012/indexeh.htm, 2013-05-18. |
[33] | 张玥. 全球与中国肝癌疾病负担分析及肝癌早期诊断标志物的研究[D]. 北京: 北京协和医学院, 2015. |
[34] | 张文娟, 魏蒙. 中国人口的死亡水平及预期寿命评估——基于第六次人口普查数据的分析[J]. 人口学刊, 2016, 38(3): 18–28. Zhang W J, Wei M. The evaluation of the mortality and life expectancy of Chinese population[J]. Population Journal, 2016, 38(3): 18–28. |
[35] | Småstuen M, Aagnes B, Johannesen T B, et al. Long-term cancer survival:patterns and trends in Norway 1965-2007[M]. Oslo: Cancer Registry of Norway, 2008. |
[36] | US EPA. Risk Assessment guidance for superfund. volume I:human health evaluation manual(part A)[M]. Washington, DC:US Environmental Protection Agency, 1989. |
[37] | 马俪珍, 张健斌, 孟培培. 食品中亚硝胺类化合物的危害及控制研究进展[J]. 保鲜与加工, 2012, 12(2): 1–4,45. Ma L Z, Zhang J B, Meng P P. Progress of research on the hazards and control of N-nitrosamines in foods[J]. Storage and Process, 2012, 12(2): 1–4,45. |
[38] | 杨凯, 徐高升, 许后效. 内蒙古河套地区亚硝胺、亚硝酸盐与消化系癌的调查研究[A]. 见: 中华医学会第二届全国食品卫生学术会议科研论文集[C]. 兴城, 辽宁: 中华医学会, 2003. 6-17. |
[39] | 樊丽琴, 杨贤庆, 陈胜军, 等. 腌制水产品中N-亚硝基化合物的研究进展[J]. 食品工业科技, 2009(4): 360–363. Fan L Q, Yang X Q, Chen S J, et al. Research progress on N-nitroso-compounds in salted aquatic products[J]. Science and Technology of Food Industry, 2009(4): 360–363. |
[40] | World Health Organization. N-nitrosodimethylamine in drinking-water. Background document for development of WHO guidelines for drinking-water quality[M]. Geneva, Switzerland:WHO, 2008. |
[41] | WHO. Guidelines for drinking-water quality[M]. (4th ed). Geneva: World Health Organization, 2011. |
[42] | California Department of Public Health. NDMA and other nitrosamines-drinking water issues[M]. California: California Department of Public Health, 2008. |
[43] | Ontario Ministry of the Environment. Technical support document for Ontario drinking water standards, objectives and guidelines[M]. Ontario: Ontario Ministry of the Environment, 2003. |
[44] | Havelaar A H, Melse J M. Quantifying public health risk in the WHO Guidelines for drinking-water quality:A burden of disease approach[R]. Bilthoven, The Netherlands:National Institute for Public Health and the Environment(RIVM), 2003. |
[45] | 梁闯, 徐斌, 高乃云, 等. 氯化消毒副产物NDMA的生成与控制研究进展[J]. 中国给水排水, 2008, 24(22): 6–11. Liang C, Xu B, Gao N Y, et al. Review on formation and control of chlorination disinfection by-product NDMA during water treatment[J]. China Water & Wastewater, 2008, 24(22): 6–11. DOI: 10.3321/j.issn:1000-4602.2008.22.002 |
[46] | 吕娟, 李咏梅. NDMA在水处理过程中产生与去除的研究进展[J]. 水资源与水工程学报, 2011, 22(3): 58–62,67. Lv J, Li Y M. Research progress of formation and removal of NDMA in water treatment[J]. Journal of Water Resources and Water Engineering, 2011, 22(3): 58–62,67. |
[47] | 徐冰冰, 陈忠林, 齐飞, 等. 紫外光降解水中痕量NDMA的效能研究[J]. 环境科学, 2008, 29(7): 1908–1913. Xu B B, Chen Z L, Qi F, et al. Efficiency of photodecomposition of trace NDMA in water by UV irradiation[J]. Environmental Science, 2008, 29(7): 1908–1913. |
[48] | Mitch W A, Sharp J O, Trussell R R, et al. N-nitrosodimethylamine(NDMA) as a drinking water contaminant:a review[J]. Environmental Engineering Science, 2003, 20(5): 389–404. DOI: 10.1089/109287503768335896 |