环境科学  2017, Vol. 38 Issue (6): 2470-2476   PDF    
外源Ca2+对SBR启动期活性污泥胞外多聚物的动态影响
任丽飞 , 杨新萍 , 张雯雯     
南京农业大学资源与环境学院, 南京 210095
摘要: 利用无机物如Ca2+,加快活性污泥反应器启动,强化活性污泥絮体性能和结构稳定性,受到越来越多的重视.采用序批式反应器,研究进水中添加Ca2+对反应器启动期活性污泥沉降性能和胞外多聚物的影响.结果表明运行至28 d,与进水中不添加Ca2+的反应器(对照反应器)相比,进水中添加150 mg·L-1外源Ca2+的反应器中活性污泥MLSS和MLVSS值分别高出了89.6%和75.6%,SVI值则降低了47.9%;活性污泥胞外多聚物总量增加了76.4%,多糖增加了28.8%,蛋白质减少了31.6%,添加150 mg·L-1外源Ca2+的反应器中污泥胞外多聚物中多糖/蛋白质值为68.8,对照反应器的活性污泥胞外多聚物多糖/蛋白质值仅为36.6.三维荧光光谱和红外光谱分析表明外源Ca2+导致活性污泥胞外多聚物组分发生了变化.实验结果为进水中添加外源Ca2+改善活性污泥沉降性能提供了基础数据.
关键词: 活性污泥      启动期      胞外多聚物      沉降性能      动态变化     
Evolution of Extracellular Polymeric Substances of the Activated Sludge with Calcium Ion Addition During Set-up Period of Sequencing Batch Reactors
REN Li-fei , YANG Xin-ping , ZHANG Wen-wen     
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
Abstract: Great attention has been paid to accelerate the start-up period and enhance floc properties and structural stability in activated sludge reactors with the aid of inorganic chemical agents such as calcium ion. The laboratory-scale sequencing batch reactors (SBRs) were operated continuously for 35 days to investigate the effect of calcium ion (Ca2+) on the physicochemical properties and evolution of extracellular polymeric substances (EPS) of activated sludge during set-up period. When compared to the control (non-calcium ion addition), the addition of 150 mg·L-1Ca2+ to the influent significantly increased the mixed liquid suspended solids (MLSS) and the mixed liquid volatile suspended solids (MLVSS) by 89.6% and 75.6% on 28 d, respectively, and decreased the sludge volume index (SVI) by 47.9% following SBRs set-up. Compared with the control system, the contents of EPS, polysaccharides (PS) and proteins (PN) were increased by 76.4%, 28.8% and 31.6% under the condition of Ca2+ dosage of 150 mg·L-1. The PS/PN ratio was 68.8 for Ca2+ addition, compared to only 36.6 for the control reactor. Analysis using three-dimensional excitation emission matrix fluorescence spectroscopy and Fourier transform infrared spectrum revealed that Ca2+ addition changed the compositional characteristics of EPS. Results from this study provided a fundamental knowledge basis for the improvement of the settling properties of activated sludge with calcium ion addition.
Key words: activated sludge      set-up period      extracellular polymeric substances      settling properties      dynamic change     

活性污泥工艺是目前应用最广泛的废水生物处理技术, 它利用活性污泥(微生物聚集体)去除水中的各种污染物[1, 2].活性污泥法废水处理工艺中, 二沉池内的活性污泥通过絮凝和沉淀实现泥水分离, 是决定出水水质、保证废水处理构筑物内持有稳定数量微生物的关键步骤之一.然而, 活性污泥不能有效絮凝形成大、密实、强度高的污泥絮体几乎是每个污水处理厂都可能遇到且难以快速解决的问题.研究表明在水中投加适量阳离子如Ca2+、Mg2+、Fe3+等能够强化活性污泥的絮凝性能、改善污泥沉降性能, 促进活性污泥微生物多样性等[3~6].

活性污泥絮体主要由细菌、水、胞外聚合物(extracellular polymeric substances, EPS)等组成[7].研究表明EPS在活性污泥的生物絮凝中起着关键作用[8, 9]. EPS与细菌菌体表面均带负电荷[10], 金属阳离子如Ca2+可基于DCB (divalent cation bridging)理论与EPS相互作用, 形成EPS-Ca2+-EPS联接物, 构成絮体骨架[11], 促进活性污泥絮体形成与稳定[5, 12].

尽管有许多外源阳离子促进活性污泥微生物自固定化(污泥颗粒化)的研究, 这些研究着眼于阳离子投加量[13]、反应器工艺参数[14, 15]、污染物去除性能[16]等方面, 为人们深入理解外源阳离子强化/改进活性污泥絮凝性能的机制奠定了重要的基础.然而, 对于金属离子如何影响反应器启动期活性污泥沉降性能, EPS产生量、组分变化等鲜有报道.本文在活性污泥反应器启动期, 外源添加Ca2+, 分析Ca2+对活性污泥生物量、沉降性能, EPS含量与组成随运行时间的动态变化, 以期为外源Ca2+改进和强化活性污泥絮凝性、提升污水生物处理系统稳定性的技术应用提供理论基础.

1 材料与方法 1.1 实验装置

接种污泥取自无锡某城市污水处理厂, 污泥混合液悬浮固体浓度MLSS为3 680 mg·L-1±2 mg·L-1, SVI为76 mL·g-1±3 mL·g-1.实验装置采用模拟SBR, 有效容积为1 L. SBR运行周期为6 h:进水5 min、曝气320 min、沉降30 min、排水5 min.

实验废水为人工配置, 模拟中等强度城市生活污水水质.人工废水组成:C6H12O6, 375 mg·L-1; CH3COONa, 586 mg·L-1; NH4Cl, 200 mg·L-1; KH2PO4·3H2O, 700 mg·L-1; MgSO4·7H2O, 500 mg·L-1, 微量元素1 mL·L-1.微量元素组成见文献[6].使用NaHCO3调节废水pH使其保持在6.5~7.5范围.

前期实验, 在进水中外源添加不同质量浓度Ca2+(0、30、50、100、150、200 mg·L-1), 当Ca2+添加量为100~200 mg·L-1时, 明显改善了活性污泥沉降性能和污染物去除性能[6], 因此本研究中外源Ca2+添加量设置为150 mg·L-1(在图中以Ca表示), 同时以进水中不添加Ca2+(0 mg·L-1)的SBR作为对照(以CK表示), 研究外源添加Ca2+对活性污泥启动期污泥性能及EPS产生的动态影响.

1.2 EPS提取

EPS采用超声-阳离子交换树脂法从活性污泥中提取[17, 18].将10 mL活性污泥用超声波清洗仪(KQ-700DE, 昆山市超声仪器公司)在40 kHz、100 W条件下超声2 min.每10 mL活性污泥加入1 g阳离子交换树脂(Dowex 50WX8, hydrogen form, 200~400 mesh, Sigma-Aldrich, USA); 置于摇床(HYL-A, 太仓强乐), 200 r·min-1转速, 振荡4 h; 污泥和树脂混合液在6 000 r·min-1(Centrifuge 5810R, Eppendorf)、4℃下离心30 min, 所得上清液即为EPS溶液.

EPS数量以总有机碳(total organic carbon, TOC)来表征, 采用TOC分析仪(TOC-VCPN analyzer, Shimadzu, Japan)测定. EPS中多糖(polysaccharides, PS)采用苯酚-硫酸法测量, 标准物质为葡萄糖; 蛋白质(proteins, PN)采用考马斯亮蓝法测量, 牛血清白蛋白作为标准物质[19].

1.3 三维荧光光谱分析

EPS的三维荧光光谱(three-dimensional excitation emission matrix fluorescence spectroscopy, 3D-EEM)采用荧光分光度计(LS-55, Perkin-Elmer Co., USA)测定.使用氙弧灯为激发光源, 激发波长Ex为200~400 nm, 发射扫描波长Em为280~500 nm; 激发与发射狭缝宽度均为5 nm, 激发波长扫描间隔为10 nm, 扫描速度为1 200 nm·min-1; Origin 8.0软件进行数据分析.

1.4 红外光谱分析

反应器中活性污泥浓度、污泥沉降性能及污染物(C、N、P等)去除性能保持稳定时, 反应器进入启动末期或者稳定期[4].在反应器启动末期, 采集活性污泥样品提取EPS, 进行红外光谱(fourier transform infrared spectrum, FT-IR)分析. EPS提取物在-80℃冰箱(SANYO, 日本)冷冻24 h, 然后置于冷冻干燥仪(Christ ALPHA 2-4 LD, 德国)干燥处理.完全干燥后, EPS与KBr以1:100(质量比)的比例混合, 放在玛瑙坩埚里研磨均匀.取约150 mg样品, 压缩成薄片, 采用NEXUS 870FT红外光谱仪(Nicolet, USA)分析.红外光谱分析仪扫描波长为4 000~400 cm-1, 扫描32次, 指定分辨率为4 cm-1.

1.5 污泥生物量与沉降性能分析方法

混合液悬浮固体浓度(mixed liquor suspended solids, MLSS)、混合液挥发性悬浮固体浓度(mixed liquor volatile suspended solids, MLVSS)是计量活性污泥反应器中生物量的指标, 污泥容积指数(sludge volume index, SVI)是表征活性污泥沉降、浓缩性能的指标[20], 其测定方法采用标准方法测定[21]. SBR中泥水混合液溶解氧(dissolved oxygen, DO)采用Thermo公司Orion 3star DO仪测定, 混合液pH用雷磁pHS-3C精密pH计测定, 确保反应器运行参数稳定.

2 结果与讨论 2.1 启动期SBR活性污泥生物量及沉降性能的动态变化

在进水中分别添加0和150 mg·L-1 Ca2+, 对SBR启动期活性污泥生物量、沉降性能的影响如图 1所示. SBR接种污泥的SVI、MLSS和MLVSS分别是92.9 mL·g-1、4.7 g·L-1和3.6 g·L-1. SBR运行前7 d中, 2个反应器中活性污泥生物量没有明显变化, 活性污泥微生物处在接种后的适应期; 但2个反应器中活性污泥SVI值与接种污泥相比均有明显降低.运行7 d后, 与接种污泥相比, 2个反应器中活性污泥生物量都有显著增加.运行至28 d, 与接种污泥相比, 进水中添加150 mg·L-1 Ca2+的SBR中活性污泥生物量大幅度提高, MLVSS增长率为96.9%, SVI显著降低, 为24.3 mL·g-1; 进水中没有添加外源Ca2+的SBR, 活性污泥生物量也有增长, MLVSS增长率为12.1%, SVI值为46.5 mL·g-1.运行至28 d, 添加150 mg·L-1 Ca2+的SBR中活性污泥生物量MLVSS与SVI分别是对照反应器中污泥的1.8倍和0.5倍.可见, 进水中添加外源Ca2+在活性污泥启动期明显促进了活性污泥微生物的生长, 改善了污泥的沉降性能. Yu等发现300 mg·L-1以下外源Ca2+促进了活性污泥系统中微生物的生长和沉降性能, 但超过300 mg·L-1时, 活性污泥的浓度反而降低, 沉降性能下降, 系统对污染物的去除率也会降低[12]. Liu等[22]在反应器中加入外源Ca2+和Mg2+, 发现Ca2+能够有效促进活性污泥颗粒的形成, 使活性污泥表现出更好的沉降性能, 而Mg2+主要影响活性污泥微生物的多样性.

CK:进水中不添加Ca2+的反应器; Ca:进水中添加150 mg·L-1 Ca2+的反应器 图 1 启动期活性污泥生物量与沉降性能的动态变化 Fig. 1 Dynamic changes of biomass and settling property of activated sludge during the set-up period of SBRs

2.2 启动期活性污泥EPS含量及组分的变化

EPS在活性污泥絮体的形成及絮体结构稳定性的维持有着重要作用[23].在SBR启动期间, 活性污泥絮体产生的EPS动态变化如图 2所示. SBR运行至21 d, 与接种污泥相比, 进水中添加150 mg·L-1 Ca2+的活性污泥, EPS产生量显著增加, 达71.3 mg·L-1, 与接种污泥相比, 增加了25.2%;进水中不添加Ca2+的活性污泥, EPS产生量反而降低, 与接种污泥相比, 降低了13.0%.随着运行时间增加, 2个SBR活性污泥产生的EPS没有显著性增加或降低.运行第28 d, 进水中添加150 mg·L-1 Ca2+, 其活性污泥EPS数量为80.2 mg·L-1, 对照反应器中活性污泥EPS仅有45.5 mg·L-1.

图 2 启动期活性污泥EPS数量的动态变化 Fig. 2 Dynamic changes of EPS of the activated sludge during the set-up period of SBRs

在SBR启动期, Ca2+不仅对EPS数量有影响, 对EPS组成也有明显影响(图 3).总体上, 进水中无论是添加150 mg·L-1 Ca2+还是不添加Ca2+, 与接种污泥相比, EPS中多糖含量呈明显增加趋势, 蛋白质含量呈明显下降趋势.运行至28 d, 进水中添加150 mg·L-1 Ca2+的活性污泥, 与接种污泥相比, 多糖增加了90.3%, PS/PN值由6.4增加到68.8, 而蛋白质下降了82.4%;不添加Ca2+的活性污泥, 多糖增加了53.5%, PS/PN值由5.2增加到36.6, 而蛋白质下降了78.1%.进水中添加Ca2+, 明显促进了胞外多聚物中多糖含量的增加.活性污泥絮体中的多糖在细胞间黏附以及微生物絮凝中起重要作用.多糖官能团例如—OH, 可以和Ca2+作用, 形成紧密、不易变形的胶状介质, 提高污泥絮体的稳定性[12], 从而使反应器有更高的抗冲击负荷性能. Adav等[24]认为多糖类物质是好氧颗粒污泥形成的重要物质, 他们在研究中发现, 与接种污泥相比, 好氧颗粒污泥EPS的PS/PN比例明显升高, 由3.4升到6.2. Jiang等[25]在进水中添加100 mg·L-1 Ca2+, 颗粒污泥形成时间由32 d缩短为16 d, EPS中PS含量由41 mg·g-1 VSS增加到92 mg·g-1 VSS.但也有研究表明蛋白质是影响活性污泥絮凝性能的主要因素.张燕等[26]研究Ca2+对生物膜形态结构及其组分的影响, 发现生物膜EPS中胞外蛋白质含量为1.7 mg·mL-1, 而多糖含量仅为0.37 mg·mL-1. Mcswain等[27]在培养好氧颗粒污泥时发现EPS中蛋白质/多糖的比例始终维持在6.6~10.9之间, 甚至有研究者认为多糖类物质的大量生成是代谢阻滞现象, 可能会阻止微生物间的聚集[28].多糖和蛋白质是EPS中主要的组成部分, 其种类和含量直接决定了活性污泥的表面性质, 絮凝和沉降性能[29].

图 3 启动期活性污泥EPS组分的动态变化 Fig. 3 Dynamic changes of EPS constituents in the activated sludge during the set-up period of SBRs

2.3 启动期活性污泥EPS三维荧光光谱的动态变化

3D-EEM被认为是一种选择性高、灵敏度好的光谱技术, 而且其所需样品量少, 不破坏被测物质结构, 广泛应用于EPS组分、官能团鉴定[30].进水中添加外源Ca2+与不添加Ca2+活性污泥EPS的三维荧光光谱见图 4.进水主要成分为葡萄糖, 乙酸钠和无机盐类, 这些物质均不产生荧光[31], 因此三维荧光光谱检测到的物质来源于EPS产物.在SBR启动期, 活性污泥三维荧光光谱中具有4个荧光峰, A峰(Ex/Em=225~230/250~343 nm), B峰(Ex/Em=250~300/340~350 nm), C峰(Ex/Em=250~280/280~300 nm), D峰(Ex/Em=200~250/250~300 nm), 这些峰均属于芳香族类蛋白质, 其中, D峰为酪氨酸[32].本实验采用阳离子交换树脂作为EPS的提取剂, 腐殖酸及富里酸类化合物没有在三维荧光光谱中检测到, 这可能是阳离子交换树脂对EPS中腐殖酸类物质提取效率较差的缘故[33]. EPS组分测定结果显示进水中含Ca2+的活性污泥EPS中总蛋白质含量较CK反应器中活性污泥EPS总蛋白质含量低, 但从3D-EEM光谱图中, 与对照反应器相比, 外源加入Ca2+活性污泥EPS中芳香族类蛋白质更多, 酪氨酸具有稳定长链环状结构, 可以稳定污泥絮体[30]. Sheng等[34]通过外源加入不同浓度Ca2+, 发现Ca2+对好氧污泥及厌氧污泥EPS的三维荧光图谱、峰强度和峰位置影响较小, Hg2+对污泥3D-EEM图谱影响较大, 虽然图谱中峰位置没有发生明显变化, 但峰强度随着Hg2+浓度的增加而显著降低, Cu2+也会有相同的影响[35].

图 4 启动期活性污泥三维荧光光谱的动态变化 Fig. 4 Dynamic changes of 3D-EEM spectroscopy of activated sludge during the set-up period of SBRs

2.4 启动末期活性污泥EPS的红外光谱分析

红外光谱分析可以表征EPS中官能团变化[30], 当SBR运行至启动末期即稳定期时(28 d), 将2个SBR中活性污泥EPS进行了红外光谱分析(图 5).红外谱图中1 800~900 cm-1与氨基、羰基等官能团相关[36], 1 517 cm-1表征酪氨酸苯酚结构中芳香环环形振动引起的肩峰[30], 2组污泥EPS中均存在此峰, 但在CK污泥中此峰强度低于进水中添加150 mg·L-1 Ca2+的污泥, 吸收峰越高, 表明该峰代表的基团浓度越高[30].进水中添加150 mg·L-1 Ca2+的活性污泥EPS红外光谱与CK相比, 存在3处有差异的吸收峰, 酰胺蛋白质肽键分别出现在1 710 cm-1(CK反应器)、1 730 cm-1(150 mg·L-1 Ca2+反应器)处, 脂碳链C—H分别出现在1 950 cm-1(CK反应器)、1 940 cm-1(150 mg·L-1 Ca2+反应器), 缔合—OH及氨基的峰则分别出现在3 390 cm-1(CK反应器)、3 410 cm-1(150 mg·L-1 Ca2+反应器)处, 这表征CO及C—H在相应位置已发生变化.这些变化显示Ca2+可能导致EPS中官能团发生变化, EPS中官能团的改变对活性污泥的形成与结构稳定性影响较大[37]. Zhu等[30]也发现污泥沉降性能良好时, 与接种污泥相比, 活性污泥EPS的红外光谱发生变化, 多糖成分、含量的改变及在颗粒污泥形成过程起重要作用.

图 5 启动末期活性污泥EPS的红外图谱 Fig. 5 FT-IR spectroscopy of the EPS of the activated sludge at the end of set-up period

3 结论

(1) 与对照相比, 进水中添加150 mg·L-1外源Ca2+可以明显促进活性污泥生物量增加、改善污泥沉降性能.运行约28 d, 反应器进入稳定运行期, 与对照相比, 添加Ca2+的反应器活性污泥MLSS、MLVSS分别增加了89.6%、75.6%, SVI降低了47.9%.

(2) Ca2+促进活性污泥微生物分泌更多的胞外多聚物, 相同工况下运行28 d, 进水中加入150 mg·L-1Ca2+的活性污泥EPS比对照活性污泥EPS增加34.7 mg·L-1, EPS中多糖量增加28.8%, 有利于增加细胞间粘附以及微生物絮凝.

(3) 活性污泥EPS三维荧光光谱和红外光谱分析表明, 添加150 mg·L-1外源Ca2+改变了EPS组分, 促进多糖及芳香族类蛋白质的产生, 有利于活性污泥絮体结构稳定性及改进活性污泥沉降性能.

参考文献
[1] Zhu N, Liu L, Xu Q, et al. Resources availability mediated EPS production regulate microbial cluster formation in activated sludge system[J]. Chemical Engineering Journal, 2015, 279: 129–135. DOI: 10.1016/j.cej.2015.05.017
[2] Li H S, Wen Y, Cao A S, et al. The influence of additives (Ca2+, Al3+, and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of activated sludge and their flocculation mechanisms[J]. Bioresource Technology, 2012, 114: 188–194. DOI: 10.1016/j.biortech.2012.03.043
[3] Wu L H, Tan C Y, Liu L, et al. Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure[J]. Geoderma, 2012, 173-174: 224–230. DOI: 10.1016/j.geoderma.2011.12.003
[4] Ye C C, Yang X P, Zhao F J, et al. The shift of the microbial community in activated sludge with calcium treatment and its implication to sludge settleability[J]. Bioresource Technology, 2016, 207: 11–18. DOI: 10.1016/j.biortech.2016.01.135
[5] 杨新萍, 韩娇, 周立祥. Ca2+在好氧颗粒污泥形成中的作用[J]. 环境科学, 2010, 31(5): 1269–1273. Yang X P, Han J, Zhou L X. Role of Ca2+ in the formation of glucose-fed aerobic granular sludge in sequencing batch reactor[J]. Environmental Science, 2010, 31(5): 1269–1273.
[6] Liu J, Zhang D Y, Pan X L, et al. Characterization of the complexation between Al3+and extracellular polymeric substances prepared from alga-bacteria biofilm[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(3): 347–350.
[7] Eriksson L, Alm B. Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties[J]. Waterence & Technology, 1991, 24(7): 21–28.
[8] Subramanian S B, Yan S, Tyagi R D, et al. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge:isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering[J]. Water Research, 2010, 44(7): 2253–2266. DOI: 10.1016/j.watres.2009.12.046
[9] Basuvaraj M, Fein J, Liss S N. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc[J]. Water Research, 2015, 82: 104–117. DOI: 10.1016/j.watres.2015.05.014
[10] Sheng G P, Yu H Q, Yu Z. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila[J]. Applied Microbiology and Biotechnology, 2005, 67(1): 125–130. DOI: 10.1007/s00253-004-1704-5
[11] 段亮, 夏四清, 宋永会, 等. 活性污泥胞外聚合物提取方法优化[J]. 环境工程学报, 2010, 4(1): 63–66. Duan L, Xia S Q, Song Y H, et al. Optimization of extracellular polymeric substance extraction method[J]. Chinese Journal of Environmental Engineering, 2010, 4(1): 63–66.
[12] Yu H Q, Tay J H, Fang H H P. The roles of calcium in sludge granulation during UASB reactor start-up[J]. Water Research, 2001, 35(4): 1052–1060. DOI: 10.1016/S0043-1354(00)00345-6
[13] 王劲松. 微生物絮凝剂作用下厌氧颗粒污泥的形成及特性[J]. 环境科学, 2009, 30(11): 3329–3335. Wang J S. Properties of anaerobic granules developed by bioflocculant[J]. Environmental Science, 2009, 30(11): 3329–3335. DOI: 10.3321/j.issn:0250-3301.2009.11.033
[14] 王凤祥, 龙腾锐, 郭劲松. 活性污泥膨胀的影响因素及调控措施研究[J]. 重庆建筑大学学报, 2007, 29(1): 117–121. Wang F X, Long T R, Guo J S. Study on factors affecting the activated sludge bulking and its control[J]. Journal of Chongqing Jianzhu University, 2007, 29(1): 117–121.
[15] 冯骞, 汪翙, 薛朝霞. 剪切作用对活性污泥沉降性能的影响[J]. 环境科学与技术, 2008, 31(2): 20–24. Feng Q, Wang H, Xue Z X. Influence of hydrodynamics shear stress on settlement characteristics of activated sludge[J]. Environmental Science & Technology, 2008, 31(2): 20–24.
[16] Marques A P G C, Duque A F, Bessa V S, et al. Performance of an aerobic granular sequencing batch reactor fed with wastewaters contaminated with Zn2+[J]. Journal of Environmental Management, 2013, 128: 877–882. DOI: 10.1016/j.jenvman.2013.06.052
[17] Frølund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749–1758. DOI: 10.1016/0043-1354(95)00323-1
[18] Yu G H, He P J, Shao L M. Characteristics of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability[J]. Bioresource Technology, 2009, 100(13): 3193–3198. DOI: 10.1016/j.biortech.2009.02.009
[19] Wang R, Peng Y, Cheng Z, et al. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system[J]. Bioresource Technology, 2014, 169: 307–312. DOI: 10.1016/j.biortech.2014.06.040
[20] 高廷耀, 顾国维, 周琪. 水污染控制工程(下册)[M]. (第三版). 北京: 高等教育出版社, 2007.
[21] AP HA. Standard methods for the examination of water and wastewater (20th ed.)[M]. Washington, DC, USA: American Public Health Association/American Water Work Association/Water Environment Federation, 2005.
[22] Liu L, Gao D, Zhang M. Formation of aerobic granular sludge in sequencing batch reactor:Comparison of different divalent metal ions as cofactors[C]. American Institute of Physics, 2010. 77-80.
[23] Liu X M, Sheng G P, Luo H W, et al. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation[J]. Environmental Science & Technology, 2010, 44(11): 4355–4360.
[24] Adav S S, Lee D J, Show K Y, et al. Aerobic granular sludge:recent advances[J]. Biotechnology Advances, 2008, 26(5): 411–423. DOI: 10.1016/j.biotechadv.2008.05.002
[25] Jiang H L, Tay J H, Liu Y, et al. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors[J]. Biotechnology Letters, 2003, 25(2): 95–99. DOI: 10.1023/A:1021967914544
[26] 张燕, 胡学伟, 江孟, 等. Ca2+对生物膜形态结构及其组分的影响[J]. 环境工程学报, 2015, 9(4): 1547–1552. Zhang Y, Hu X W, Jiang M, et al. Effect of Ca2+ on morphological structure and component of biofilm[J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 1547–1552. DOI: 10.12030/j.cjee.20150405
[27] Mcswain B S, Irvine R L, Wilderer P A. The influence of settling time on the formation of aerobic granules[J]. Water Science & Technology:A Journal of the International Association on Water Pollution Research, 2004, 50(10): 195–202.
[28] Yang S F, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules[J]. Biochemical Engineering Journal, 2004, 17(1): 41–48. DOI: 10.1016/S1369-703X(03)00122-0
[29] 欧阳二明, 王伟, 龙能, 等. 污泥内层和外层胞外聚合物的三维荧光光谱特性研究[J]. 光谱学与光谱分析, 2009, 29(5): 1313–1318. Ouyang E M, Wang W, Long N, et al. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of loosely bound and tightly bound extracellular polymeric substances of sludge[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1313–1318.
[30] Zhu L, Qi H Y, Lv M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455–459. DOI: 10.1016/j.biortech.2012.08.059
[31] 李卫华, 盛国平, 王志刚, 等. 废水生物处理反应器出水的三维荧光光谱解析[J]. 中国科学技术大学学报, 2008, 38(6): 601–608. Li W H, Sheng G P, Wang Z G, et al. Analysis of EEM fluorescence spectra of effluents from bioreactors[J]. Journal of University of Science and Technology of China, 2008, 38(6): 601–608.
[32] Domínguez L, Rodríguez M, Prats D. Effect of different extraction methods on bound EPS from MBR sludges:Part Ⅱ:influence of extraction methods over molecular weight distribution[J]. Desalination, 2010, 262(1-3): 106–109. DOI: 10.1016/j.desal.2010.06.001
[33] Zhu L, Yu H T, Liu Y M, et al. Optimization for extracellular polymeric substances extraction of microbial aggregates[J]. Water Science & Technology:A Journal of the International Association on Water Pollution Research, 2015, 71(7): 1106–1112.
[34] Sheng G P, Xu J, Li W H, et al. Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge[J]. Chemosphere, 2013, 93(7): 1436–1441. DOI: 10.1016/j.chemosphere.2013.07.076
[35] Sheng G P, Xu J, Luo H W, et al. Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge[J]. Water Research, 2013, 47(2): 607–614. DOI: 10.1016/j.watres.2012.10.037
[36] Cao B, Shi L, Brown R N, et al. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms:characterization by infrared spectroscopy and proteomics[J]. Environmental Microbiology, 2011, 13(4): 1018–1031. DOI: 10.1111/emi.2011.13.issue-4
[37] Seviour T, Yuan Z G, van Loosdrecht M C M, et al. Aerobic sludge granulation:a tale of two polysaccharides?[J]. Water Research, 2012, 46(15): 4803–4813. DOI: 10.1016/j.watres.2012.06.018