短程反硝化是指以有机物为电子供体将NO2-还原为N2的生物反应过程[1].某些工业生产废水 (如锅炉清洗废水、机械加工废切削液) 中含有NO2-而缺乏有机物,若利用短程反硝化处理则需投加外碳源,不仅增加了处理费用,还易造成二次污染.
Fe(0)具有较强的还原势能 (E0=-0.44 V),利用其还原NOx-已被广泛关注[2~6].但有研究表明[7],常温条件下Fe(0)还原NOx-速率很慢;且只有在酸性条件下[8, 9],Fe(0)才能起到化学还原作用.近年来有学者利用Fe(0)强化微生物反硝化过程[10, 11],发现反应过程复杂,至少包括产氨、析氢和反硝化这3个反应,且产生的氨氮需要额外处理. Fe(0)-活性炭之间由于电位差的存在会形成无数原电池系统 (在中性和碱性条件下均能形成[12]),利用这种电化学作用处理废水的方法称为铁碳微电解法,该法产生高化学活性的Fe2+与[H]对有机物的高效去除已被多方证实[13~16],但这些产物能否被反硝化细菌利用从而强化NO2-的脱氮性能鲜有报道.此外,有研究表明与传统反硝化相比,短程反硝化会释放更多的强温室性中间产物N2O[17],导致污染物由水环境转移到大气环境,因此,脱氮过程中N2O的释放也日益引起人们的关注[18~21].
本研究以短程反硝化活性污泥为对象,首先通过烧杯实验考察了Fe(0)-活性炭在无机废水中强化NO2-还原的可能性,并利用批式实验研究了不同铁碳比和pH值对Fe(0)-活性炭强化短程反硝化的性能及气态产物N2O释放的影响.通过获得Fe(0)-活性炭强化微生物短程反硝化的最佳条件,以期为优化短程生物反硝化工艺提供科学依据.
1 材料与方法 1.1 污泥来源及特性短程反硝化污泥取自实验室稳定运行的SBR反应器,反应器中MLSS维持在3 000~4 000 mg·L-1,VSS/SS约为0.65,当进水NO2--N浓度为150 mg·L-1,COD浓度为450 mg·L-1时,NO2--N去除率达到99%,COD去除率约为68%,N2O-N的转化率为0.089%,反硝化速率达25.55 mg·(g·h)-1,表明该污泥具有较高的反硝化活性.
1.2 实验装置与方案 1.2.1 烧杯实验装置与方案烧杯实验在500 mL烧杯内进行,每个烧杯内都含有300 mL脱氧的亚硝酸钠溶液,NO2--N浓度为65 mg·L-1.将100 mL反硝化污泥混合液、10 g铁粉、1 g活性炭颗粒按照表 1不同组合方式分别投加进行实验,研究不同组合方式对反硝化的强化效果.在烧杯内放入转子并用锡箔纸密封,将烧杯放置在磁力搅拌器上,调转速为200 r·min-1,实验时长为72 h,每隔24 h取10 mL混合液过滤后测三氮.烧杯实验在常温常压条件下进行,也不投加任何酸碱调节pH值.
![]() |
表 1 烧杯实验方案 Table 1 Beaker test scheme |
1.2.2 批式实验装置与方案
铁碳比和初始pH值影响因素实验在体积为1 L的有机玻璃反应器内进行,反应器从底部曝氮气,上部用锥型盖子密封,气体经排气孔通过装有浓硫酸的锥形瓶收集.实验中所用到的活性炭经过饱和预处理,具体方法为:将活性炭置于与实验进水同等浓度的亚硝酸钠溶液中,每12 h更换一次废水,并在第3次换水前后测溶液中的NO2--N值无明显变化 (即已吸附饱和) 后,在60℃下的恒温干燥箱中烘干,烘干后的活性炭称量备用.铁碳比影响实验中,初始水样不调节pH值,固定Fe(0)的质量为25 g,铁碳比分别为:2 :1,1 :1,1 :2. pH影响实验中,维持铁碳比均为1 :1,控制初始pH值分别为:6.0、7.5、9.0.反应时间为120 min,每隔固定的时间测定水样和气体中氮素的浓度.
1.3 水质分析与计算NO3--N:紫外分光光度法;NO2--N:N-(1-萘基)-乙二胺光度法;NH4+-N:纳氏试剂光度法;MLSS:滤纸重量法;pH:精密酸度计. NO2--N去除率和NH4+-N生成率分别依据式 (1) 和 (2) 计算:
![]() |
(1) |
![]() |
(2) |
反硝化速率取线性部分计算,见公式 (3)、(4):
![]() |
(3) |
![]() |
(4) |
N2O测定使用GE-600型 (PerkinElmer, Singapore) 气相色谱仪进行分析,利用1 000 μL微量进样器完成手动进样.色谱柱为PQ填充柱 (4 m×0.53 mm×25μm),测定N2O条件为:进样口温度150℃,炉温箱50℃,ECD检测器380℃.气体样品均测定3次取平均值.
N2O释放速率根据式 (5) 计算[22]:
![]() |
(5) |
式中,wN2O为N2O释放速率[μg·(g·min)-1],Q为曝气量 (L·min-1),cN2O为N2O气体采样含量 (mL·m-3),MN2O为N2O摩尔质量 (44.02 g·mol-1),p为大气压强 (1.01×105 Pa),R为气体常数[8.31 J·(mol·K)-1)],T为温度 (K),VL为反应器体积 (L),MLSS为混合液悬浮固体浓度 (mg·L-1).
N2O释放量根据式 (6) 计算[23]:
![]() |
(6) |
式中,mN2O为N2O释放量 (mg),Δt分别为反应起始与结束时间的差. wN2O、VL与MLSS意义同式 (5).
2 结果与讨论 2.1 Fe(0)-活性炭对短程反硝化的强化作用图 1分别表示了7组烧杯实验反应72 h过程中亚硝氮的去除及氨氮的生成过程.
![]() |
图 1 Fe(0)与活性炭强化生物无机反硝化过程中亚硝氮的去除及氨氮的生成 Fig. 1 Nitrite removal and ammonia nitrogen production in the process of biological denitrification with Fe(0)-activated carbon |
由图 1可知,单独投加Fe(0)时,亚硝氮的去除率仅为2.6%,产生的氨氮占初始总氮的1.5%,表明不控制pH时Fe(0)动态反应过程缓慢[24].单独投加活性炭时,亚硝氮的去除率为5.3%,氨氮的产量为0,此过程中虽然没有产生氨氮,但仅依靠其吸附作用去除亚硝氮的效果并不理想.同时投加Fe(0)-活性炭时,亚硝氮去除率为7.0%,小于两者单独作用时的叠加,与Oh等[25]用Fe(0)-生物炭去除硝酸盐所得研究结果相似,Fe(0)腐蚀过程中会造成体系pH值迅速升高,而活性炭的零电荷点为11.3[26],pH值逐渐接近零电荷点会造成活性炭表面所带正电荷减少,导致对阴离子的吸附能力减弱.
单独投加反硝化活性污泥时,亚硝氮的去除率为7.4%,表明在不添加有机物前提下生物反硝化的代谢活动难以进行;产生的氨氮占初始总氮的百分比为7.8%,是长时间缺乏碳源引起细胞分解所致.反硝化污泥-活性炭组实验中亚硝酸盐的去除率为18.4%,与单独投加二者之和相比并无太大差别,表明活性炭对生物短程反硝化的强化作用有限.
反硝化污泥-Fe(0)组实验中,亚硝氮的去除率为20.2%,而氨氮的产量占初始总氮的百分比高达44.9%.因为Fe(0)的腐蚀过程中产生的H2可以作为电子供体促进生物反硝化,但产物中伴有大量的氨氮[25].反硝化污泥-Fe(0)-活性炭组实验中,亚硝氮的去除率为31.1%,氨氮的最终产量占初始总氮的百分比为23.7%,表明Fe(0)至少参与了两个反应过程:一是Fe(0)与活性炭形成微电池,发生了铁碳微电解反应,产生的高化学活性产物Fe2+、[H]作为电子供体被反硝化细菌所利用[27, 28],从而促进了生物反硝化脱氮;另外,Fe(0)还发生了化学还原反应,体系内的氨氮为Fe(0)还原亚硝氮的部分产物.
以上烧杯实验结果表明在无机环境下,投加Fe(0)-活性炭能强化短程反硝化,不仅提高了亚硝氮去除率,还降低了Fe(0)腐蚀过程中产生的氨氮.
2.2 铁碳比对活性污泥-Fe(0)-活性炭系统NO2-还原及N2O释放特性的影响通过批式实验研究了铁碳比分别为2 :1、1 :1和1 :2对活性污泥-Fe(0)-活性炭系统反硝化脱氮性能及N2O释放特性,实验运行中反应器内活性污泥浓度为1.88 g·L-1.
由图 2可以看出,不同铁碳比 (质量比) 下,NO2--N的变化趋势大致相同,均随着反硝化的进行浓度在不断降低,并且在降解过程中其浓度与时间的变化呈现较好的线性相关.但不同的铁碳比影响亚硝氮的去除效果:当铁碳比为1 :1时,亚硝氮的去除率为41.1%,氨氮生成率为4.4%,反硝化速率为5.58 mg·(g·h)-1;铁碳比2 :1时,亚硝氮的去除率为30.3%,氨氮生成率为6.1%,反硝化速率为2.98 mg·(g·h)-1;铁碳比为1 :2时,亚硝氮的去除率为33.2%,氨氮生成率为12.6%,反硝化速率为4.48 mg·(g·h)-1.
![]() |
图 2 不同铁碳比下,NH4+-N、NO2--N、NO3--N、N2O随时间的变化 Fig. 2 Changes of NH4+-N, NO2--N, NO3--N, N2O in the process with different iron carbon mass ratio |
当活性炭颗粒质量过小时,一方面微电解形成的电池总量少,可被微生物利用的Fe2+、[H]总量低,故系统的亚硝氮去除效果较差;另一方面,过量的铁粉会单独起到化学还原作用,在腐蚀过程中导致氨氮产生量增加.随着活性炭质量的增多,系统微电池数量也增多,微电解活性产物数量升高意味着反硝化菌能利用的电子数量增多,从而提高了去除率.当铁碳比例为1 :1时,亚硝氮的去除效果达到最佳水平,不仅氨氮产量低且反硝化速率也最高.继续增加活性炭的质量,过量的活性炭颗粒覆着在铁粉的表面,减少了微电池的形成数量,从而影响系统亚硝氮的脱氮效果.因此,过高或过低的铁碳比均不利于脱氮反应的进行.
铁碳比的不同不仅会影响亚硝氮的去除和氨氮的生成,也会造成脱氮气态产物N2O的释放速率及释放量有所不同. 3组实验中N2O的释放速率都是在曝气初期出现一个峰值,然后迅速下降.铁碳比为2 :1时,N2O的释放速率在30 s时达到最大为3.19 μg·(g·min)-1,整个反应过程中释放的N2O总量为0.09 mg.铁碳比为1 :1时,N2O的释放速率在1 min时达到最大为1.20μg·(g·min)-1,整个反应过程中释放的N2O总量为0.10 mg.铁碳比为1 :2时,N2O的释放速率在0 min时达到最大为1.51 μg·(g·min)-1,整个反应过程中释放的N2O总量为0.12 mg.虽然铁碳比2 :1时,N2O的释放速率峰值会出现大于其他两组的情况,但是从N2O在整个反应过程中的累积量来看,反而出现了最小值.主要因为铁粉过量时,化学还原作用会增加N2O的释放量,而零价铁与活性炭形成的微电池数量少,故微电解作用提供给反硝化菌的电子供体数量不足,生物反硝化能力减弱,因生物反硝化作用生成的N2O总量减少,两部分作用的效果叠加,就会出现反应初期N2O释放速率峰值迅速增大而后一直处于较低水平的情况.
2.3 初始pH对活性污泥-Fe(0)-活性炭系统NO2-还原及N2O释放特性的影响通过批式实验研究了初始pH值分别为6.0、7.5和9.0对活性污泥-Fe(0)-活性炭系统反硝化脱氮性能及N2O释放特性,实验运行中反应器内活性污泥浓度为1.98 g·L-1.
如图 3所示,不同pH值条件下,3组实验表现出相似的降解趋势,随着反应时间的延长,亚硝氮的浓度逐渐减少.实验运行中反应器内活性污泥浓度为1.98 g·L-1.在不同的pH下亚硝氮的去除效果不同.当pH为6.0时,亚硝氮的去除率为56.0%,氨氮生成率为1.8%,反硝化速率为7.39 mg·(g·h)-1;pH为7.5时,亚硝氮的去除率为47.7%,氨氮生成率为1.8%,反硝化速率为6.29 mg·(g·h)-1;pH为9.0时,亚硝氮的去除率为44.7%,氨氮生成率为2.2%,反硝化速率为5.96 mg·(g·h)-1.这些结果表明,随着体系pH值的增加,相应的亚硝氮去除速率和反应速率呈下降趋势,而氨氮的生成率却并无太大差异.造成这些现象的原因是pH较高时,一方面会使铁粉表面沉积铁的氧化物和氢氧化物,造成铁粉表面钝化而影响铁粉的活性,另一方面pH为9.0已超出反硝化细菌的最适生存环境6.5~7.5,故生物的反硝化能力被削弱,从而降低了体系的脱氮性能.过酸或过碱的环境条件都会对反硝化细菌的代谢作用产生不利影响,但是酸性条件却会加速零价铁的化学还原作用.由于系统中没有外加有机物,当化学作用的强度大于反硝化细菌的生物作用强度,就会出现酸性环境中的反应速率与亚硝氮的去除率大于碱性与近中性环境.
![]() |
图 3 不同pH下,NH4+-N、NO2--N、NO3--N、N2O随时间的变化 Fig. 3 Changes of NH4+-N, NO2--N, NO3--N, N2O in the process with different pH |
在3组实验中氧化亚氮的释放速率都是在曝气初期出现一个峰值,然后迅速下降. pH为6.0时,N2O的释放速率在2 min时达到最大为7.19 μg·(g·min)-1,整个反应过程中释放的N2O总量为0.19 mg. pH为7.5时,N2O的释放速率在2 min时达到最大为1.90 μg·(g·min)-1,整个反应过程中释放的N2O总量为0.14 mg. pH为9.0时,N2O的释放速率在0.5 min时达到最大为3.15 μg·(g·min)-1,整个反应过程中释放的N2O总量为0.12 mg. 3组实验比较来看,酸性环境产生的N2O的总量最多,且出现的N2O释放速率的峰值最大.主要因为生物反硝化过程中,较低的pH值抑制了氧化亚氮还原酶的酶活,从而导致N2O释放量的增加;此外,酸性条件强化了化学反硝化作用,也增加了N2O的产生.
3 结论(1) 在无机环境下,Fe(0)-活性炭能够强化生物短程反硝化的去除效果,使亚硝氮去除率由7.4%提高至31.1%.
(2) 当铁碳比由2 :1降至1 :1和1 :2时,Fe(0)-活性炭-活性污泥系统中脱氮效果呈先升后降的趋势;铁碳比为1 :1时,反硝化速率与亚硝氮去除率达到最大值,分别为5.58 mg·(g·h)-1和41.1%.
(3) 随着pH值由6.0升至7.5和9.0,Fe(0)-活性炭-活性污泥系统中的反硝化速率、亚硝氮去除率和N2O的释放量均呈下降趋势.
[1] | Matějů V, Ğžnská S, Krejčí J, et al. Biological water denitrification-a review[J]. Enzyme and Microbial Technology, 1992, 14(3): 170–183. DOI: 10.1016/0141-0229(92)90062-S |
[2] | Vodyanitskii Y N, Mineev V G. Degradation of nitrates with the participation of Fe (Ⅱ) and Fe (0) in groundwater:a review[J]. Eurasian Soil Science, 2015, 48(2): 139–147. DOI: 10.1134/S1064229315020131 |
[3] | Wang H Y, Zhang S L, Chen D, et al. Nitrate removal from groundwater by nanoscale zero-valent iron (nzvi) coupling autohydrogenotrophic denitrification[A]. In:International Conference on Education, Management, Computer and Society[C]. Shenyang:Atlantis Press, 2016. |
[4] | Liu Y, Lee J, Zhao Y H, et al. A novel preparation approach and denitrification performance of TiO2/Fe photocatalysts[J]. Desalination & Water Treatment, 2014, 57(7): 3125–3131. |
[5] | Siciliano A. Use of nanoscale zero-valent iron (NZVI) particles for chemical denitrification under different operating conditions[J]. Metals-Open Access Metallurgy Journal, 2015, 5(3): 1507–1519. |
[6] | Lubphoo Y, Chyan J M, Grisdanurak N, et al. Nitrogen gas selectivity enhancement on nitrate denitrification using nanoscale zero-valent iron supported palladium/copper catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 57: 143–153. DOI: 10.1016/j.jtice.2015.05.005 |
[7] | 王弘宇, 张惠宁, 吕斌, 等. 铁基质自养反硝化去除水中硝酸盐污染物的研究[J]. 中国农村水利水电, 2014(11): 59–62. Wang H Y, Zhang H N, Lv B, et al. Research on nitrate removal by Fe-dependent autotrophic denitrification bacteria[J]. China Rural Water and Hydropower, 2014(11): 59–62. DOI: 10.3969/j.issn.1007-2284.2014.11.017 |
[8] | Fan X M, Guan X H, Jun M A. Mechanisms and affecting factors of nitrate reduction by zero-valent Iron[J]. China Water & Wastewater, 2008, 24(14): 5–9. |
[9] | Whittleston R A, Stewart D I, Mortimer R J G, et al. Enhancing microbial iron reduction in hyperalkaline, chromium contaminated sediments by pH amendment[J]. Applied Geochemistry, 2013, 28: 135–144. DOI: 10.1016/j.apgeochem.2012.10.003 |
[10] | Yang G C C, Lee H L. Chemical reduction of nitrate by nanosized iron:kinetics and pathways[J]. Water Research, 2005, 39(5): 884–894. DOI: 10.1016/j.watres.2004.11.030 |
[11] | Shin K H, Cha D K. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron[J]. Chemosphere, 2008, 72(2): 257–262. DOI: 10.1016/j.chemosphere.2008.01.043 |
[12] | Deng S H, Li D S, Yang X, et al. Biological denitrification process based on the Fe (0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology, 2016, 219: 677–686. DOI: 10.1016/j.biortech.2016.08.014 |
[13] | Santos E A, Ortega P F R, Lavall R L, et al. Use of biodiesel press cake waste to prepare Fe/carbon reactive composites for environmental applications:removal of hazardous CrVI contaminants[J]. Journal of the Brazilian Chemical Society, 2015, 26(10): 740–744. |
[14] | 杨欣, 武福平, 马国纲, 等. 铁碳微电解与生物接触氧化法联用处理涂料废水[J]. 城市道桥与防洪, 2015(12): 74–76. Yang X, Wu F P, Ma G G, et al. Paint wastewater treated by combined process of iron carbon micro electrolysis and biological contact oxidation[J]. Urban Roads Bridges & Flood Control, 2015(12): 74–76. DOI: 10.3969/j.issn.1009-7716.2015.12.022 |
[15] | 陈国强. 次氯酸钠-铁碳微电解联用处理炼油厂RO浓水实验研究[J]. 价值工程, 2015(11): 98–100. Chen G Q. Experimental study on the use of sodium hypochlorite-iron-carbon micro-electrolysis in refinery RO thick water treatment[J]. Value Engineering, 2015(11): 98–100. |
[16] | 张维涛. 铁碳微电解预处理硝基苯废水工艺研究进展[J]. 广州化工, 2015, 43(6): 39–41. Zhang W T. Progress on Treatment technique of iron-carbon micro-electrolysis for nitrobenzene waste-water[J]. Guangzhou Chemical Industry, 2015, 43(6): 39–41. |
[17] | Hassan J, Qu Z, Bergaust L L, et al. Transient accumulation of NO2-and N2O during denitrification explained by assuming cell diversification by stochastic transcription of denitrification genes[J]. PLoS Computational Biology, 2016, 12(1): e1004621. DOI: 10.1371/journal.pcbi.1004621 |
[18] | Wang Q L, Jiang G M, Liu Y, et al. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor[J]. Water Research, 2014, 62: 202–210. DOI: 10.1016/j.watres.2014.06.003 |
[19] | Zheng M S, He D, Ma T, et al. Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1[J]. Bioresource Technology, 2014, 162: 80–88. DOI: 10.1016/j.biortech.2014.03.125 |
[20] | Wei W, Isobe K, Shiratori Y, et al. N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer[J]. Soil Biology and Biochemistry, 2014, 69: 157–167. DOI: 10.1016/j.soilbio.2013.10.044 |
[21] | Wu G X, Zheng D R, Xing L Z. Nitritation and N2O Emission in a denitrification and nitrification two-sludge system treating high ammonium containing wastewater[J]. Water, 2014, 6(10): 2978–2992. DOI: 10.3390/w6102978 |
[22] | Kimochi Y, Inamori Y, Mizuochi M, et al. Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration[J]. Journal of Fermentation and Bioengineering, 1998, 86(2): 202–206. DOI: 10.1016/S0922-338X(98)80114-1 |
[23] | Kong Q, Liang S, Zhang J, et al. N2O emission in a partial nitrification system:dynamic emission characteristics and the ammonium-oxidizing bacteria community[J]. Bioresource Technology, 2013, 127: 400–406. DOI: 10.1016/j.biortech.2012.10.011 |
[24] | Su C M, Puls R W. Nitrate Reduction by zerovalent iron:effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate[J]. Environmental Science & Technology, 2004, 38(9): 2715–2720. |
[25] | Oh S Y, Seo Y D, Kim B, et al. Microbial reduction of nitrate in the presence of zero-valent iron and biochar[J]. Bioresource Technology, 2015, 200: 891–896. |
[26] | Oh S Y, Seo Y D. Factors affecting sorption of nitro explosives to biochar:pyrolysis temperature, surface treatment, competition, and dissolved metals[J]. Journal of Environmental Quality, 2015, 44(3): 833–840. DOI: 10.2134/jeq2014.12.0525 |
[27] | Zhang H N, Wang H Y, Yang K, et al. Nitrate removal by a novel autotrophic denitrifier (Microbacterium sp.) using Fe (Ⅱ) as electron donor[J]. Annals of Microbiology, 2015, 65(2): 1069–1078. DOI: 10.1007/s13213-014-0952-6 |
[28] | Deng S H, Li D S, Yang X, et al. Process of nitrogen transformation and microbial community structure in the Fe (0)-carbon-based bio-carrier filled in biological aerated filter[J]. Environmental Science and Pollution Research, 2016, 23(7): 6621–6630. DOI: 10.1007/s11356-015-5892-6 |