环境科学  2017, Vol. 38 Issue (5): 1873-1880   PDF    
垃圾填埋有色溶解性有机质与铜络合机制
肖骁1,2 , 何小松1,2 , 高如泰1,2 , 席北斗1,2 , 张慧1,2 , 黄彩红1,2 , 李丹1,2 , 袁志业3     
1. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012;
2. 中国环境科学研究院国家环境保护地下水污染模拟与控制重点实验室, 北京 100012;
3. 北京铮实环保工程有限公司, 北京 100076
摘要: 为了阐明填埋场中重金属的形态演变机制,采用三维荧光光谱、荧光猝灭滴定技术及平行因子分析,研究了不同填埋年限垃圾中有色溶解性有机物(colored dissolved organic matter,CDOM)与Cu(Ⅱ)的络合过程.结果表明,填埋垃圾CDOM中含有类蛋白、类富里酸及类胡敏酸物质,随着填埋时间的延伸,类蛋白物质含量呈下降趋势,而类富里酸和类胡敏酸含量呈上升趋势.填埋垃圾CDOM中类蛋白物质对Cu(Ⅱ)络合能力和参与络合的荧光基团比例存在差异,络合的条件稳定常数在4.00~5.75之间,参与络合的荧光基团比例在22.78%~95.30%之间;而类腐殖质与Cu(Ⅱ)作用的条件稳定常数和参与络合的荧光基团比例变化较小,类胡敏酸物质与Cu(Ⅱ)络合的条件稳定常数在4.71~5.54之间,参与络合的荧光基团比例在42.35%~61.46%之间,类富里酸物质与Cu(Ⅱ)络合的条件稳定常数在4.44~5.25之间,参与络合的荧光基团比例在46.14%~57.22%之间.类富里酸和类胡敏酸与Cu(Ⅱ)的结合能力都随着填埋年限的增加而降低,但参与络合的荧光基团比例增加,并且类胡敏酸物质与重金属的结合能力强于类富里酸,但参与配位的官能团较类富里酸少.
关键词: 填埋垃圾      有色溶解性有机物      平行因子分析           络合作用     
Complexation Between Copper (Ⅱ) and Colored Dissolved Organic Matter from Municipal Solid Waste Landfill
XIAO Xiao1,2 , HE Xiao-song1,2 , GAO Ru-tai1,2 , XI Bei-dou1,2 , ZHANG Hui1,2 , HUANG Cai-hong1,2 , LI Dan1,2 , YUAN Zhi-ye3     
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing 100012, China;
3. Beijing Zhengshi Environmental Engineering Co., Ltd., Beijing 100076, China
Abstract: In order to elucidate the evolution mechanism of heavy metal species in landfill cells, three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM), fluorescence quenching titration and parallel factor analysis (PARAFAC) were employed to study the complexation process between Cu (Ⅱ) and colored dissolved organic matter (CDOM) from landfill with different ages. The experimental results indicated that the landfilled CDOM comprised protein-like, humic-like and fuvic-like matter. The relative content of protein-like matter decreased during the landfill process, whereas the humic-like and fuvic-like matter increased during the process. The range of the conditional stability constants and the percentage of fluorophores participated the complextion between Cu (Ⅱ) and protein-like matter with different ages were 4.00-5.75 and 22.78%-95.30%, respectively. Those parameters changed slightly for humic-like matter with different ages, which ranged from 4.71 to 5.54 and from 42.35% to 61.46%, respectively. As regard to fulvic-like matter, those parameters were 4.44-5.25 and 46.14%-57.22%, respectively. The complexation ability of humic-like substances with Cu (Ⅱ) decreased during the landfill process, though the percentage of fluorophores participated the complexation increased. The complexation ability of humic-like substances with Cu (Ⅱ) was stronger than that of fulvic-like matter, though the percentage of fluorophores participated the complexation in humic-like matter was low compared with fulvic-like matter.
Key words: municipal solid waste landfill      colored dissolved organic matter (CDOM)      parallel factor (PARAFAC) analysis      copper      complexation     

随着我国经济的不断发展,城市固体废物 (MSW) 的产量逐步增加[1],生活垃圾的处理处置问题已成为当前热点.填埋处理由于操作简单、成本较低等优点成为目前城市垃圾处理最普遍的方式.在我国,超过80%的生活垃圾通过填埋进行处理[2, 3].在填埋过程中,有机质的生物降解过程主要发生在其颗粒表面一层液态薄膜中,因此水溶性有机物 (dissolved organic matter,DOM) 的变化比固相有机质更能够反映填埋垃圾的生物降解过程[4, 5].

有色溶解性有机物 (colored dissolved organic matter,CDOM) 是DOM中可采用紫外和荧光光谱检测的那部分有机质,它是非均质的混合有机物[6],其结构上的—COOH、—OH、—SH和—NH2等多种功能基团容易与重金属发生络合作用[7~10],进而影响重金属的迁移、转化和生物可利用性[11, 12].Seo等[13]发现填埋渗滤液DOM的不同荧光组分与Cu (Ⅱ) 的络合能力不同.Wu等[14, 15]通过三维荧光耦合平行因子分析发现不同荧光组分对金属Cu (Ⅱ)、Hg (Ⅱ)、Zn (Ⅱ) 都存在络合作用.填埋过程垃圾中有机组分在微生物的作用下发生降解和转化,有研究表明[16]填埋初期DOM主要是类蛋白物质,而填埋中后期主要是类腐殖质物质.不同填埋时期所产生的DOM种类结构性质存在差异,进而影响其与重金属Cu (Ⅱ) 的络合能力,这在国内外研究中鲜有报道.近年来,由于前处理简单、分析快捷以及可获得的信息量大等优点,三维荧光光谱被广泛用于研究天然有机质的环境行为,这也为研究有机质与重金属相互作用提供了技术支撑[17, 18].

填埋过程中,生活垃圾中的电池、荧光灯、金属块等里面的金属会不断溶解进入填埋垃圾和渗滤液中.有研究表明[9, 19, 20],铜在腐殖垃圾中主要以有机态存在 (约占68%~80%),其次是残渣态和碳酸盐结合态,铁锰氧化态和可交换态所占比例很小.为此,本文采用三维荧光光谱耦合平行因子分析,结合荧光猝灭滴定技术[21]和非线性回归分析,研究不同填埋时期垃圾中CDOM与Cu (Ⅱ) 的络合作用,阐明填埋过程中铜形态改变机制,以期为评估填埋垃圾中Cu (Ⅱ) 的环境风险提供科学的依据,也为解决环境中Cu (Ⅱ) 污染提供理论基础.

1 材料与方法 1.1 样品采集与预处理

样品采集于北京阿苏卫垃圾填埋场,2009年在填埋场中打井取样,采集填埋年限2007~2009年的作业单位和填埋年限1996~2003年的作业单元,分别代表填埋初期和填埋中后期垃圾.填埋初期自填埋场表层开始每隔两米取样,分为0~2、2~4、4~6 m,依次编号为TS、TZ及TX;填埋中后期从填埋场表层开始每隔两米取样,分为0~2、2~4、4~6、6~8、8~10、10~12和12~14 m,依次编号为K2、K4、K6、K8、K10、K12、K14.手工剔除垃圾中的金属、塑料、木块以及石块等废物,通过四分法采集一定质量的典型样品,混合均匀后装入自封袋中,24 h内带回实验室,一部分置于4℃冰箱中保存,另一部分置于-20℃冰箱中冷冻保存.

1.2 DOM提取与制备

称取不同填埋时期垃圾样品,按照样品质量与超纯水体积比为1:10 (W/V) 加入超纯水,在转速为200 r·min-1水平振荡提取16 h,在4℃转速为12 000 r·min-1离心机中离心20 min,取上清液过0.45μm滤膜后,所得溶液即为DOM.在TOC仪 (德国Jena公司Multi N/C 2100型) 测定DOM浓度 (以水溶性有机碳DOC表示).根据上述测定结果,通过计算加样量和加水量将所有样品稀释到DOC=6 mg·L-1备用.

1.3 DOM与Cu (Ⅱ) 络合实验

荧光猝灭滴定技术用于研究DOM与Cu (Ⅱ) 之间络合反应.根据先前报道[7],滴定实验使用0.01 mL·L-1 Cu (NO3)2,Cu (Ⅱ) 在体系中终浓度依次为10、20、30、40、50、60、70、80及90 μmol·L-1,将其依次加入到装有20 mL样品的锥形瓶中,用0.10 μmol·L-1 HNO3和NaOH溶液将体系pH维持在7.00±0.05,加入的酸碱试剂总量不超过100 μL,忽略浓度稀释效应.避光振荡反应24 h,使络合反应充分完全,随后用三维荧光光谱分析样品.

1.4 平行因子 (PARAFAC) 分析

使用日立公司生产的荧光分光光度计 (Hitachi F-7000) 测定三维荧光光谱.三维荧光光谱扫描时激发波长 (excitation wavelength,Ex) 的扫描范围为200~400 nm,发射波长 (emission wavelength,Em) 的扫描范围为280~550 nm,荧光光谱扫描间距5 nm,扫描速度2 400 nm·min-1,PMT电压为700 V.以纯水作为空白,将测得的样品三维荧光值减去空白值后,进行平行因子分析.将填埋DOM荧光数据导出转化为数据矩阵 (10个样品×9个Cu (Ⅱ) 浓度梯度×50 Ex×55 Em),在MATLAB7.0 (Mathworks, Natick, MA) 中的DOMFluor toolbox (www.models.life.ku.dk) 使用平行因子对三维数据矩阵进行分析.得分值用Fmax值来表示,用Fmax值的变化来研究EEM-PARAFAC分析得到组分的含量[22].

1.5 络合模型

Ryan-Weber模型和Stern-Volmer模型是用来估算金属络合常数两种常用的模型[23~26].Ryan-Weber模型用于金属和配体1:1络合的情况,但是如果生成的是稳定的无荧光复合物或者生成的复合物存在超过两个结合位点,金属与配体形成的络合物浓度和猝灭DOM荧光强度之间的线性关系就不显著[27].而修正型Stern-Volmer模型能够解决非线性情况的上述问题[27, 28].因此本文中采用修正型Stern-Volmer模型来计算稳定常数和结合能力,具体形式如下:

式中,FF0分别为DOM添加和未添加Cu (Ⅱ) 的荧光强度,k为条件稳定常数,f为荧光基团与Cu (Ⅱ) 结合的比例,可表示为:

式中,Ires表示没有参与配位反应的荧光基团的比例或不能与Cu (Ⅱ) 接触的荧光基团的比例 (认为最大的荧光强度为100%).

在修正型Stern-Volmer模型中,如果F0/(F0-F) 与1/[Cu]线性相关,配位反应的条件稳定常数k和参与Cu (Ⅱ) 配位的荧光基团的比例f的值分别通过直线的斜率 (1/fk) 和截距 (1/f) 计算得出[29].

2 结果与讨论 2.1 填埋CDOM三维荧光光谱特性

使用PARAFAC方法分解填埋CDOM三维荧光光谱.如图 1所示,残差分析中5组分和6组分模型残差值差距较大,而6组分和7组分模型只存在很小的差距,表明本次平行因子分析中最佳组分数为6.对半分析图进一步验证了将样品分解为6个组分是可行的[30].分解后的6个荧光组分中包括2个类腐殖质 (humic-like) 及4个类蛋白物质 (protein-like) 组分,不同组分以及对应其激发发射波长位置如图 2所示,各组分Fmax值对应激发发射波长及性质描述如表 1所示.

图 1 模型验证的残差分析和对半分析 Fig. 1 Residual analysis and split half analysis for model validation

图 2 平行因子分析鉴定出6个荧光组分及其对应激发、发射波长位置 Fig. 2 Six different components indentified by the EEM-PARAFAC model and their excitation and emission loading

表 1 6种荧光组分Fmax对应波段位置 Table 1 Position of the fluorescence maxima of the six components

根据先前研究[14, 31~35],组分C1、C4和C6可判断均为类蛋白物质,其中组分C1属于类色氨酸物质,组分C4为微生物代谢的副产物,组分C6属于类酪氨酸物质;组分C2可判断为类胡敏酸物质,组分C3可判断为类富里酸物质;组分C5可判断为与胡敏酸物质结合的类蛋白物质.

利用PARAFAC方法分离的6个组分不同填埋深度的得分值Fmax进行制图.如图 3所示,不同深度的样品中类蛋白物质 (组分C1、C4、C5和C6) 总含量高于类腐殖质物质 (组分C2和C3) 总含量,这与填埋垃圾来源主要是含有脂肪类、蛋白类、糖类物质的生活垃圾有很大关系[31].随着填埋深度的增加类蛋白物质 (组分C1、C4、C5和C6) 总体呈下降趋势而类腐殖质物质 (组分C2和C3) 总体呈上升趋势,说明填埋过程中类蛋白物质发生降解,而腐殖化过程导致类腐殖质物质含量增多.

C1、C4、C5、C6表示类蛋白物质,C2、C3表示类腐殖质物质 图 3 不同填埋深度样品6种组分对应的Fmax百分比 Fig. 3 Six components' corresponding Fmax percentage at different depths of the landfill

为了对比研究填埋初期和填埋中后期有机质的转化,将不同填埋深度样品的Fmax取平均 (填埋初期TS、TZ和TX取平均,填埋中后期K2、K4、K6、K8、K10、K12和K14取平均) 作图得到填埋初期和中后期不同组分Fmax百分比图 (图 4).如图 4所示,组分C1和C6(结构简单的类色氨酸和类酪氨酸) 含量随着填埋年限的延伸而减少,而组分C2~C5(类色氨酸和类腐殖质物质) 含量则呈相反的变化趋势,这可能与填埋过程中CDOM的组成和结构的演变有关.垃圾填埋分为5个阶段,初始调整阶段、过渡阶段、酸化阶段、甲烷发酵阶段和成熟阶段[36].在初始调整阶段即填埋初期,垃圾携带大量的氧气,有机质降解主要以剧烈的好氧反应为主[37],在微生物作用下有机质快速分解,脂肪类、蛋白质及糖类等物质由于结构简单而被优先利用,故CDOM中组分C1和C6的含量随填埋年限的延伸呈下降趋势.

图 4 不同填埋时期6种组分对应的Fmax百分比 Fig. 4 Six components'correspondingFmax percentage at different period of the landfill

当填埋进入中后期,易被微生物利用的结构简单的有机物被完全降解后,微生物开始利用木质素类物质产生水溶性芳香族结构物质 (醌、苯酚等),芳香族结构物质与氨基酸缩合,形成腐殖质,开启了腐殖化进程,并随着填埋年限的延伸腐殖化程度加强[5],腐殖质含量逐渐升高[38],故组分C2和C3含量呈上升的趋势.而组分C4发射波长为380 nm,说明可能存在具有芳香族结构的酚类物质例如单宁酸[39],其来源于木质素的降解[40],组分C5为类蛋白物质与类胡敏素结合,两者中存在的芳香族结构物质同样可以与氨基酸结合形成腐殖质,随着腐殖化进程含量增加,因此与组分C2(类胡敏酸物质) 和C3(类富里酸物质) 变化趋势相同,都呈上升的趋势.

2.2 CDOM-Cu (Ⅱ) 条件稳定常数和络合能力

荧光猝灭实验设计采用不同浓度的Cu (Ⅱ) 与填埋垃圾中CDOM反应.通过CDOM荧光强度的降低计算络合常数.本文中采用修正型Stern-Volmer模型来计算条件稳定常数k和荧光基团与Cu (Ⅱ) 结合的比例f,具体形式如下:

通过F0/(F0-F) 与1/[Cu]线性相关,通过拟合的直线斜率 (1/fk) 和截距 (1/f) 来求得配位反应的条件稳定常数k和参与络合Cu (Ⅱ) 的荧光基团的比例f.

CDOM主要是通过含氧官能团 (如酚羟基、羧基等) 与金属发生络合作用[41],而不同组分中存在的官能团不同,因此CDOM中不同组分与Cu (Ⅱ) 的络合能力不同.如表 2所示,不同组分CDOM-Cu (Ⅱ) 在不同填埋深度的络合的条件稳定常数lgkf值,为了研究不同填埋时期CDOM不同组分与Cu (Ⅱ) 络合能力,将样品分为初期 (TS、TZ、TX) 和中后期 (K2、K4、K6、K8、K10、K12、K14),将TS、TZ、TX取平均,将K2、K4、K6、K8、K10、K12、K14取平均得不同填埋时期络合的条件稳定常数lgkf值,如表 3所示.

表 2 不同填埋深度CDOM通过Stern-Volmer模型计算的6种组分与Cu (Ⅱ) 络合的lgkfR21) Table 2 The lgk, f and R2 values of six CDOM components with Cu (Ⅱ) determined by Stern-Volmer model at different depths of the landfill

表 3 不同填埋时期CDOM通过Stern-Volmer模型计算6种组分与Cu (Ⅱ) 络合的lgkfR2 Table 3 The lgk, f and R2 values of six CDOM components with Cu (Ⅱ) determined by Stern-Volmer model at different period of the landfill

表 2所示,不同填埋深度的类蛋白物质与Cu (Ⅱ) 作用的条件稳定常数和参与络合的荧光基团比例存在一定的变化,条件稳定常数在4.00~5.75范围之间,参与络合的荧光基团比例在22.78%~95.30%范围之间;而类腐殖质物质与Cu (Ⅱ) 作用的条件稳定常数和参与络合的荧光基团比例变化较小,其中类胡敏酸物质与Cu (Ⅱ) 络合的条件稳定常数在4.71~5.54之间,参与络合的荧光基团比例在42.35%~61.46%之间,类富里酸物质与Cu (Ⅱ) 络合的条件稳定常数在4.44~5.25之间,参与络合的荧光基团比例在46.14%~57.22%之间.

表 3所示,随着填埋年限的延伸,组分C1和组分C5(类色氨酸物质) 与Cu (Ⅱ) 配位的条件稳定常数均呈下降趋势,组分C1与Cu (Ⅱ) 配位的条件稳定常数由4.94降到3.53,而组分C5与Cu (Ⅱ) 配位的条件稳定常数由5.75降到4.65,此外,这两个组分参与配位的荧光基团比例也呈下降趋势,组分C1参与配位的荧光基团比例由94.89%降到72.72%,组分C5参与配位的荧光基团比例由57.22%降到44.44%.这可能是由于随着填埋的进行类色氨酸物质发生了降解[29]导致其与Cu (Ⅱ) 的络合能力下降,参与配位的官能团减少.组分C4 (微生物代谢副产物) 和组分C6(类酪氨酸物质) 与Cu (Ⅱ) 配位的条件稳定常数和参与配位的荧光基团比例却均呈上升趋势 (表 3),组分C4与Cu (Ⅱ) 配位的条件稳定常数由4.94增加到5.46,参与配位的荧光基团比例由41.99%增加到46.52%,组分C6与Cu (Ⅱ) 配位的条件稳定常数由4.60增加到4.81,参与配位的荧光基团比例由22.78%增加到45.93%.这与不同填埋时期类蛋白物质结构上含氧官能团种类和数量有关[42],不同类蛋白质物质含有的含氧官能团越多,其与Cu (Ⅱ) 的配位作用越强.

填埋CDOM中含有大量腐殖质,随着填埋年限的延伸,组分C2 (类胡敏酸物质) 和组分C3 (类富里酸物质) 与Cu (Ⅱ) 配位的条件稳定常数均呈下降趋势,但参与配位的官能团增加.有研究表明[43],垃圾填埋初期,填埋CDOM中的官能团主要是供电子取代基 (—OH、—NH2等),随着填埋年限的延长,苯环上的供电子取代基被吸电子基团 (—COOH等) 替换.金属Cu (Ⅱ) 呈正价态,与供电子基团配合优于吸电子基团.故随着填埋年限的延伸,填埋CDOM组分C2 (类胡敏酸物质) 和组分C3 (类富里酸物质) 与Cu (Ⅱ) 结合能力降低.随着填埋时间的延伸,腐殖化进程的进行,腐殖质含量逐渐增加[36],分子量逐渐增大,能参与配位的官能团数量增加.其中组分C2与Cu (Ⅱ) 配位的条件稳定常数由5.12降到5.02,组分C3与Cu (Ⅱ) 配位的条件稳定常数由5.00降到4.85,但参与配位的荧光基团比例却呈上升趋势,组分C2参与配位的荧光基团比例由49.58%增加到51.26%,组分C3参与配位的荧光基团比例由51.71%增加到51.98%.可见组分C2(类胡敏酸物质) 的条件稳定常数大于组分C3(类富里酸物质),而参与配位的荧光基团比例较小.这是由于类富里酸物质的分子量低,含氧酸性官能团含量高,并且类富里酸物质与重金属离子的作用表现为络合反应,而类胡敏酸物质与重金属离子主要发生化学吸附作用[44],因此类胡敏酸物质与重金属的结合能力更强,但参与配位的官能团较少.

3 结论

填埋垃圾CDOM包括类蛋白物质、类富里酸物质和类胡敏酸物质,随着填埋进行类蛋白物质含量减少,而类腐殖质物质含量增多.不同填埋年限的类蛋白物质与Cu (Ⅱ) 结合能力和参与配位的荧光基团比例不同且变化较大,而类腐殖质物质与Cu (Ⅱ) 络合的条件稳定常数和参与络合的荧光基团比例变化较小.类富里酸和类胡敏酸物质与Cu (Ⅱ) 结合能力随着填埋年限的增加而降低,但参与配位的荧光基团比例增加.类胡敏酸物质与重金属的结合能力强于类富里酸,但参与配位的官能团较类富里酸少.

参考文献
[1] Jiang J G, Yang Y, Yang S H, et al. Effects of leachate accumulation on landfill stability in humid regions of China[J]. Waste Management, 2010, 30(5): 848–855. DOI: 10.1016/j.wasman.2009.12.005
[2] Lou Z Y, Zhao Y C, Yuan T, et al. Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages[J]. Science of the Total Environment, 2009, 407(10): 3385–3391. DOI: 10.1016/j.scitotenv.2009.01.028
[3] Hong J L, Li X Z, Cui Z J. Life cycle assessment of four municipal solid waste management scenarios in China[J]. Waste Management, 2010, 30(11): 2362–2369. DOI: 10.1016/j.wasman.2010.03.038
[4] He P J, Xue J F, Shao L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7): 1465–1473. DOI: 10.1016/j.watres.2006.01.048
[5] 席北斗, 何小松, 赵越, 等. 填埋垃圾稳定化进程的光谱学特性表征[J]. 光谱学与光谱分析, 2009, 29(9): 2475–2479. Xi B D, He X S, Zhao Y, et al. Spectroscopic characterization indicator of landfill in the process of stabilizing[J]. Spectroscopy and Spectral Analysis, 2009, 29(9): 2475–2479.
[6] He X S, Xi B D, Cui D Y, et al. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 2014, 268: 256–263. DOI: 10.1016/j.jhazmat.2014.01.030
[7] Xi B D, He X S, Wei Z M, et al. The composition and mercury complexation characteristics of dissolved organic matter in landfill leachates with different ages[J]. Ecotoxicology and Environmental Safety, 2012, 86: 227–232. DOI: 10.1016/j.ecoenv.2012.09.024
[8] Christensen J B, Christensen T H. Complexation of Cd, Ni, and Zn by DOC in polluted groundwater:a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2)[J]. Environmental Science & Technology, 1999, 33(21): 3857–3863.
[9] Li R, Yue D B, Liu J G, et al. Size fractionation of organic matter and heavy metals in raw and treated leachate[J]. Waste Management, 2009, 29(9): 2527–2533. DOI: 10.1016/j.wasman.2009.05.001
[10] Smith D S, Bell R A, Kramer J R. Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2002, 133(1-2): 65–74.
[11] Senesi N. Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approach[A]. In:Adriano D C (Eds.). Biogeochemistry of Trace Elements. Boca Raton:Lewis Publishers, 1992. 429-496.
[12] Aldrich A P, Kistler D, Sigg L. Speciation of Cu and Zn in drainage water from agricultural soils[J]. Environmental Science & Technology, 2002, 36(22): 4824–4830.
[13] Seo D J, Kim Y J, Ham S Y, et al. Characterization of dissolved organic matter in leachate discharged from final disposal sites which contained municipal solid waste incineration residues[J]. Journal of Hazardous Materials, 2007, 148(3): 679–692. DOI: 10.1016/j.jhazmat.2007.03.027
[14] Wu J, Zhang H, He P J, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J]. Water Research, 2011, 45(4): 1711–1719.
[15] Wu J, Zhang H, Shao L M, et al. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate[J]. Environmental Pollution, 2012, 162: 63–71. DOI: 10.1016/j.envpol.2011.10.017
[16] Lu F, Chang C H, Lee D J, et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate[J]. Chemosphere, 2009, 74(4): 575–582. DOI: 10.1016/j.chemosphere.2008.09.060
[17] 席北斗, 魏自民, 赵越, 等. 垃圾渗滤液水溶性有机物荧光谱特性研究[J]. 光谱学与光谱分析, 2008, 28(11): 2605–2608. Xi B D, Wei Z M, Zhao Y, et al. Study on fluorescence characteristic of dissolved organic matter from municipal solid waste landfill leachate[J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2605–2608. DOI: 10.3964/j.issn.1000-0593(2008)11-2605-04
[18] 傅平青, 刘丛强, 吴丰昌. 三维荧光光谱研究溶解有机质与汞的相互作用[J]. 环境科学, 2004, 25(6): 140–144. Fu P Q, Liu C Q, Wu F C. Three-dimensional excitation emission matrix fluorescence spectroscopic cha-racterization of the complexation between mercury (Ⅱ) and dissolved organic matter[J]. Environmental Science, 2004, 25(6): 140–144.
[19] Jensen D L, Ledin A, Christensen T H. Speciation of heavy metals in landfill-leachate polluted groundwater[J]. Water Research, 1999, 33(11): 2642–2650. DOI: 10.1016/S0043-1354(98)00486-2
[20] Claret F, Tournassat C, Crouzet C, et al. Metal speciation in landfill leachates with a focus on the influence of organic matter[J]. Waste Management, 2011, 31(9-10): 2036–2045. DOI: 10.1016/j.wasman.2011.05.014
[21] Dudal Y, Holgado R, Maestri G, et al. Rapid screening of DOM's metal-binding ability using a fluorescence-based microplate assay[J]. Science of the Total Environment, 2006, 354(2-3): 286–291. DOI: 10.1016/j.scitotenv.2005.06.021
[22] He X S, Xi B D, Pan H W, et al. Characterizing the heavy metal-complexing potential of fluorescent water-extractable organic matter from composted municipal solid wastes using fluorescence excitation-emission matrix spectra coupled with parallel factor analysis[J]. Environmental Science and Pollution Research, 2014, 21(13): 7973–7984. DOI: 10.1007/s11356-014-2751-9
[23] Hur J, Lee B M. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy[J]. Chemosphere, 2011, 83(11): 1603–1611. DOI: 10.1016/j.chemosphere.2011.01.004
[24] Ryan D K, Weber J H. Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid[J]. Analytical Chemistry, 1982, 54(6): 986–990. DOI: 10.1021/ac00243a033
[25] Lu X Q, Jaffe R. Interaction between Hg (Ⅱ) and natural dissolved organic matter:a fluorescence spectroscopy based study[J]. Water Research, 2001, 35(7): 1793–1803. DOI: 10.1016/S0043-1354(00)00423-1
[26] Wu F C, Cai Y R, Evans D, et al. Complexation between Hg (Ⅱ) and dissolved organic matter in stream waters:an application of fluorescence spectroscopy[J]. Biogeochemistry, 2004, 71(3): 339–351. DOI: 10.1007/s10533-004-0058-5
[27] Hays M D, Ryan D K, Pennell S. A modified multisite stern-volmer equation for the determination of conditional stability constants and ligand concentrations of soil fulvic acid with metal ions[J]. Analytical Chemistry, 2004, 76(3): 848–854. DOI: 10.1021/ac0344135
[28] Guo X J, Jiang J Y, Xi B D, et al. Study on the spectral and Cu (Ⅱ) binding characteristics of DOM leached from soils and lake sediments in the Hetao region[J]. Environmental Science and Pollution Research, 2012, 19(6): 2079–2087. DOI: 10.1007/s11356-011-0704-0
[29] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701–5710.
[30] Xu H C, Yan Z S, Cai H Y, et al. Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake[J]. Ecotoxicology and Environmental Safety, 2013, 98: 266–272. DOI: 10.1016/j.ecoenv.2013.09.008
[31] 李英军, 何小松, 刘骏, 等. 城市生活垃圾填埋初期有机质演化规律研究[J]. 环境工程学报, 2012, 6(1): 297–301. Li Y J, He X S, Liu J, et al. Study on organic matter evolution during the early few years of landfill of municipal solid wastes[J]. Chinese Journal of Environmental Engineering, 2012, 6(1): 297–301.
[32] Leenheer J A, Croué J P. Peer reviewed:characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1): 18A–26A.
[33] Fellman J B, Miller M P, Cory R M, et al. Characterizing dissolved organic matter using PARAFAC modeling of fluorescence spectroscopy:a comparison of two models[J]. Environmental Science & Technology, 2009, 43(16): 6228–6234.
[34] Wu H Y, Zhou Z Y, Zhang Y X, et al. Fluorescence-based rapid assessment of the biological stability of landfilled municipal solid waste[J]. Bioresource Technology, 2012, 110: 174–183. DOI: 10.1016/j.biortech.2012.01.149
[35] Yang C, He X S, Xi B D, et al. Characteristic study of dissolved organic matter for electron transfer capacity during initial landfill stage[J]. Chinese Journal of Analytical Chemistry, 2016, 44(10): 1568–1574. DOI: 10.1016/S1872-2040(16)60964-7
[36] 邹庐泉, 何品晶, 邵立明, 等. 利用填埋层内生物代谢控制生活垃圾填埋场渗滤液污染[J]. 环境污染治理技术与设备, 2003, 4(6): 70–73. Zou L Q, He P J, Shao L M, et al. Pollution control of leachate in landfill site by microbial metabolism in the landfill layer[J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(6): 70–73.
[37] 何小松, 席北斗, 刘学建, 等.城市垃圾填埋初期物质转化的光谱学特性研究[A].见:中国环境科学学会2010年学术年会.中国环境科学学会学术年会论文集 (第一卷)[C].上海:中国环境科学学会, 2010. 469-473.
[38] 付美云, 周立祥. 垃圾渗滤液水溶性有机物对土壤Pb溶出的影响[J]. 环境科学, 2007, 28(2): 243–248. Fu M Y, Zhou L X. Effect of dissolved organic matter from landfill-leachates on dissolution of Pb in soils[J]. Environmental Science, 2007, 28(2): 243–248.
[39] Maie N, Scully N M, Pisani O, et al. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems[J]. Water Research, 2007, 41(3): 563–570. DOI: 10.1016/j.watres.2006.11.006
[40] Hassouna M, Massiani C, Dudal Y, et al. Changes in water extractable organic matter (WEOM) in a calcareous soil under field conditions with time and soil depth[J]. Geoderma, 2010, 155(1-2): 75–85. DOI: 10.1016/j.geoderma.2009.11.026
[41] Ravichandran M. Interactions between mercury and dissolved organic matter——a review[J]. Chemosphere, 2004, 55(3): 319–331. DOI: 10.1016/j.chemosphere.2003.11.011
[42] He X S, Xi B D, Wei Z M, et al. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of complexation between mercury (Ⅱ) and dissolved organic matter extracted from landfill leachate[J]. Chinese Journal of Analytical Chemistry, 2010, 38(10): 1417–1422.
[43] Kaiser K, Zech W. Rates of dissolved organic matter release and sorption in forest soils[J]. Soil Science, 1998, 163(9): 714–725. DOI: 10.1097/00010694-199809000-00005
[44] 葛骁, 魏思雨, 郭海宁, 等. 堆肥过程中腐殖质含量变化及其对重金属分配的影响[J]. 生态与农村环境学报, 2014, 30(3): 369–373. Ge X, Wei S Y, Guo H N, et al. Variation of humus in content during composting and its influence on heavy metal distribution[J]. Journal of Ecology and Rural Environment, 2014, 30(3): 369–373.