2. 农业部西北植物营养与农业环境重点实验室, 杨凌 712100
2. Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
硒在地壳中的分布不均,全球有40多个国家硒资源匮乏,近10亿人缺硒[1].中国72%的耕地处于低硒水平,其中30%严重缺硒[2].植物硒是人体饮食补硒的重要来源,生物强化可以改善低硒地区农作物的硒含量[3].但是人体硒缺乏、富足和中毒之间的间距很窄[4],搞清作物对硒的动态吸收和转运机制对生物强化补硒十分必要.
现有研究多关注成熟期植物硒含量并以此进行土壤硒的生物有效性评价,但植物不同生育期和不同器官对硒的吸收动态变异很大[5].有关植物对硒动态吸收的研究结果较少且不尽相同,陈金[6]的研究发现大豆植株硒含量在生育早期高于后期,而唐巧玉等[7]却发现大豆植物硒含量随苗期、花期、结荚期和成熟期逐渐增大,他们均发现植株硒累积总量与干物质累积基本同步,即随生长逐渐增大.笔者前期研究发现小白菜对硒酸盐和亚硒酸盐的吸收动态截然相反,硒酸盐处理小白菜硒含量在生长初期显著大于后期,且随生长持续下降;而亚硒酸盐处理的小白菜硒含量随生长呈上升趋势,且这种差异与植物自身的生物稀释作用和土壤供硒水平有关[8],但Zhang等[9]却发现亚硒酸盐处理水稻从分蘖期到成熟期作物地上部和根部的硒含量均显著下降,并认为此与根系的衰老降低了植物硒吸收能力有关.很显然,生物稀释作用及植物对硒的吸收转运能力与植物各器官硒含量动态变化密切相关.此外,作物根系与土壤硒的相互作用及土壤微生物活动的影响,会引起土壤有效硒库处于动态平衡进而影响植物对硒的吸收效率[10~12],且土壤供硒能力比植物吸收硒的能力对植物体硒含量影响更大[13].因此,将植物硒吸收、转运能力及作物生长过程中土壤有效硒供给水平结合起来研究,有助于揭示植物硒含量动态变化的机制.
不同植物对土壤硒的吸收和累积不尽相同[14],土壤中不同形态硒对植物硒吸收和转运亦有显著影响[15].研究已经证实十字花科、百合科和豆科作物比菊科、禾本科和伞形科植物富硒能力强[16, 17].硒酸钠处理的土壤中菠菜、花椰菜、萝卜、洋葱和土豆等11种蔬菜均能快速地吸收硒且向地上部转运,但不同作物间差异明显,以萝卜的可食用部分硒累积量最高,而洋葱的球茎硒含量却最低[14].卷心菜、花椰菜、唐莴苣和羽衣甘蓝这4种蔬菜在土壤中吸收硒酸盐的能力显著高于亚硒酸盐,以花椰菜的地上茎部硒含量最高[18]. Pezzarossa等[19]的研究也表明硒酸盐处理的土壤种植的番茄的硒累积量是同等施加量亚硒酸盐处理的14倍.再加上硒从植物根部向地上部的转运还受营养状态、生育期等因素的影响,因此,对现有的土壤-植物体系中硒吸收和转运结果的综述也无法得出可靠的对比结果[15].目前,不同作物对亚硒酸盐和硒酸盐动态吸收及转运的差异的研究尚未见系统报道.因此,本研究选择非聚硒的根菜类胡萝卜 (伞形科),粮食类作物小麦 (禾本科);富硒的十字花科花菜类植物菜薹和绿菜花,叶菜类的芥菜和紫甘蓝作为试验材料,探讨不同作物对土壤外源硒酸盐和亚硒酸盐吸收及转运的动态规律,旨在更好地为缺硒地区进行生物强化提供科学依据.
1 材料与方法 1.1 供试材料供试土壤为陕西关中地区典型农耕塿土,以多点取样法采集自西北农林科技大学南校区试验田的0~20 cm土壤,土样自然风干,研磨后过5 mm筛备用.土壤的基本理化性质参照鲍士旦的方法[20]测定,结果为:pH 7.75,阳离子交换量 (CEC)23.34 cmol ·kg-1,黏粒含量为39.50%,碳酸钙为55.00 g ·kg-1,有机质16.33 g ·kg-1,全氮1.11 g ·kg-1,土壤总硒量0.077 mg ·kg-1.供试作物分别为:胡萝卜、菜薹、紫甘蓝、绿菜花、芥菜和小麦,均由西北农林科技大学种子公司提供.
1.2 试验设计将过5 mm筛的2.5 kg土装入内径18 cm,深度15 cm的塑料盆中,硒源为亚硒酸钠和硒酸钠,按照笔者前期的研究结果设置一个水平 (以Se/土计):2.5 mg ·kg-1[21],将各处理的硒配成溶液均匀喷入土壤,每种价态硒处理的土壤种植各种供试作物各18盆.每盆施入N 0.375 g (尿素) 和KH2PO4 0.145 g作为基肥.保持土壤含水量为田间持水量的70%,平衡两周后播种.选取大小和饱满度一致的种子进行直播,每盆种20粒,10 d后间苗,在作物生长过程中每隔2 d称重浇水,使土壤含水量保持为田间持水量的70%,分别在播种后第3、4、5、6、7、8周硒酸盐和亚硒酸盐处理各取3盆收获,共收获植物和采集土壤样品6次.
1.3 样品采集与指标测定将收获后的植物样依次用自来水、蒸馏水洗涤3次,吸水纸吸干水分,分为地上部和根分开装于纸袋中,90℃杀青30 min,60℃烘干至恒重,称重,研磨后存于自封袋密封待用.植物样用4 :1(体积比) HNO3-HClO4混酸进行消解,土壤有效态硒用0.1 mol ·L-1 KH2PO4提取.硒用氢化物发生-原子荧光光谱法测定 (北京吉天AFS-930双道原子荧光光谱仪).测定过程中用圆白菜 (GBW10014) 作为质量控制样品,标准值为 (0.20±0.03) mg ·kg-1,实测值为 (0.19±0.02) mg ·kg-1.
1.4 数据处理用SPSS 20.0软件和Origin 8.5软件对数据进行计算和统计分析.硒从植物根部向地上部的转运能力用转运系数TF值表示,计算公式为:
![]() |
此外,为了更准确地表达植物对土壤硒的绝对吸收量,本研究定义植物硒累积量的公式为:
![]() |
从整体来看,不同价态外源硒处理6种作物地上部和根部硒含量随生育期动态变化趋势明显不同 (图 1).亚硒酸盐处理的6种作物地上部硒含量均在生长的前6周逐渐增大,此后绿菜花、紫甘蓝和菜薹硒含量趋于平缓,而胡萝卜、小麦和芥菜地上部硒含量逐渐下降[图 1(a)];6种作物中以胡萝卜地上部硒含量最高,最大值达24.7 mg ·kg-1,芥菜次之,紫甘蓝和绿菜花最低 (在10 mg ·kg-1左右);与地上部硒含量不同,供试作物根部硒含量均随作物生长期延长呈上升趋势,紫甘蓝的根部硒含量在前7周快速增大,在第8周逐渐平稳,绿菜花和菜薹则在第7和第8周显著增大,其余3种作物根部硒含量增长缓慢,胡萝卜的根硒含量变化最小[图 1(c)].硒酸盐处理,除小麦根部硒含量随生长下降不明显以外,其余5种供试作物地上部和根部硒含量均随其生长显著下降[图 1(b)和1(d)];芥菜的地上部和根部硒含量显著高于其他作物,分别是硒吸收能力最弱的胡萝卜的2.4~3.4倍和2.9~3.8倍.从图 1还可以看出,亚硒酸盐处理各种作物地上部硒含量与根部相当,但硒酸盐处理作物地上部硒含量显著高于根部.
![]() |
图 1 不同作物生长过程中植株硒含量动态变化 Fig. 1 Dynamic changes of Se concentrations of different crops during the whole growth period |
供试作物体对亚硒酸盐和硒酸盐从根部向地上部转运的动态变化的结果见表 1.
![]() |
表 1 不同作物生长过程中硒转运系数TF值的变化1) Table 1 Changes of translocation factor (TF) of Se for different crops during the whole growth period |
绿菜花、紫甘蓝、菜薹和小麦在亚硒酸盐和硒酸盐处理中的转运系数 (TF值) 随生育期的延长均呈下降趋势,胡萝卜和芥菜在亚硒酸盐处理中TF随生育期逐渐下降,而在硒酸盐处理中却随作物生长呈上升的趋势. 6种作物相比,以胡萝卜对亚硒酸盐的转运系数在生长的各个时期均显著最高,且其对亚硒酸盐转运系数 (2.82±0.42) 与硒酸盐的 (3.13±0.54) 相当;小麦对硒酸盐转运能力最强,平均是亚硒酸盐处理的4.7倍,供试作物 (胡萝卜除外) 对硒酸盐的转运能力均明显高于亚硒酸盐处理.由此可见,作物对硒的吸收和转运能力与作物种类和外源硒的种类有关 (图 1和表 1).
2.2 不同作物对亚硒酸盐和硒酸盐累积的动态差异图 2给出了6种作物不同生育期硒累积量的动态变化情况.从中可知,亚硒酸盐和硒酸盐处理的6种供试作物在生长期内都能从土壤中吸收和累积硒,但作物体内80%的硒的累积源于前6周,作物对硒酸盐的累积能力远远高于同时期亚硒酸盐处理. 6种作物中以胡萝卜对两种形态外源硒的吸收能力均最小,其余5种作物对亚硒酸盐的累积量相近;而对于硒酸盐处理,虽然芥菜中硒含量最高[图 1(b)和1(d)],但是其累积量却不及菜薹、绿菜花、紫甘蓝、小麦[图 2(b)].不同作物硒含量和累积量的差异相比,充分说明生物量稀释效应对植物硒含量、尤其是对作物生育期硒含量的动态变化[9]的影响不容忽视.
![]() |
图 2 不同作物生长过程中硒累积量的动态变化 Fig. 2 Dynamic changes of Se accumulation by different crops during the whole growth period |
作物不同生长期硒含量与植物干重的相关分析见表 2.从中可见,硒酸盐处理,除小麦根部和芥菜地上部外,其余作物地上部和根部硒含量均显著地受生物量稀释作用的影响,这与Keskinen等[22]发现的施加外源硒酸盐的土壤,在10周内小麦叶片中的硒绝对量增大,但由于生物稀释作用硒含量却降低的结果相一致.与此不同,亚硒酸盐处理的各作物地上部受生物量的稀释作用不明显,根部硒含量与植物干重呈正相关,绿菜花、紫甘蓝、菜薹和小麦甚至达到显著水平.这种差异源于植物吸收亚硒酸盐后快速在根部还原为有机硒且储存于此,从而减缓硒向地上部迁移[23].因此,对于亚硒酸盐处理,虽然根系生物量随生长也在增大,但生物量的稀释效应对根部硒含量的影响相对较小.
![]() |
表 2 作物不同生育期硒含量与生物量的相关分析1) Table 2 Correlation between Se concentrations of crops and their biomass at different growing stages |
2.3 土壤有效硒与植物硒累积量的关系
为了查明土壤有效硒供给能力对植物硒吸收的影响,本研究探讨了供试作物不同部位各时期硒累积量与相应的土壤有效硒改变量 (平衡时期减去植物收获时的土壤有效硒) 的关系,结果见图 3(亚硒酸盐处理) 和图 4(硒酸盐处理).
![]() |
rshoot表示地上部,rroot表示根部,下同 图 3 亚硒酸盐处理不同生育期植物硒累积量与土壤有效硒改变量的关系 Fig. 3 Relationship between Se accumulation amount of crops and the changes of available Se concentrations in selenite-treated soil during plant growing period |
![]() |
图 4 硒酸盐处理不同生育期植物硒累积量与土壤有效硒改变量的关系 Fig. 4 Relationship between Se accumulation amount of crops and the changes of available Se concentrations in selenate-treated soil during plant growing period |
由图 3和图 4的横坐标可以看出,土壤有效硒供给水平受施入土壤中硒的形态影响差异很大.亚硒酸盐处理的土壤有效硒供给水平高出硒酸盐3.6~5.0倍,但是其与各作物体内硒含量的相关程度并不及硒酸盐处理高.硒酸盐处理的土壤有效硒与6种作物硒吸收的相关性均达到显著 (P < 0.05) 或极显著 (P < 0.01) 水平.亚硒酸盐处理胡萝卜、绿菜花、紫甘蓝、菜薹、芥菜和小麦吸收的硒占土壤有效硒的质量分数分别为0.5%~2.4%、2.5%~9.1%、5.2%~8.5%、3.3%~9.7%、2.5%~18.1%和4.1%~8.0%;而硒酸盐处理,除了富硒能力最弱的胡萝卜硒吸收占土壤有效硒34.6%~69.6%外,其余5种作物累积的硒总量超过土壤有效硒1.1~4.5倍.这是因为土壤有效硒含量是一个动态值,当土壤中的有效硒被植物大量吸收利用后,其浓度下降,为了保持平衡,原本与土壤固相结合的部分不稳态硒会释放出来补充供给植物吸收.
3 讨论本研究供试的6种作物对硒酸盐和亚硒酸盐的吸收和转运能力随作物生长的动态变化差异很大,这源于两种形态外源硒在土壤介质中为植物供硒能力的差异.亚硒酸盐进入土壤后易被碳酸盐、铁锰氧化物或铝氧化物结合固定,主要以可交换态及碳酸盐结合态硒形式存在 (数据未给出),难以被植物大量直接吸收利用[24~26];硒酸盐施入土壤培养两周后仍以有效性较高的可溶态六价硒为主[8],其在土壤中的移动性和有效性高,反映在作物吸收累积硒酸盐的能力是亚硒酸盐的近10倍 (图 2).伴随着作物生长,土壤供硒能力不是亚硒酸盐处理植物硒吸收的主控因素,与此不同,硒酸盐处理可溶态硒随作物生长被大量吸收后导致土壤有效硒含量显著下降[27],使得所有供试作物硒含量均随之显著下降 (图 1),植物硒累积量在第6周后逐渐趋于平稳 (图 2),而后由于生物稀释的作用导致植物硒含量持续下降 (图 1和表 2),说明土壤供硒能力是控制硒酸盐处理植物硒吸收动态变化的重要因素,这与已有的小白菜、茶叶、黑麦草、小麦和青稞硒含量均与土壤有效硒呈显著正相关研究结果相一致[21, 28, 29].
外源硒形态影响着土壤-植物体系中硒的转运,这是由植物对不同形态硒的吸收代谢机制差异所致[23].很显然,在本研究中6种供试作物对硒酸盐的转运效率均高于亚硒酸盐 (胡萝卜除外),这与大多数研究的结果相一致[14, 30, 31].有研究表明植物根系对硒酸盐的吸收主要是通过硫酸盐转运子完成的,由于植物对六价硒的代谢需先将其还原为四价硒,而这一步骤为整个硒代谢过程的限速步骤,因此在硒酸盐处理中,根系吸收的六价硒大多直接沿木质部向地上运输,反映出较高的转运系数和地上部硒含量[32~34];而植物对亚硒酸盐的吸收主要依赖磷酸盐转运子[35],其被植物根吸收后主要在根部转化为大分子有机态硒 (如硒代甲硫氨酸),一部分向地上部转运,一部分在根部积累[22, 36, 37].本研究发现硒酸盐处理植物根硒含量随生长而下降,亚硒酸盐处理则相反,也是与植物对二者的转运能力差异密不可分的.
值得注意的是,不同作物对硒的吸收和转运能力也不尽相同.本研究供试的6种作物,以芥菜对硒酸盐的吸收能力最强,但由于其生物量小 (数据未呈现),其总硒累积量不及同为十字花科的菜薹、紫甘蓝、绿菜花 (图 2).小麦虽然是非聚硒作物,但其地上部硒含量仅次于芥菜,根部硒含量也与菜薹、紫甘蓝和绿菜花相近,但因为本研究只是苗期试验,无法完全反映小麦硒吸收和转运的实际. 6种作物相比,以胡萝卜对亚硒酸盐和硒酸盐的吸收能力最弱,但其转运系数显著高于其他作物 (2.1~4.1倍),并且在生长期内均大于2,说明胡萝卜将更多的硒累积在地上部分 (图 1).究其原因,可能是根形态差异引起的,因为胡萝卜是根菜类植物,有研究发现根菜类作物甜菜叶片对硒的积累性远高于根部,平均达3.2倍[38, 39],有关根形态对硒吸收转运的影响及其机制还需要进一步研究.
4 结论(1) 供试6种作物对亚硒酸盐和硒酸盐的动态吸收变化差异显著.尽管硒积累总量随生长均持续上升,但亚硒酸盐处理作物硒含量呈先升后降或趋于平缓,而硒酸盐处理作物硒含量随生长显著下降.
(2) 6种作物硒含量相比,硒酸盐处理以芥菜地上部和根部最高,小麦地上部次之;亚硒酸盐处理,以胡萝卜地上部硒含量最高,其根部硒含量最低;相同硒处理的菜薹、紫甘蓝和绿菜花地上部和根部硒含量相近.
(3) 胡萝卜对两种价态硒的转运能力相当,其余5种作物对硒酸盐的吸收和转运远远大于亚硒酸盐.
(4) 作物硒吸收的动态变化是作物硒吸收转运能力、生物稀释效应及土壤供硒能力的综合作用的结果,在生产富硒作物以及硒污染地区的植物修复中应综合考虑.
[1] | Thomson C D. Assessment of requirements for selenium and adequacy of selenium status:a review[J]. European Journal of Clinical Nutrition, 2004, 58(3): 391–402. DOI: 10.1038/sj.ejcn.1601800 |
[2] | Chen Q X, Shi W M, Wang X C. Selenium speciation and distribution characteristics in the rhizosphere soil of rice (Oryza sativa L.) seedlings[J]. Communications in Soil Science and Plant Analysis, 2010, 41(12): 1411–1425. DOI: 10.1080/00103624.2010.482164 |
[3] | Kieliszek M, Bła Dz·ejak S. Selenium:significance, and outlook for supplementation[J]. Nutrition, 2013, 29(5): 713–718. DOI: 10.1016/j.nut.2012.11.012 |
[4] | Pickering I J, Wright C, Bubner B, et al. Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus[J]. Plant Physiology, 2003, 131(3): 1460–1467. DOI: 10.1104/pp.014787 |
[5] | Galeas M L, Zhang L H, Freeman J L, et al. Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators[J]. New Phytologist, 2007, 173(3): 517–525. DOI: 10.1111/j.1469-8137.2006.01943.x |
[6] | 陈金.土壤-大豆系统中硒的动态生物有效性研究[D].南京:南京农业大学, 2003. 22-29. Chen J. The dynamics of bioavailability of Se in soil-soybean system[D]. Nanjing:Nanjing Agricultural University, 2003. 22-29. |
[7] | 唐巧玉, 吴永尧, 周毅峰, 等. 大豆对硒的富集动态的研究[J]. 植物营养与肥料学报, 2005, 11(3): 424–426. Tang Q Y, Wu Y Y, Zhou Y F, et al. Research on the dynamics of accumulation of Se in soybean[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 424–426. |
[8] | 郭璐, 满楠, 梁东丽, 等. 小白菜对外源硒酸盐和亚硒酸盐动态吸收的差异及其机制研究[J]. 环境科学, 2013, 34(8): 3272–3279. Guo L, Man N, Liang D L, et al. Differences of selenium uptake pattern of pakchoi and the possible mechanism when amended with selenate and selenite[J]. Environmental Science, 2013, 34(8): 3272–3279. |
[9] | Zhang M, Tang S H, Huang X, et al. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.)[J]. Environmental and Experimental Botany, 2014, 107: 39–45. DOI: 10.1016/j.envexpbot.2014.05.005 |
[10] | White P J, Bowen H P, Fritz M, et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2004, 55(404): 1927–1937. DOI: 10.1093/jxb/erh192 |
[11] | 陈思杨, 江荣风, 李花粉. 苗期小麦和水稻对硒酸盐/亚硒酸盐的吸收及转运机制[J]. 环境科学, 2011, 32(1): 284–289. Chen S Y, Jiang R F, Li H F. Uptake and translocation of selenate or selenite by wheat and rice seedlings[J]. Environmental Science, 2011, 32(1): 284–289. |
[12] | Temmerman L D, Waegeneers N, Thiry C, et al. Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables[J]. Science of the Total Environment, 2014, 468-469: 77–82. DOI: 10.1016/j.scitotenv.2013.08.016 |
[13] | Chilimba A D C, Young S D, Black C R, et al. Agronomic biofortification of maize with selenium (Se) in Malawi[J]. Field Crops Research, 2012, 125: 118–128. DOI: 10.1016/j.fcr.2011.08.014 |
[14] | Dhillon K S, Dhillon S K. Accumulation and distribution of selenium in some vegetable crops grown in selenate-Se treated clay loam soil[J]. Frontiers of Agriculture in China, 2009, 3(4): 366–373. DOI: 10.1007/s11703-009-0070-6 |
[15] | Bitterli C, Bañuelos G S, Schulin R. Use of transfer factors to characterize uptake of selenium by plants[J]. Journal of Geochemical Exploration, 2010, 107(2): 206–216. DOI: 10.1016/j.gexplo.2010.09.009 |
[16] | Brown T A, Shrift A. Selenium:toxicity and tolerance in higher plants[J]. Biological Reviews, 1982, 57(1): 59–84. DOI: 10.1111/brv.1982.57.issue-1 |
[17] | Fleming G A. Selenium in Irish soils and plants[J]. Soil Science, 1962, 94(1): 28–35. DOI: 10.1097/00010694-196207000-00005 |
[18] | Banuelos G S, Meek D W. Selenium accumulation in selected vegetables[J]. Journal of Plant Nutrition, 1989, 12(10): 1255–1272. DOI: 10.1080/01904168909364034 |
[19] | Pezzarossa B, Petruzzelli G, Petacco F, et al. Absorption of selenium by Lactuca sativa as affected by carboxymethylcellulose[J]. Chemosphere, 2007, 67(2): 322–329. DOI: 10.1016/j.chemosphere.2006.09.073 |
[20] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. |
[21] | 段曼莉. 4种蔬菜对不同价态外源硒吸收、转运和生物有效性差异的研究[D].杨凌:西北农林科技大学, 2011. 24-27. Duan M L. The differences of selenium uptake, translocation and bioavailibility of four vegetables when selenium applied as selenite and selenate[D]. Yangling:Northwest A & F University, 2011. 24-27. |
[22] | Keskinen R, Turakainen M, Hartikainen H. Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass[J]. Plant and Soil, 2010, 333(1-2): 301–313. DOI: 10.1007/s11104-010-0345-y |
[23] | Li H F, McGrath S P, Zhao F J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite[J]. New Phytologist, 2008, 178(1): 92–102. DOI: 10.1111/j.1469-8137.2007.02343.x |
[24] | Fujita M, Ike M, Hashimoto R, et al. Characterizing kinetics of transport and transformation of selenium in water-sediment microcosm free from selenium contamination using a simple mathematical model[J]. Chemosphere, 2005, 58(6): 705–714. DOI: 10.1016/j.chemosphere.2004.09.042 |
[25] | Li Z, Man N, Wang S S, et al. Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties[J]. Journal of Soils and Sediments, 2015, 15(5): 1150–1158. DOI: 10.1007/s11368-015-1085-7 |
[26] | Peng Q, Guo L, Ali F, et al. Influence of Pak Choi plant cultivation on Se distribution, speciation and bioavailability in soil[J]. Plant and Soil, 2016, 403(1-2): 331–342. DOI: 10.1007/s11104-016-2810-8 |
[27] | Li J, Liang D L, Qin S Y, et al. Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions[J]. Environmental Science and Pollution Research, 2015, 22(14): 11076–11086. DOI: 10.1007/s11356-015-4344-7 |
[28] | Zhao C Y, Ren J H, Xue C Z, et al. Study on the relationship between soil selenium and plant selenium uptake[J]. Plant and Soil, 2005, 277(1-2): 197–206. DOI: 10.1007/s11104-005-7011-9 |
[29] | Wang J, Li H R, Li Y H, et al. Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin-Beck disease area-a case study in Songpan County, Sichuan Province, China[J]. Biological Trace Element Research, 2013, 156(1-3): 367–375. DOI: 10.1007/s12011-013-9822-5 |
[30] | Cartes P, Gianfreda L, Mora M L. Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms[J]. Plant and Soil, 2005, 276(1-2): 359–367. DOI: 10.1007/s11104-005-5691-9 |
[31] | Zayed A, Lytle C M, Terry N. Accumulation and volatilization of different chemical species of selenium by plants[J]. Planta, 1998, 206(2): 284–292. DOI: 10.1007/s004250050402 |
[32] | 李春霞, 曹慧. 植物硒的营养特点及吸收转化机理研究进展[J]. 农业科学研究, 2006, 27(4): 72–76. Li C X, Cao H. The research overview of the nutrition characteristics, absorption and transformation of the plant selenium[J]. Journal of Agricultural Sciences, 2006, 27(4): 72–76. |
[33] | White P J. Selenium accumulation by plants[J]. Annals of Botany, 2016, 117(2): 217–235. |
[34] | Thavarajah D, Thavarajah P, Vial E, et al. Will selenium increase lentil (Lens culinaris Medik) yield and seed quality?[J]. Frontiers in Plant Science, 2015, 6: 356. |
[35] | 王晓芳, 陈思杨, 罗章, 等. 植物对硒的吸收转运和形态转化机制[J]. 农业资源与环境学报, 2014, 31(6): 539–544. Wang X F, Chen S Y, Luo Z, et al. Mechanisms of selenium uptake, translocation and chemical speciation transformation in plants[J]. Journal of Agricultural Resources and Environment, 2014, 31(6): 539–544. |
[36] | de Souza M P, Pilon-Smits E A H, Lytle C M, et al. Rate-limiting steps in selenium assimilation and volatilization by Indian mustard[J]. Plant Physiology, 1998, 117(4): 1487–1494. DOI: 10.1104/pp.117.4.1487 |
[37] | White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine[J]. New Phytologist, 2009, 182(1): 49–84. DOI: 10.1111/j.1469-8137.2008.02738.x |
[38] | 魏廷珍.青海省平安县富硒区几类蔬菜硒吸收及转化研究[D].西宁:青海大学, 2014. 26-29. Wei T Z. Study on selenium absorption and transformation of several vegetables in Ping'an Se-rich region of Qinghai Province[D]. Xi'ning:Qinghai University, 2014. 26-29. |
[39] | Wan H F, Mikkelsen R L, Page A L. Selenium uptake by some agricultural crops from central California soils[J]. Journal of Environmental Quality, 1988, 17(2): 269–272. |