环境科学  2017, Vol. 38 Issue (4): 1613-1621   PDF    
秸秆还田对外源氮在土壤中转化及其微生物响应的影响
陈珊1,2 , 丁咸庆1,2 , 祝贞科2 , 王娟2 , 彭佩钦1 , 葛体达2 , 吴金水2     
1. 中南林业科技大学环境科学与工程学院, 长沙 410004;
2. 中国科学院亚热带农业生态研究所, 亚热带农业生态过程重点实验室, 长沙 410125
摘要: 秸秆还田是农业生产上提高土壤肥力的重要措施,而秸秆中较高的碳氮比,使秸秆碳的利用率较低,温室气体排放较高,因此配施无机氮磷肥能够调控土壤中元素计量比,增加微生物活性和元素利用率,促进土壤肥力提升.本研究选择在模拟秸秆还田条件下,添加15 N标记的无机氮肥,研究不同养分肥料添加对土壤中外源氮转化与分配的影响,以及微生物响应特征.结果表明,秸秆添加增加了土壤和土壤溶液中铵态氮和总氮含量;秸秆与无机氮肥配施条件下,土壤中15 N-TN在100 d培养时期内基本保持在28~33 μg,15 N-NH4+在前30 d培养时期内逐渐增加,而后逐渐降低;施P增加了土壤中15 N-TN和15 N-NH4+的含量,却使土壤溶液中15 N量降低了28%.无机氮肥在土壤中的分配表明,15 N在土壤中的比例基本保持在52%~61%,磷肥的添加使15 N在土壤中的分配比例最大提高了16.5%,而土壤溶液中15 N的比例由第5 d的36%降低至100 d时30%,使外源15 N损失量减少了1.2倍.秸秆添加促进了微生物活性,显著提高了土壤MBN的量;而无机肥料的添加进一步促进了土壤微生物的活性,100 d培养实验后,秸秆与无机氮、磷肥同时添加使MBN增加到对照处理的2.0和2.2倍.磷肥添加促进了微生物对15 N的利用,使15 N-微生物生物量氮(15 N-MBN)的量比添加秸秆和氮肥处理的提高了1.5倍.对土壤氮转化酶活性(β-1,4-N-乙酰葡糖氨糖苷酶,NAG)的研究结果表明,氮肥降低了土壤酶活性和底物亲和性,而氮磷肥同时添加时,酶活性较单加秸秆处理提高了48.1%.本研究可为深入了解稻田土壤生态系统氮循环、实现农田土壤肥力提升和温室气体减排提供理论依据.
关键词: 氮素      微生物      转化      15 N示踪      酶活性     
Effect of Straw Application on the Dynamics of Exogenous Nitrogen and Microbial Activity in Paddy Soil
CHEN Shan1,2 , DING Xian-qing1,2 , ZHU Zhen-ke2 , WANG Juan2 , PENG Pei-qin1 , GE Ti-da2 , WU Jin-shui2     
1. College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
2. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Abstract: Returning straw to the field provides an important source of fertilizer that can increase soil fertility. However, the rate of straw carbon utilization is low and large amounts of greenhouse gases are emitted due to the high carbon to nitrogen ratio of the straw mass. In this regard, the application of inorganic nitrogen and phosphate fertilizers can control the ratio of elements in the soil, increase the activity of microorganisms and their utilization of elements, and promote the improvement of soil fertility. In this study, straw application conditions were simulated, and inorganic nitrogen fertilizer labeled with 15N was added to examine the effects of different nutrient fertilizer additions on the transformation and distribution of exogenous nitrogen in the soil, and also the characteristics of the microbial response. The results showed that application of straw increased the contents of ammonia nitrogen and total nitrogen in the soil and soil solution. When both straw and inorganic nitrogen fertilizer were applied, the 15N-TN in the soil remained at 28 to 33 μg during the 100-day culture phase. In contrast, 15N-NH4+ increased gradually during the initial 30 days of the culture phase, but subsequently decreased gradually. Application of phosphate increased the contents of 15N-TN and 15N-NH4+ in the soil, but decreased the content of 15N in the soil solution by 28%. The distribution of inorganic nitrogen in the soil showed that the proportion of 15N in the soil remained at 52%-61%. Addition of phosphate fertilizer increased the distribution ratio of 15N in the soil by up to 16.5%, whereas the proportion of 15N in the soil solution decreased from 36% on the fifth day to 30% on the 100th day, thereby the loss amount of 15N reduced by 1.2-fold. Addition of straw promoted microbial activity and significantly increased the microbial biomass nitrogen (MBN) content of the soil. Addition of inorganic fertilizer further promoted the microbial activity of the soil. After the 100-day culture experiment, the addition of straw, inorganic nitrogen, and phosphate fertilizer increased MBN to between 2.0-fold and 2.2-fold that of the control treatments. Addition of phosphate fertilizer increased the utilization of 15N by microorganisms, so that the amount of 15N-MBN was 1.5-fold higher than that of treatments where only straw and nitrogen fertilizer were added. Examination of soil enzyme activity showed that nitrogen fertilizer reduced soil enzyme activity and substrate affinity. When both nitrogen and phosphate fertilizers were added, the enzyme activity was 48.1% higher than that when only straw was added. The findings of this study thus provide a theoretical basis for furthering our understanding on the nitrogen cycle of the paddy soil ecosystem, the improvement of soil fertility, and the reduction of greenhouse gas emissions.
Key words: nitrogen      microbe      transformations      15N tracing      enzyme activity     

氮素是农业生产中重要的产量限制因子,施用氮肥是作物获得高产的重要措施.我国稻田氮肥施用量占世界水稻氮肥总消耗量的37%[1],从1990~2010年,肥料的施用使我国稻田土壤中氮含量增加了约一倍[2],但是随着土壤氮素肥力水平和作物基础产量的不断提高,氮肥的增产效应和合理施用问题一直是关系到农业可持续发展的关键问题.不同施肥处理或施肥种类对土壤肥力、土壤微生物量、土壤酶活性、土壤微生物多样性等均有着不同的影响[3~5],研究不同施肥条件对土壤氮素转化以及微生物的响应特征可以为制定合理施肥措施、土壤环境维护措施等方面提供理论依据,具有现实意义.

土壤氮素的转化和运输是陆地氮素循环的重要组成部分.土壤氮素转化是微生物作用下的生物化学过程,是土壤氮素转运过程的源汇,包括矿化、固持等作用[1].有研究表明,尿素施肥处理下稻田土壤溶液中溶解性有机氮具有较好的微生物降解特性,降解后成为重要的植物吸收氮源[6].化学氮肥能够增加土壤的微生物碳 (MBC) 和微生物氮 (MBN) 含量[7, 8].施用的化肥在稻田土壤中氮素淋失以铵态氮为主[9],施氮量与土壤淋失量呈正相关[10].亚热带稻田土壤中,秸秆还田作为重要的施肥措施,能够为土壤输入大量的氮源,研究表明秸秆还田能够增加水稻土中微生物活性[11],提高土壤微生物量氮含量[12].有研究发现,淹水条件下秸秆还田能提高土壤N的固定性和可利用性[13].单一的使用秸秆或是化学氮肥都难以保证N素的最大利用效率和累积率,因为土壤微生物对N素的利用受到生态化学计量学的调控,Hartman等[14]研究指出,N限制微生物生物量的增加,而P限制微生物的代谢过程,当N、P同时受限时,微生物的活性受到极大的抑制.然而,土壤微生物也能够通过调控胞外酶活性来调控土壤中C或养分元素的释放,满足其生长的元素计量比需求[15].

外源氮施入土壤后发生着复杂的生物化学过程,难以区分变化量来源于外源氮还是土壤原有氮素,不能够明确地指出施入土壤的肥料氮素对各个形态氮的贡献,及其微生物的利用特征,而15 N示踪技术能很好地解释其转化过程与分配规律[16, 17].因此,本研究采用15 N示踪技术来探讨秸秆还田条件下水稻土氮素分配以及运转特征,分析外源肥料氮素的去向,明确肥料氮向土壤ON、NH4+-N、MBN等氮库中转化,及其土壤N循环相关酶活性的响应特征,以期为揭示稻田土壤氮素转化过程和机制、培养稻田土壤肥力、减少土壤氮素淋失提供理论依据.

1 材料与方法 1.1 供试土壤

供试土壤选择亚热带地区第四纪红土母质发育的稻田土壤,采自中国科学院亚热带农业生态研究所桃源农业生态试验站施肥制度长期定位试验田 (111°26′26.8″~111°26′28.7″E,28°55′47.8″~28°55′48.3″N),该地区属亚热带湿润季风气候,年平均降雨量1 440 mm,年均气温16.5℃,日照时数1 520 h.采集耕作层 (0~20 cm) 土壤,除去土壤中可见植物残体 (如根、茎和叶)、石块及土壤动物等,运回实验室后,四分法均匀取土约1 kg,室内自然风干获得土壤风干样品,分别过2 mm和0.149 mm筛,用于测定土壤基本理化性质.剩余土样风干后过2 mm筛作为土壤培养样品备用.供试土壤基本理化性质见表 1.

表 1 供试土壤基本理化性质 Table 1 Physiochemical properties of the test soil

1.2 土壤培养实验

实验设计4个处理:①  对照 (CK),②  土+水稻秸秆 (Straw),③  土+水稻秸秆+氮肥 (Straw+N),④  土+水稻秸秆+氮肥和磷肥 (Straw+NP);同时,作为15 N的自然丰度对照,设置了土+秸秆+未标记氮肥和土+秸秆+未标记氮肥+磷肥两个处理.秸秆有机碳含量为386.5 g ·kg-1,全氮含量为9.17 g ·kg-1.实验开始前,将过2 mm筛的土壤置于50 L塑料桶中,淹水2~3 cm,25℃恒温预培养14 d.称取预培养后混匀的土壤100 g (干土计) 于500 mL聚乙烯培养瓶中,加入一定量的去离子水,使水面保持2~3 cm.秸秆添加量为2.5 g ·kg-1,氮肥为15 N-(NH4)2SO4,添加量为90 mg ·kg-115 N的丰度是2%(atom15 N%),磷肥是NaH2PO4,添加量为30 mg ·kg-1.每个处理3个平行,25℃恒温培养5、15、30、60、100 d时进行破坏性采样.

样品分为土壤溶液 (土壤上层清液) 和土壤两部分,首先经0.45 μm滤膜过滤后获得上层土壤溶液,立即测定溶液中NH4+-N和NO3--N含量,剩余部分-20℃冷冻保存,用于后续15 N同位素测试.然后将土壤搅匀分成两部分,取15 g风干保存,测定土壤15 N-TN量,剩余土壤则置于-4℃保存,用于测定NH4+-N、NO3--N和MBN含量,以及土壤酶活性分析.

1.3 测定与分析方法

土壤pH采用Mettler-toledo 320 pH计 (FE20K,瑞士) 测定,土水比为1 :2.5;土壤总氮 (TN) 采用C/N分析仪 (Vario MAX C/N,德国) 测定;MBN采用氯仿熏蒸法,使用流动注射仪分析.土壤有机氮 (ON)、NH4+-N、NO3--N采用0.5 mol ·L-1 K2SO4溶液浸提.土壤溶液中TN、NH4+-N、NO3--N均用流动注射仪 (Fiastar 5000,瑞典福斯) 测定.有机氮 (ON) 通过测定TN及NH4+-N、NO3--N的含量由差减法获得.水样、土样15 N-NH4+采用扩散法测定[18]15 N-NH4+15 N-TN中15 N丰度用MAT253同位素质谱仪 (Thermo Fisher Scientific, Waltham, 美国) 测定.土壤氮转化酶活性 (β-1, 4-N-乙酰葡糖氨糖苷酶,NAG) 的测定采用96微孔酶标板荧光分析法[19].

1.4 数据处理

土壤和土壤溶液中15 N-NH4+15 N-TN及15 N-MBN计算方法如下:

(1)

式中,(atom 15 N%)l和 (atom 15 N%)nl分别表示添加15 N标记氮肥样品和自然丰度对照组样品中15 N的丰度,TN是指土壤或土壤溶液中NH4+-N、TN和MBN的量 (mg ·kg-1).

15 N回收率 (%),表示土壤或是土壤溶液中15 N的量与初始加入的总15 N量的比值,计算方法如下:

(2)

15 N矿化损失率的计算方法如下:

(3)

所得数据采用Origin 8.5和SPSS 16.0软件进行处理与统计分析.不同处理差异显著性用One-way ANOVA (单因素方差分析) 检验,多重比较采用Duncan法.

2 结果与分析 2.1 土壤中氮素的转化

不同施肥处理影响土壤中TN、NH4+-N、ON含量的变化 (图 1).秸秆添加增加了土壤中总氮含量,而外源氮添加后土壤中总氮快速增加,在30 d时达到最大,而后逐渐降低;P添加对于总氮的转化没有明显影响[图 1(a)].秸秆添加也增加了土壤中NH4+-N量,并随着培养时间而逐渐增加,无机氮肥添加后显著增加了土壤中NH4+-N的含量,培养100 d后,处理Straw、Straw+N和Straw+NP中NH4+-N量相对于CK分别提高了1.0倍、1.8倍、2.2倍[图 1(b)].然而,秸秆以及无机NP肥添加对于土壤有机氮没有明显影响.由于本研究是在淹水条件下进行,所以NO3--N的量很低,不同处理间也没有明显的差异 (数据未展示).

图 1 土壤中氮素转化动态 Fig. 1 Dynamics of soil nitrogen

2.2 土壤溶液中氮素含量变化特征

土壤溶液总氮含量受秸秆中氮素溶出的影响,随时间逐渐增加,100 d培养结束后添加秸秆处理的总氮含量是对照处理的1.5倍. Straw+N和Straw+NP处理中虽然总氮比CK提高了2.2和2.8倍,但是整个培养时期内基本保持稳定[图 2(a)].土壤水溶液中NH4+-N在不同处理条件下差异较大,对照处理水溶液中的NH4+-N浓度呈缓慢下降的趋势,添加秸秆处理NH4+-N浓度逐渐增加.而处理Straw+N和Straw+NP中水溶液的NH4+-N浓度先快速下降,15 d时最低,随后逐渐增加并达到稳定;培养结束时,Straw+N和Straw+NP处理水溶液中NH4+-N分别是CK处理的9.0倍和10.6倍[图 2(b)].水溶液中有机氮含量在各处理条件下没有明显差异,100 d培养时期内总量比较稳定[图 2(c)].

图 2 土壤溶液中氮素转化动态 Fig. 2 Dynamics of nitrogen in soil solution

2.3 15 N的分配与动态变化

无机氮肥中15 N主要以无机氮 (NH4+-N) 和有机氮 (ON) 形式分配在土壤和土壤溶液中 (图 3).土壤中总15 N在100 d培养时期内基本保持在28~33 μg,随时间增加略有降低,P的加入增加了外源氮在土壤中的含量[图 3(a)];15 N-NH4+在前30 d培养时期内逐渐增加,而后逐渐降低,施P增加了土壤中15 N-NH4+量[图 3(b)];土壤中有机氮随时间逐渐下降,施P处理中有机氮的含量相对更高,但是降低的速率也更快[图 3(c)].

图 3 15 N在土壤中和土壤溶液中的分配与转化 Fig. 3 Distribution and transformation of 15 N in soil and soil solution

土壤溶液中总15 N量随时间逐渐降低,在实验起始阶段 (5 d) 施P降低了土壤溶液中15 N量,但是在100 d培养实验后,土壤溶液中15 N量却比不施P处理高了28%[图 3(d)].同时,土壤溶液中15 N-NH4+的含量,在处理Straw+NP中基本保持稳定,处理Straw+N中15 N-NH4+由5 d时的18.8 μg降至100 d时的9.1 μg[图 3(e)].土壤溶液中有机氮的含量相对较少,在整个培养实验周期内基本保持稳定,而在培养实验的前期,施P处理中有机氮含量相对较高[图 3(f)].

2.4 15 N在土壤、土壤溶液和释放的氮库中的回收率

通过比较15 N在培养体系中各部分的分配比例 (图 4),可揭示在秸秆还田条件下,肥料N在稻田土壤的周转与分配特征.在100 d培养后,无机氮肥中N在土壤中的分配比例基本保持在52%~61%之间,而同时添加无机磷肥 (Straw+NP) 的处理中使15 N的在土壤中的分配比例最大提高了16.5%.土壤溶液中15 N的比例随时间推移逐渐降低;在5 d时,处理Straw+N和Straw+NP中15 N的分配比例为41%和36%,而在100 d时分别为23%和30%.外源15 N的损失量随时间逐渐增加,同时添加肥料N和P,使15 N的损失量减少了约1.2倍.

图 4 15 N在土壤,土壤溶液和释放的氮库中的回收率 Fig. 4 Recovery of 15 N in soil, soil solution and emission pool

2.5 土壤MBN和15 N-MBN动态变化

秸秆的加入促进了微生物活性,显著提高了土壤MBN的量;100 d培养实验后,无机氮肥和磷肥的添加使MBN增加到对照处理 (CK) 的2.0和2.2倍[图 5(a)].微生物对肥料N的利用随时间先增加后降低,并受外源P素添加的影响,外源P添加后增加了微生物对15 N利用,处理Straw+NP中15 N-MBN是处理Straw+N的1.4~1.5倍[图 5(b)].

图 5 土壤MBN和15 N-MBN的动态变化 Fig. 5 Dynamics of soil MBN and 15 N-MBN

2.6 土壤氮转化酶活性

秸秆及其肥料氮磷的添加显著提高了土壤氮转化酶活性[图 6(a)],根据米氏方程拟合得到的土壤酶 (NAG) 的最大活性潜势 (Vmax) 分别为38.4 nmol ·(g ·h)-1(CK) < 43.9 nmol ·(g ·h)-1(Straw+N) < 52.2 nmol ·(g ·h)-1(Straw) < 77.3 nmol ·(g ·h)-1(Straw+NP),在都有秸秆添加时,肥料N素的添加降低了NAG的活性,而肥料NP同时添加时,NAG的活性较Straw处理提高了48.1%[图 6(b)].然而,NAG的底物亲和性 (Km) 却随着外源氮的添加而显著降低[图 6(c)],同时添加NP后Km值是只添加秸秆处理的1.4倍,进一步降低了土壤酶的底物亲和力.

图 6 土壤酶活性动态变化及其最大活性潜势与底物亲和性 Fig. 6 Soil enzyme kinetics and its maximum enzyme activity potential (Vmax) and substrate affinity (Km)

3 讨论 3.1 水稻土中秸秆与无机氮肥共施条件下氮素的转化与分配

秸秆还田是土壤养分的重要来源,能够为土壤微生物提供C源和N、P等营养元素,但秸秆中氮在土壤的转化和分配是一个渐进的过程[20, 21].本研究表明,秸秆施加显著增加了土壤中N素含量,尤其是在培养后期 (30~100 d),土壤以及土壤溶液中总氮和氨氮含量均迅速增加,说明施加到土壤中的秸秆需经过一定时间的分解,才能为淹水土壤中微生物提供大量能源和养分,促使微生物新陈代谢加快,从而使秸秆氮转化成矿质氮的速度也加快[22].然而秸秆氮素前期缓慢的释放,会增加土壤中氮等养分受限的程度.无机氮肥添加后,促进了土壤中总氮的快速增加,表明无机氮肥增加了秸秆中氮素在土壤中的固持,而后期总氮的降低可能是因为随着土壤微生物活性的提高,加快了土壤中氮素的分解[23, 24].水溶液中氨氮在初始阶段快速下降也表明,无机氮素被快速地消耗,通过生物或是非生物的作用,转移至土壤氮库中.

15 N同位素标记方法是有效反映氮素周转特征的有效手段.外源15 N在土壤溶液中快速降低,表明无机氮肥能够快速参与土壤氮素周转过程,说明了氮素是促进秸秆中养分向土壤中转移的关键因子[25, 26].同时,由于水稻中P是受限的养分元素[27],无机P肥的添加,缓解了微生物P受限程度,增加了微生物对N的利用,使土壤溶液中易利用态的15 N-NH4+含量比不加P处理降低更慢,增加了土壤中15 N的累积[28, 29].无机氮素主要存在于土壤和土壤溶液中,同时也会在微生物作用下发生反硝化、氨氧化等过程,释放出去[30].本研究中无机P肥添加后,N的释放率降低,而且在土壤中固持的比例增加,这可能是因为P添加后,有更多的N素通过微生物的作用转化为有机氮进而被土壤矿物吸附固定,最终形成土壤中有效肥力[31, 32].

3.2 稻田土壤氮素的微生物转化过程

土壤微生物活动和土壤酶活性是土壤有机质和养分转化的关键因子,同时它们受施肥等因素的影响可以迅速发生变化.微生物生物量和酶活性能灵敏地反映环境因子的变化,常被用于评价土壤质量生物学性状[33~35].研究土壤微生物生物量对了解土壤肥力、土壤养分的转化和循环以及环境变化具有重要意义[36].氮素的微生物固持可以减少其以气态形式损失,有利于保肥,随着微生物的死亡微生物体内的氮素会被重新矿化释放出来供作物吸收利用[37].培养实验初期,氮肥施入后很快发生固定,为微生物所同化,微生物先吸收利用氮肥来维持自身生长繁殖,随着氮肥的消耗,微生物繁殖生长受到限制[4, 14].培养后期,秸秆被完全分解利用,秸秆中的C、N等养分为微生物提供了条件.即100 d培养结束时MBN含量达最大值. 5 d培养时,加P处理较其他处理显著提高了土壤MBN含量,说明土壤中P的增加易促进外源氮的周转及微生物对外源氮的固持,形成MBN,减少N素的流失[29, 38].由于磷素的缺乏广泛存在于亚热带土壤中[39],在没有施用磷肥的情况下,微生物的生长发育会受到影响. Chu等[40]和Zhong等[41]的研究结果也表明了施用磷肥能够提高土壤微生物生物量,有机无机肥配施更显著地提高土壤微生物生物量、微生物氮周转速率和作物产量[42].刘德燕等[43]研究发现外源氮有效性影响微生物对有机质的分解.秸秆还田后可以提高配施化肥的利用率,施入化肥后降低了秸秆的C、N,使之有利于微生物分解并利用同化物质构建微生物体,使微生物自身生长繁殖加快,还可以加速秸秆的腐解速度使土壤有机质和养分增加,也使微生物量增加[44].李娟等[45]报道褐潮土玉米秸秆配合NPK较NK显著增加了土壤微生物氮的含量.同时,淹水条件也有利于维持较高的有机质含量,并使土壤微生物量增加[46],淹水条件下红壤中添加水稻秸秆致使土壤中矿质15 N含量下降[37].本实验单施秸秆提高了土壤矿质氮含量,这可能与土壤类型或秸秆添加量有关,土壤微生物活动强弱影响了秸秆能源和养分的消耗.彭佩钦等[47]对洞庭湖湿地土壤氮的研究结果显示,土壤表层微生物氮是全氮的3.13%~6.42%.本实验100 d培养结束后,秸秆氮肥配施土壤MBN占TN的5.72%,秸秆氮磷肥配施土壤MBN占TN的5.23%,与前人研究结论一致.

土壤酶活性是土壤生物学活性的总体现,它表征了土壤的综合肥力特征及其变化状况、土壤养分的转化进程,因此可以作为评价土壤肥力水平的指标,同时土壤酶的专一性和综合性特点使其有可能成为一个有潜力的土壤生物学指标[48, 49].土壤微生物对土壤有机质的分解,以及对C、N、P等养分元素的吸收利用受到环境中土壤胞外酶的调节,并通过微生物响应环境条件的变化而被表达、释放到土壤中[50].这些胞外酶的活性与微生物代谢、养分的生物化学循环密切相关.环境中不同的养分浓度或者C :N、C :P和N :P的比值直接影响微生物C、N、P养分资源需求状况,土壤微生物通过调节释放N或是P水解相关酶来增加N或P的溶出以及可利用率[15, 29].例如:N有效性的降低可以促进N分解酶 (如NAG) 的活性的升高,而N有效性的升高则将抑制N分解酶的活性,提高对其他养分元素分解酶的投入[4, 50].本研究中秸秆添加后显著提高了土壤酶活性,最大酶活性潜势 (Vmax) 增加了1.5~2.0倍,表明秸秆添加后土壤中可利用性碳快速增加,刺激了微生物对N等养分的需求,进而刺激N分解相关酶的活性[4].在相同的秸秆添加条件下,当有无机氮同时添加时,土壤N分解酶的Vmax降低了16%,这可能是因为外源氮的添加,增加了土壤可利用态氮的量,降低了微生物对N的计量学需求;同时,N-乙酰葡糖氨糖苷酶的底物亲和性 (Km) 却随着外源氮的添加而显著降低,也表明外源氮加入后降低了N水解酶的亲和力,使微生物更加容易利用土壤中的氮源[19].然而,在无机NP肥料同时添加时,土壤N分解酶的Vmax显著高于其他处理,达到最大的77.3 nmol ·(g ·h)-1,这可能是无机P的添加,使得微生物解除了水稻土中P的限制,加大对N的需求,使得N分解酶的活性达到最大[4, 50].

4 结论

(1) 秸秆添加增加了土壤和土壤溶液中氨氮和总氮含量;秸秆与氮磷肥共施条件下进一步促进了土壤氮素的累积.

(2) 无机氮肥在土壤中分配受元素计量比的影响,氮磷共施显著提高了土壤MBN的量,提高了土壤氮水解酶活性,增加了外源氮在土壤中的分配比例,降低其在土壤溶液和损失量的比例.

(3) 秸秆还田配施无机肥能为微生物的生长提供充足的碳源和营养元素,促进微生物的生长繁殖,提高土壤氮固定能力.

参考文献
[1] 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095–1103. Peng S B, Huang J L, Zhong X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095–1103.
[2] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783–795. Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783–795.
[3] Zhong Y Q W, Yan W M, Shangguan Z P. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies[J]. Soil Biology and Biochemistry, 2015, 91: 151–159. DOI: 10.1016/j.soilbio.2015.08.030
[4] Chen R R, Senbayram M, Blagodatsky S, et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2356–2367.
[5] Zhang P, Chen X L, Wei T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil and Tillage Research, 2016, 160: 65–72. DOI: 10.1016/j.still.2016.02.006
[6] 张翰林, 赵峥, 陆贻通, 等. 稻田土壤溶液中溶解性有机氮、碳的空间分布及其微生物降解特性[J]. 环境污染与防治, 2014, 36(10): 7–12. Zhang H L, Zhao Z, Lu Y T, et al. Spatial distribution and microbial degradation characteristics of dissolved organic nitrogen and carbon in paddy soil solution[J]. Environmental Pollution and Control, 2014, 36(10): 7–12.
[7] 李贵桐, 张宝贵, 李保国. 秸秆预处理对土壤微生物量及呼吸活性的影响[J]. 应用生态学报, 2003, 14(12): 2225–2228. Li G T, Zhang B G, Li B G. Effect of straw pretreatment on soil microbial biomass and respiration activity[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2225–2228.
[8] 马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报, 2012, 32(17): 5502–5511. Ma X X, Wang L L, Li Q H, et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season[J]. Acta Ecologica Sinica, 2012, 32(17): 5502–5511. DOI: 10.5846/stxb
[9] 刘希玉, 邹敬东, 徐丽丽, 等. 不同肥料种类对稻田红壤碳氮淋失的影响[J]. 环境科学, 2014, 35(8): 3083–3090. Liu X Y, Zou J D, Xu L L, et al. Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil[J]. Environmental Science, 2014, 35(8): 3083–3090.
[10] 胡玉婷, 廖千家骅, 王书伟, 等. 中国农田氮淋失相关因素分析及总氮淋失量估算[J]. 土壤, 2011, 43(1): 19–25. Hu Y T, Liao Q J H, Wang S W, et al. Statistical analysis and estimation of N leaching from agricultural fields in China[J]. Soils, 2011, 43(1): 19–25.
[11] 曹湛波, 王磊, 李凡, 等. 土壤呼吸与土壤有机碳对不同秸秆还田的响应及其机制[J]. 环境科学, 2016, 37(5): 1908–1914. Cao Z B, Wang L, Li F, et al. Response of soil respiration and organic carbon to returning of different agricultural straws and its mechanism[J]. Environmental Science, 2016, 37(5): 1908–1914.
[12] 郭成藏, 李鲁华, 黄金花, 等. 秸秆还田对长期连作棉田土壤微生物量碳氮磷的影响[J]. 农业资源与环境学报, 2015, 32(3): 296–304. Guo C Z, Li L H, Huang J H, et al. Effects of cotton straw incorporation on soil microbial biomass carbon, nitrogen and phosphorus in long-term continuous cropping cotton field[J]. Journal of Agricultural Resources and Environment, 2015, 32(3): 296–304.
[13] Said-Pullicino D, Cucu M A, Sodano M, et al. Nitrogen immobilization in paddy soils as affected by redox conditions and rice straw incorporation[J]. Geoderma, 2014, 228-229: 44–53.
[14] Hartman W H, Richardson C J. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2):is there a biological stoichiometry of soil microbes?[J]. PLoS One, 2013, 8(3): e57127. DOI: 10.1371/journal.pone.0057127
[15] Sistla S A, Schimel J P. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change[J]. New Phytologist, 2012, 196(1): 68–78. DOI: 10.1111/j.1469-8137.2012.04234.x
[16] 袁红朝, 葛体达, 陈晓娟, 等. 稳定同位素质谱技术在生态系统氮素循环中的应用[J]. 质谱学报, 2015, 36(1): 91–96. Yuan H Z, Ge T D, Chen X J, et al. Application of stable isotope mass spectrometry in the ecology of nitrogen cycle[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1): 91–96.
[17] zu Schweinsberg-Mickan M S, Joergensen R G, Müller T. Fate of 13 C-and 15 N-labelled rhizodeposition of Lolium perenne as function of the distance to the root surface[J]. Soil Biology and Biochemistry, 2010, 42(6): 910–918. DOI: 10.1016/j.soilbio.2010.02.007
[18] 孙建飞, 白娥, 戴崴巍, 等. 15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进[J]. 生态学杂志, 2014, 33(9): 2574–2580. Sun J F, Bai E, Dai W W, et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15 N labeled soil[J]. Journal of Agro-Environment Science, 2014, 33(9): 2574–2580.
[19] Loeppmann S, Blagodatskaya E, Pausch J, et al. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere[J]. Soil Biology and Biochemistry, 2016, 92: 111–118. DOI: 10.1016/j.soilbio.2015.09.020
[20] Wang Q K, Wang Y P, Wang S L, et al. Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers[J]. Soil Biology and Biochemistry, 2014, 72: 145–151. DOI: 10.1016/j.soilbio.2014.01.020
[21] Zhang G B, Yu H Y, Fan X F, et al. Effect of rice straw application on stable carbon isotopes, methanogenic pathway, and fraction of CH4 oxidized in a continuously flooded rice field in winter season[J]. Soil Biology and Biochemistry, 2015, 84: 75–82. DOI: 10.1016/j.soilbio.2015.02.008
[22] Wichern F, Mayer J, Joergensen R G, et al. Release of C and N from roots of peas and oats and their availability to soil microorganisms[J]. Soil Biology and Biochemistry, 2007, 39(11): 2829–2839. DOI: 10.1016/j.soilbio.2007.06.006
[23] Bird J A, Kleber M, Torn M S. 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition[J]. Organic Geochemistry, 2008, 39(4): 465–477.
[24] Coyle J S, Dijkstra P, Doucett R R, et al. Relationships between C and N availability, substrate age, and natural abundance 13 C and 15 N signatures of soil microbial biomass in a semiarid climate[J]. Soil Biology and Biochemistry, 2009, 41(8): 1605–1611. DOI: 10.1016/j.soilbio.2009.04.022
[25] Hagedorn F, Spinnler D, Siegwolf R. Increased N deposition retards mineralization of old soil organic matter[J]. Soil Biology and Biochemistry, 2003, 35(12): 1683–1692. DOI: 10.1016/j.soilbio.2003.08.015
[26] Rains K C, Bledsoe C S. Rapid uptake of 15N-ammonium and glycine-13C, 15N by arbuscular and ericoid mycorrhizal plants native to a Northern California coastal pygmy forest[J]. Soil Biology and Biochemistry, 2007, 39(5): 1078–1086.
[27] Li Y, Wu J S, Liu S L, et al. Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China?[J]. Global Biogeochemical Cycles, 2012, 26(4): GB4002.
[28] Creamer C A, Jones D L, Baldock J A, et al. Stoichiometric controls upon low molecular weight carbon decomposition[J]. Soil Biology and Biochemistry, 2014, 79: 50–56. DOI: 10.1016/j.soilbio.2014.08.019
[29] Heuck C, Weig A, Spohn M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus[J]. Soil Biology and Biochemistry, 2015, 85: 119–129.
[30] Nie S A, Li H, Yang X R, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere[J]. The ISME journal, 2015, 9(9): 2059–2067. DOI: 10.1038/ismej.2015.25
[31] Wichern F, Mayer J, Joergensen R G, et al. Rhizodeposition of C and N in peas and oats after 13C-15N double labelling under field conditions[J]. Soil Biology and Biochemistry, 2007, 39(10): 2527–2537.
[32] Clode P L, Kilburn M R, Jones D L, et al. In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry[J]. Plant Physiology, 2009, 151(4): 1751–1757.
[33] Blagodatsky S, Blagodatskaya E, Yuyukina T, et al. Model of apparent and real priming effects:linking microbial activity with soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2010, 42(8): 1275–1283.
[34] Dorodnikov M, Kuzyakov Y, Fangmeier A, et al. C and N in soil organic matter density fractions under elevated atmospheric CO2:turnover vs. stabilization[J]. Soil Biology and Biochemistry, 2011, 43(3): 579–589.
[35] Kautz T, Amelung W, Ewert F, et al. Nutrient acquisition from arable subsoils in temperate climates:a review[J]. Soil Biology and Biochemistry, 2013, 57: 1003–1022. DOI: 10.1016/j.soilbio.2012.09.014
[36] 骆坤, 胡荣桂, 张文菊, 等. 黑土有机碳、氮及其活性对长期施肥的响应[J]. 环境科学, 2013, 34(2): 676–684. Luo K, Hu R G, Zhang W J, et al. Response of black soil organic carbon, nitrogen and its availability to long-term fertilization[J]. Environmental Science, 2013, 34(2): 676–684.
[37] 王志明, 朱培立, 黄东迈, 等. 淹水土壤中秸秆氮素的转化[J]. 江苏农业学报, 2001, 17(4): 236–240. Wang Z M, Zhu P L, Huang D M, et al. Transformation of straw 15 N in the submerged soil[J]. Jiangsu Journal of Agricultural Sciences, 2001, 17(4): 236–240.
[38] Manzoni S, Trofymow J A, Jackson R B, et al. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J]. Ecological Monographs, 2010, 80(1): 89–106. DOI: 10.1890/09-0179.1
[39] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010, 34(1): 64–71. Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 64–71.
[40] Chu H Y, Lin X G, Fujii T, et al. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management[J]. Soil Biology and Biochemistry, 2007, 39(11): 2971–2976.
[41] Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2-3): 84–91. DOI: 10.1016/j.apsoil.2006.12.001
[42] 吕美蓉, 李忠佩, 刘明, 等. 长期不同施肥处理对红壤水稻土微生物量氮周转的影响[J]. 中国农业科学, 2012, 45(2): 275–282. Lü M R, Li Z P, Liu M, et al. Soil microbial biomass N turnover after long-term fertilization in paddy field[J]. Scientia Agricultura Sinica, 2012, 45(2): 275–282.
[43] 刘德燕, 宋长春, 王丽, 等. 外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响[J]. 环境科学, 2008, 29(12): 3525–3530. Liu D Y, Song C C, Wang L, et al. Exogenous nitrogen enrichment impact on the carbon mineralization and DOC of the freshwater marsh soil[J]. Environmental Science, 2008, 29(12): 3525–3530.
[44] 汤宏, 沈健林, 张杨珠, 等. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 2013, 27(1): 240–246. Tang H, Shen J L, Zhang Y Z, et al. Effect of rice straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in a rice paddy field[J]. Journal of Soil and Water Conservation, 2013, 27(1): 240–246.
[45] 李娟, 赵秉强, 李秀英, 等. 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J]. 中国农业科学, 2008, 41(1): 144–152. Li J, Zhao B Q, Li X Y, et al. Effects of long-term combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility[J]. Scientia Agricultura Sinica, 2008, 41(1): 144–152.
[46] 陈娟, 马忠明, 刘莉莉, 等. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响[J]. 植物营养与肥料学报, 2016, 22(3): 667–675. Chen J, Ma Z M, Liu L L, et al. Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 667–675.
[47] 彭佩钦, 张文菊, 童成立, 等. 洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J]. 应用生态学报, 2005, 16(10): 1872–1878. Peng P Q, Zhang W J, Tong C L, et al. Soil C, N and P contents and their relationships with soil physical properties in wetlands of Dongting Lake floodplain[J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1872–1878.
[48] 赵军, 耿增超, 尚杰, 等. 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响[J]. 生态学报, 2016, 36(8): 2355–2362. Zhao J, Geng Z C, Shang J, et al. Effects of biochar and biochar-based ammonium nitrate fertilizers on soil microbial biomass carbon and nitrogen and enzyme activities[J]. Acta Ecologica Sinica, 2016, 36(8): 2355–2362.
[49] Adamczyk B, Kilpeläinen P, Kitunen V, et al. Potential activities of enzymes involved in N, C, P and S cycling in boreal forest soil under different tree species[J]. Pedobiologia, 2014, 57(2): 97–102. DOI: 10.1016/j.pedobi.2013.12.003
[50] Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43(1): 313–343.