环境科学  2017, Vol. 38 Issue (3): 1253-1261   PDF    
岩性对喀斯特灌丛土壤固氮菌与丛枝菌根真菌群落结构及丰度的影响
梁月明1,2 , 苏以荣1 , 何寻阳1 , 陈香碧1     
1. 中国科学院亚热带农业生态研究所, 亚热带农业生态过程重点实验室, 长沙 410125;
2. 中国地质科学院岩溶地质研究所, 国土资源部、广西壮族自治区岩溶动力学重点实验室, 桂林 541004
摘要: 运用末端限制性片段长度多态性(terminal restriction fragment length polymorphism,T-RFLP)和荧光定量PCR(real-time PCR)法,检测喀斯特灌丛生态系统中不同岩性条件下土壤固氮菌与丛枝菌根(arbuscular mycorrhizal,AM)真菌群落结构与丰度的变化,揭示岩性对灌丛生态系统土壤中固氮菌与AM真菌群落结构与丰度的影响.结果表明不同岩性条件下,土壤固氮菌与AM真菌丰度存在显著差异,其中,固氮菌与AM真菌丰度在石灰岩土壤中最大,白云岩土壤中最小,石灰岩-白云岩夹层土壤介于两者之间;同样,不同岩性土壤中固氮菌与AM真菌群落结构存在显著性差异.土壤Olsen-P、有机碳、黏粒含量与固氮菌丰度存在显著正相关关系,而土壤全氮、黏粒含量与AM真菌丰度存在显著正相关.RDA分析表明,植物均匀度影响固氮菌群落组成结构,而植物均匀度、香农多样性指数及丰富度指数影响AM真菌群落组成结构.以上的研究结果表明:岩性主要是通过影响植物与土壤养分来影响土壤固氮菌与AM真菌群落组成结构及丰度.
关键词: 喀斯特      灌丛生态系统      岩性      固氮菌      丛枝菌根真菌      群落结构     
Effects of Lithology on the Abundance and Composition of Soil Nitrogen-fixing Bacteria and Arbuscular Mycorrhizal Fungal Communities in Karst Shrub Ecosystem
LIANG Yue-ming1,2 , SU Yi-rong1 , HE Xun-yang1 , CHEN Xiang-bi1     
1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
2. Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
Abstract: Lithology is a key factor when used to restore vegetation in karst degraded ecosystems, and arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play an important role in improving plant growth. However, little information is available regarding the effects of lithology on these two groups of microorganisms. To test whether these microbial communities are impacted by lithology, the abundance and composition of soil AM fungal and nitrogen-fixing bacteria communities were determined through terminal restriction fragment length polymorphism (T-RFLP) and real-time fluorescence-based quantitative PCR (real-time PCR). Three types of lithology (dolomite, limestone and dolomite-limestone) were selected in this study. The diversity, richness, and evenness of plant species were evaluated through field surveys and soil properties were measured. The results showed that the abundances of soil nitrogen-fixing bacteria and arbuscular mycorrhizal fungal communities were significantly influenced by lithology. The abundances of these two groups of microorganisms were the lowest in dolomite soil, inferior to dolomite-limestone soil, while highest in limestone soil. Similarly, the composition of soil nitrogen-fixing bacteria and AM fungi communities varied among lithology. A significant linear correlation was observed among soil organic carbon, available phosphorus, clay content and nitrogen-fixing bacterial abundance (P < 0.05), and a significant linear correlation among total nitrogen, clay content and AM fungal abundance (P < 0.05). Redundancy analysis showed that the composition of nitrogen-fixing bacterial community was closely linked to plant evenness, and the AM fungal community composition was closely linked to plant diversity (plant evenness, Shannon-wiener and richness). These results indicated that lithology influenced the abundances and compositions of soil nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungal communities mainly through plant and soil properties.
Key words: karst      shrub ecosystem      lithology      nitrogen-fixing bacteria      arbuscular mycorrhizal fungi      community structure     

喀斯特地区占地球陆地表面积的15%[1].中国西南喀斯特地区面积约550 000 km2,是世界上最大的喀斯特地区[2].喀斯特特殊的地形地貌,加上人口剧增后对资源的过度开发,导致该地区生态环境脆弱,石漠化严重[3, 4].植被恢复是石漠化治理最有效措施之一,灌丛植物在喀斯特地区具有分布广、旱生、岩生、适钙等特点[5],在喀斯特地区植被恢复中起重要的作用.因此,如何促进灌丛植被恢复是西南喀斯特地区石漠化治理和生态系统恢复重建的关键.

土壤养分有效性是喀斯特地区植被恢复的关键因子.尽管喀斯特土壤中总养分(氮磷) 含量较同纬度地带性土壤高,然而受土壤浅薄、高钙镁和pH等条件的制约,植物可利用的有效养分较低[6]. AM真菌与固氮菌是土壤-植物系统的主要组成部分[7],均能促进植物吸收养分[8],从而缓解植物生长受土壤养分贫瘠的胁迫[9].因此,AM真菌与固氮菌在植被重建与恢复中起重要的作用[10].

有研究表明,土壤性质和植被覆盖是影响固氮菌与AM真菌多样性和群落结构的重要因素[11~13].在喀斯特灌丛生态系统中,不同岩性条件下,土壤性质与植被群落组成结构差异显著[14].目前,虽然有些学者对喀斯特地区AM真菌与固氮菌种质资源进行了一些探索[15, 16],但关于不同岩性条件下固氮菌与AM真菌群落组成结构与丰度变化规律的研究报道极少.因此,本研究运用T-RFLP与Q-PCR的方法研究喀斯特灌丛生态系统不同岩性条件下土壤固氮菌与AM真菌群落结构与丰度,探讨土壤性质、植物群落组成与固氮菌和AM真菌群落结构、丰度之间的关系,从微生物学的角度,以期为喀斯特地区植被恢复提供理论依据.

1 材料与方法 1.1 研究样区

研究样区位于广西壮族自治区环江县(24°50′N,105°55′E).该地区属于亚热带季风气候,年均气温18.5℃,年均降雨量1 389 mm,雨季主要集中在4~8月[17].

1.2 植被调查与土壤样品采集

植被调查: 2012年6月选取典型的灌木样地,每种岩性布设3个重复样方(10 m×10 m),一共9个样方(9为3种岩性×3个重复).将每块灌木样方分成面积相等的4个小样方调查植被组成,每个小样方分成2层(灌木层、草本层) 进行调查. 2.5 cm<胸围<3.14 cm为灌木,胸围<2.5 cm为草本.同时,记录每种植物的坐标、高度、冠幅、株数.其中,石灰岩样地主要优势植物种:青冈栎(Cyclobalanopsis glauca)、红背山麻杆(Alchornea trewioides)、毛果巴豆(Croton lachnocarpus Benth);白云岩样地主要优势植物种:子凌蒲桃(Syzygium championii)、檵木(Loropetalum chinese)、火棘(Pyracantha fortuneana);石灰岩-白云岩夹层样地主要优势植物种:红背山麻杆(Alchornea trewioides)、老虎刺(Pterolobium punctatumHemsl)、豹皮樟(Litsea coreana).

土壤样品采集:考虑到喀斯特地区土壤异质性高,为了得到具有代表性的土壤样品,每个样方沿“S”形采集15点表层0~15 cm的土壤样品,将这15点采集到的土壤充分混匀成一个混合样(代表整个样方),一共9个样品(9为3种岩性×3个重复样地).其中,母质为石灰岩的样点土层厚度约50~60 cm;母质为白云岩的样点土层厚度约80~90 cm;母质为石灰岩-白云岩夹层的样点土层厚度约60~75 cm.将采集到的土壤样品,用四分法将其分成2部分,一部分(约50 g) 快速置于液氮中运回实验室-70℃保存,用于分子生物学分析;另一部分风干保存,用于土壤基本理化性质分析.

1.3 土壤基本理化性质的测定

土壤基本理化性质检测方法具体如下:土壤pH值用电位法(土水比为1:2.5) 测定;有机碳用重铬酸钾-硫酸氧化法测定[18];Olsen-P用0.5 mol·L-1 NaHCO3浸提、钼锑抗比色法测定[19];含水量用烘干法测定;全N用半微量凯氏法测定[18].

土壤颗粒组成用激光粒度仪Mastersizer 2000 (Malvern Instruments,Malvern,England) 测定,实验方法参考Wang等[20]的方法进行,并根据美国农业部制定进行分级[21].

1.4 土壤DNA提取、目的片段PCR扩增

采用改进的十二烷基硫酸钠-异硫氰酸胍-聚乙二醇法(sodium dodecyl sulfate-glucopyranosyl isothiocyanate -polyethylene glycol,SDS-GITC-PEG) 提取土壤微生物总DNA[22].提取获得的DNA样品经1%的琼脂糖凝胶电泳检测大小约为20 kb;然后用紫外分光光度计(Nanodrop, PeqLab,Germany) 测定总DNA提取量为104.10~225.10 ng·μL-1A260 nm/A280 nm比值为1.8~1.9,A260 nm/A230 nm比值为1.1~1.9,说明所提取的DNA产量与纯度较高,可用于下一步的分子生物学分析.每个土壤样品分别提取3管DNA,然后混成一个DNA样品,进行目的条带PCR的扩增.

采用巢式PCR扩增AM真菌18S rRNA,其中,第一次PCR扩增引物对为Geo11F/GeoA2R,第二次PCR扩增引物对为NS31/AM1(表 1).固氮菌nifH基因PCR扩增引物为PolF/PolR (表 1).用于T-RLFP分析的正向引物5′添加FAM,所有引物由上海英俊生物技术公司合成.

PCR扩增体系(50 μL): 2×PCR Premix (0.1 U PrimeSTAR HS DNA Polymerase,0.5 mmol·L-1 dNTPs,天根,中国) 25 μL,上游和下游引物各10 pmol·L-1,DNA模板20 ng,ddH2O补至50 μL.

PCR扩增程序: 94℃ 2 min;35个循环为95℃ 60 s,62℃ 60 s (AM真菌Geo11F/GeoA2R)、64℃ 60 s (AM真菌NS31/AM1) 或55℃ 60 s (固氮菌nifH基因),72℃ 60 s;72℃终延伸10 min.

PCR扩增仪: Eppendorf Mastercycler (Germany).

表 1 引物序列及来源1) Table 1 Primer sequences and references

1.5 荧光定量PCR扩增

采用荧光定量PCR测定固氮菌与AM真菌基因拷贝数.固氮菌的引物为PolF/PolR,AM真菌的引物为AMV4.5NF/AMDGR.反应体系(10 μL) 与程序按(TaKaRa) 试剂盒操作说明书进行,PCR扩增所用仪器为ABI 7900(USA) 荧光定量PCR仪.

标准曲线制作:将测序获得的已知种属的阳性克隆子扩增培养后提取质粒DNA,经紫外分光光度计检测浓度后,将其进行101~108倍梯度稀释,作为目标基因荧光定量的标准样品.以初始模板DNA量的对数为横坐标,以PCR反应过程中每个稀释样品的Ct值为纵坐标,绘制标准曲线(R2=0.99),扩增效率为90%~110%.所有样品均做4次技术重复,为了消除不同批次扩增的误差将每个基因的标准曲线样品,阴性对照,样品扩增同时在384孔板上进行.

微生物丰度(即核酸拷贝数) 计算公式:

1.6 限制性片段长度多态技术(terminal restriction fragment length polymorphism,T-RLFP) 检测

在参考相关研究常用的限制性内切酶的基础上结合Gentle软件分析本研究用到的引物片段,最终选择了HinfⅠ酶(AM真菌) 与HeaⅢ酶(固氮菌) 用于T-RFLP分析.

PCR产物采用试剂盒“Wizard SV Gel and PCR clean-up Systems”(Promega, Madison, US) 进行凝胶回收纯化.操作步骤见试剂盒说明书. PCR产物纯化用限制性内切酶,酶切体系50 μL,其中DNA约为200 ng,其它试剂加入量及酶切反应温度均按照说明书操作.酶切条件:水浴反应12 h,热变性(65℃,20 min) 使酶失活从而终止酶切反应.取10 μL酶切产物,用2.0%的琼脂糖凝胶电泳检查是否酶切完全. T-RFLP检测由上海桑尼生物科技有限公司完成(Sunny Biotechnology Co.,Shanghai),所用仪器为ABI Prism 3100 Genetic Analyzer.

1.7 数据分析

(1) T-RFLP数据分析

利用PeakScan1.0软件显示末端片段大小和相对丰度.每个末端片断(T-RFs) 的荧光值除以所有片断荧光值的总和为该末端片段的相对百分比,去掉1%以下的末端片断.将相差2 bp的T-RFs合并为同一个.去掉末端片断长度小于50 bp T-RFs.将相对丰度≥5% T-RFs定义为优势种.

群落结构分析主要利用CANOCO 4.54软件,对T-RFLP的结果进行排序统计. CANOCO是生态学应用中用于约束和非约束排序的最流行的工具.本研究首先利用去趋势对应分析法(detrended correspondence analysis,DCA) 对数据进行去势分析,轴长梯度小于3,该数据进一步分析应该采用基于线性模型的排序方法,因此,本研究利用冗余分析(redundancy analysis,RDA) 环境因子与群落组成的相关性.

(2) 植物多样性计算方法

植物多样性采用Shannon-Winer指数(H′,香农多样性指数) 表示.植物物种多样性指数计算公式:

式中,Pi为物种i的个体数,S为群落中所有物种个体数之和,E为植物均匀度指数[25].

(3) 统计分析

数据统计分析采用SPSS 19.0 for Windows (SPSS Inc.,芝加哥,美国) 和Microsoft Excel 2010软件进行.差异显著性用One-way ANOVA (一维方差分析) 分析,多重比较采用LSD法.数据不服从正态分布将进行lg (x+1) 的转化.相关性采用皮尔森指数(Pearson) 分析.

2 结果与分析 2.1 不同岩性条件下土壤理化性质及植物多样性的变化

单因素方差分析表明,不同岩性条件下,土壤有机碳、全氮和黏粒含量差异显著,具体表现为白云岩≈石灰岩-白云岩夹层<石灰岩;粉粒含量则表现为白云岩>石灰岩-白云岩夹层>石灰岩,而pH则不存在显著差异(表 2).

表 2 不同岩性下土壤理化性质及植物多样性指数1) Table 2 Soil properties and plant diversity under different lithology conditions

单因素方差分析表明,不同岩性条件下,植物丰富度指数差异显著,具体表现为石灰岩-白云岩夹层>白云岩≈石灰岩,而植物均匀度与香农多样性指数则差异不显著(表 2).不同岩性条件下,植物群落组成结构差异显著(数据没有列举出来).

2.2 不同岩性条件下土壤固氮菌与AM真菌群落组成结构

由T-RFLP图谱可见,不同岩性下土壤固氮菌群落组成结构差异显著[图 1(a)].

图 1 不同岩性中固氮菌(HeaⅢ酶) 与AM真菌(HinfⅠ酶) 群落组成分析 Fig. 1 Average relative abundances of nitrogen-fixing bacterial and AM fungalT-RFs as determined by endonuclease digestion with HeaⅢ and HinfⅠ, respectively in the soil samples from different lithology conditions

本研究一共获得33个T-RFs,石灰岩、白云岩和石灰岩-白云岩土壤中分别获得25、14和21.其中,30个T-RFs固氮菌在不同岩性土壤中存在显著性差异.优势种群T-RFs为64、80、157和180 bp,占总的种群的40%,且石灰岩土壤中固氮菌稀少种群远远高于白云岩土壤.

同样,T-RFLP数据显示,AM真菌一共获得26个T-RFs [图 1 (b)],石灰岩、白云岩和石灰岩-白云岩土壤中分别获得21、19和18.其中,23个T-RFs AM真菌在不同岩性土壤中存在显著性差异. 3个优势种群T-RFs为138、189和300 bp,占总的种群的40%;某些稀少种仅在特定的土壤中出现,例如,T-RFs为125、284、365和385 bp仅在石灰岩土壤中出现,而T-RFs为217 bp和308 bp仅在白云岩土壤中出现.

2.3 不同岩性条件下土壤固氮菌与AM真菌丰度

单因素方差分析表明,固氮菌与AM真菌丰度在不同岩性条件下存在显著性差异(图 2),其中,石灰岩土壤中最大,白云岩土壤中最小,石灰岩-白云岩夹层土壤介于两者之间.

图 2 不同岩性土壤中固氮菌与AM真菌丰度 Fig. 2 Abundances of nitrogen-fixing bacteria and AM fungi under different lithology conditions

2.4 不同岩性条件下土壤理化性质及植物多样性对固氮菌与丛枝菌根真菌丰度及群落结构的影响

相关性分析表明(表 3),土壤Olsen-P、有机碳、黏粒含量与固氮菌丰度存在显著正相关,而粉粒含量与固氮菌丰度存在显著负相关(P<0.05);土壤全氮、黏粒含量与AM真菌丰度存在显著正相关,而粉粒含量与AM真菌丰度存在显著负相关(P<0.05).

表 3 土壤理化性质及植物多样性指数与固氮菌与AM真菌丰度Pearson相关分析1) Table 3 Pearson correlations among soil properties, plant diversity, nitrogen-fixing bacterial abundance and AM fungal abundance

RDA分析表明(图 3),植物均匀度(F=2.6,P=0.049) 显著影响土壤固氮菌群落组成;植物香农多样性指数(F=2.1,P=0.003)、植物均匀度(F=1.9,P=0.017)、植物丰富度(F=1.8,P=0.028) 与pH (F=1.7,P=0.022) 显著影响土壤AM真菌群落组成.

图 3 土壤理化性质及植物多样性对固氮菌与AM真菌群落结构的影响 Fig. 3 Relationships among soil properties, plant diversity and community composition of nitrogen-fixing bacteria and AM fungi

3 讨论 3.1 岩性对土壤固氮菌与AM真菌丰度的影响

本研究结果显示,不同岩性土壤中固氮菌与AM真菌丰度存在显著性差异(图 2),表明岩性主要是通过影响土壤养分有效性进而影响土壤微生物丰度[26].不同岩性风化速度不一样,风化速度快的岩性有利于提高土壤矿物养分的有效性[27],进而显著提高土壤速效磷、有机碳、全氮含量.这种良好的养分条件有助于维持微生物生长和促进微生物多样性、结构与功能的发展[28, 29].

不同的土壤理化性质,例如:速效磷、有机碳、全氮、黏土含量,显著影响微生物丰度[26, 30],并直接或者间接影响微生物的形成及功能[31].本研究发现,石灰岩土壤中的固氮菌与AM真菌丰度均比白云岩土壤中的高.主要原因为:石灰岩风化的速度比白云岩的快[32],容易形成较高的有机碳、全氮、速效磷.因此,石灰岩土壤比白云岩土壤更有利于促进固氮菌与AM真菌的生长,从而解释了石灰岩土壤中这两种微生物丰度高的现象.此外,石灰岩区的岩石裸露率比白云岩区高,且土被分布非常不规律,容易形成石沟、石缝、石槽等多样化的小生境[33],为固氮菌与AM真菌提供多样化的栖息地与资源,从而有利于提高这两种微生物的丰度.

3.2 岩性对土壤固氮菌与AM真菌群落组成结构的影响

本研究结果显示,不同岩性显著改变土壤固氮菌与AM真菌群落组成结构(图 1),但固氮菌与AM真菌优势种各占其总种群的40%以上,表明不同岩性土壤中固氮菌与AM真菌群落组成结构差异主要是由稀少种不同导致的. T-RFLP研究结果显示,某些稀少固氮菌与AM真菌只在某种岩性土壤中出现,一定程度上解释了上面的推测.

已有研究表明,岩性主要是通过影响植被组成来影响土壤微生物群落组成结构[34, 35].同样,植物影响AM真菌群落组成结构也已被很多研究所证实[36~38].植物主要是通过根际分泌物影响土壤微生物群落组成[39].因此,不同植物特性,包括生理状态[40]及其影响土壤理化性质的能力[41],均会影响AM真菌的群落组成结构.此外,AM真菌存在宿主植物偏好特性,植物多样性越高,对应的AM真菌多样性也高[42].同时,植物多样性高能够为AM真菌提供多样化的栖息地与资源[43],从而提高AM真菌多样性.

同样,植物也影响固氮菌群落组成结构[44, 45].本研究发现,植物均匀度显著影响固氮菌群落组成结构[图 3(a)].植物均匀度是指一个群落或者生境中全部种的个体数目,反映了种属组成的均匀程度[46].在一个特定的生态系统中,植物均匀度指数越高,其群落组成结构越稳定[47],从而为土壤固氮菌提供一个稳定的生存环境,这种环境有利于促进固氮菌群落结构的稳定及发展.

3.3 岩性对植物群落组成结构及多样性的影响

不同岩性下,植物群落组成结构及植物多样性存在显著性差异,这种现象与岩性基质具有重要的关系.由于岩性的不同,岩石风化后形成的土壤其钙镁元素含量存在显著性差异[48],因而对植物生长产生了显著性影响.此外,不同岩性区域,土层厚度及岩石裸露率使植物与岩石有更为直接的元素营养关系[49, 50].因此,喀斯特地区特殊的地形地貌及元素地球化学特征,引起的局部小生境分异从而对植物群落特征产生显著影响[51].此外,RDA分析结果显示,不同岩性条件下,植物均匀度影响固氮菌群落组成结构,而植物均匀度、香农多样性指数及丰富度指数影响AM真菌群落组成结构.以上结果表明,岩性主要是通过影响植物群落组成继而影响土壤固氮菌与AM真菌群落组成,是一种复合的作用.

3.4 末端限制性片段长度多态技术研究土壤微生物遗传多样性的局限性

T-RFLP是一种高灵敏、重复性好的分子技术,可以对大批量样品间的群落结构进行比较[52],在微生物生态学研究中一直受到较高的评价,并已在AM真菌与固氮菌群落研究中得到广泛的应用[53, 54].但是,T-RFLP技术是根据T-RF片段与已知菌株末端片断的比对来确定未知菌株的分类,不能准确地确定菌株的种属.而最新出现的高通量测序技术,是以序列相似性来定义分子分类群(operational taxonomic unit, OTU),具有准确性高的特点,完全克服了T-RFLP技术的局限性.此外,高通量测序技术还具有信息量大,成本较低等优点,从而成为目前最为流行的研究土壤微生物遗传多样性的分子手段之一[55, 56].

4 结论

(1) 不同岩性条件下,土壤固氮菌、AM真菌与植物群落组成结构存在显著差异,表明岩性主要是通过影响植物群落组成继而影响土壤固氮菌与AM真菌群落组成.

(2) 岩性显著改变土壤固氮菌与AM真菌丰度,石灰岩土壤中固氮菌与AM真菌丰度高于白云岩土壤,与石灰岩风化速度快,形成较高有效养分密切相关.

(3) 在喀斯特灌丛生态系统中,不同岩性条件下,影响土壤固氮菌与AM真菌群落组成结构与丰度的因子存在差异.因此,在喀斯特地区植被恢复过程中,需要根据具体目标与岩性条件采用相应的策略,才能高效地促进该地区的植被恢复.

参考文献
[1] 袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1994. Yuan D X. Karstology of China[M]. Beijing: Geological Publishing House, 1994.
[2] Yuan D X. Geology and geohydrology of karst and its relevance to society[M]. Paris: UNESCO, 2002.
[3] Parise M, De Waele J, Gutierrez F. Current perspectives on the environmental impacts and hazards in karst[J]. Environmental Geology, 2009, 58(2) : 235–237. DOI: 10.1007/s00254-008-1608-2
[4] Querejeta J I, Estrada-Medina H, Allen M F, et al. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate[J]. Oecologia, 2007, 152(1) : 26–36. DOI: 10.1007/s00442-006-0629-3
[5] 屠玉麟. 贵州喀斯特灌丛区系与生态特征分析[J]. 贵州师范大学学报(自然科学版), 1995, 13(3) : 1–8. Tu Y L. A analisis of flora and ecologicai characteristics of karst scrubs in Guizhou province[J]. Journal of Guizhou Normal University (Natural Science), 1995, 13(3) : 1–8.
[6] 杨慧, 曹建华, 孙蕾, 等. 岩溶区不同土地利用类型土壤无机磷形态分布特征[J]. 水土保持学报, 2010, 24(2) : 135–140. Yang H, Cao J H, Sun L, et al. Fractions and distribution of inorganic phosphorus in different land use types of karst area[J]. Journal of Water and Soil Conservation, 2010, 24(2) : 135–140.
[7] Smith S E, Read D J. Mycorrhizal symbiosis (3rd ed.)[J]. New York:Academic Press, 2008, 815.
[8] Ruíz-Sánchez M, Armada E, Muñoz Y, et al. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions[J]. Journal of Plant Physiology, 2011, 168(10) : 1031–1037. DOI: 10.1016/j.jplph.2010.12.019
[9] Johnson N C, Wilson G W T, Bowker M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5) : 2093–2098. DOI: 10.1073/pnas.0906710107
[10] Mortimer P E, Le Roux M R, Pérez-Fernández M A, et al. The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions[J]. Plant and Soil, 2013, 366(1-2) : 229–241. DOI: 10.1007/s11104-012-1421-2
[11] Poly F, Ranjard L, Nazaret S, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties[J]. Applied and Environmental Microbiology, 2001, 67(5) : 2255–2262. DOI: 10.1128/AEM.67.5.2255-2262.2001
[12] Hsu S F, Buckley D H. Evidence for the functional significance of diazotroph community structure in soil[J]. The ISME Journal, 2009, 3(1) : 124–136. DOI: 10.1038/ismej.2008.82
[13] Li L F, Li T, Zhang Y, et al. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China[J]. FEMS Microbiology Ecology, 2010, 71(3) : 418–427. DOI: 10.1111/fem.2010.71.issue-3
[14] 张伟, 陈洪松, 王克林, 等. 桂西北喀斯特洼地土壤有机碳和速效磷的空间变异[J]. 生态学报, 2007, 27(12) : 5168–5175. Zhang W, Chen H S, Wang K L, et al. Spatial variability of soil organic carbon and available phosphorus in a typical karst depression, northwest of Guangxi[J]. Acta Ecologica Sinica, 2007, 27(12) : 5168–5175.
[15] Liang Y M, Pan F J, He X Y, et al. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region[J]. Environmental Science and Pollution Research, 2016, 23(18) : 18482–18491. DOI: 10.1007/s11356-016-7022-5
[16] Liu L, He X Y, Wang K L, et al. The Bradyrhizobium-legume symbiosis is dominant in the shrubby ecosystem of the Karst region, Southwest China[J]. European Journal of Soil Biology, 2015, 68 : 1–8. DOI: 10.1016/j.ejsobi.2015.02.004
[17] He X Y, Wang K L, Zhang W, et al. Positive correlation between soil bacterial metabolic and plant species diversity and bacterial and fungal diversity in a vegetation succession on Karst[J]. Plant and Soil, 2008, 307(1-2) : 123–134. DOI: 10.1007/s11104-008-9590-8
[18] Bremner J M. Total nitrogen[A]. In:Black C A (Ed.). Methods of Soil Analysis[M]. Madison, Wisconsin:American Society of Agronomy, 1965. 1149-1178.
[19] Colwell J D. The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis[J]. Australian Journal of Experimental Agriculture and Animal Husbandry, 1963, 3(10) : 190–197. DOI: 10.1071/EA9630190
[20] Wang Y Q, Shao M A, Gao L. Spatial variability of soil particle size distribution and fractal features in water-wind erosion crisscross region on the loess plateau of China[J]. Soil Science, 2010, 175(12) : 579–585. DOI: 10.1097/SS.0b013e3181fda413
[21] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2001.
[22] 陈香碧, 苏以荣, 何寻阳, 等. 不同干扰方式对喀斯特生态系统土壤细菌优势类群--变形菌群落的影响[J]. 土壤学报, 2012, 49(2) : 354–363. Chen X B, Su Y R, He X Y, et al. Effect of human disturbance on composition of the dominant bacterial group--Proteobacteria in Karst soil ecosystems[J]. Acta Pedologica Sinica, 2012, 49(2) : 354–363.
[23] Santos-González J C, Finlay R D, Tehler A. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland[J]. Applied and Environmental Microbiology, 2007, 73(17) : 5613–5623. DOI: 10.1128/AEM.00262-07
[24] Sato K, Suyama Y, Saito M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis[J]. Grassland Science, 2005, 51(2) : 179–181. DOI: 10.1111/j.1744-697X.2005.00023.x
[25] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3) : 268–277. Ma K P, Huang J H, Yu S L, et al. Plant community diversity in Dongling mountain, Beijing, China:Ⅱ, species richness, evenness and species diversities[J]. Acta Ecologica Sinica, 1995, 15(3) : 268–277.
[26] Herold N, Schöning I, Gutknecht J, et al. Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany[J]. Applied Soil Ecology, 2014, 73 : 41–50. DOI: 10.1016/j.apsoil.2013.07.009
[27] Anderson D W. The effect of parent material and soil development on nutrient cycling in temperate ecosystems[J]. Biogeochemistry, 1988, 5(1) : 71–97. DOI: 10.1007/BF02180318
[28] Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology and Biochemistry, 2003, 35(1) : 167–176. DOI: 10.1016/S0038-0717(02)00251-1
[29] Eilers K G, Debenport S, Anderson S, et al. Digging deeper to find unique microbial communities:the strong effect of depth on the structure of bacterial and archaeal communities in soil[J]. Soil Biology and Biochemistry, 2012, 50 : 58–65. DOI: 10.1016/j.soilbio.2012.03.011
[30] Wu M N, Qin H L, Chen Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4) : 397–405. DOI: 10.1007/s00374-010-0535-z
[31] Wagai R, Kitayama K, Satomura T, et al. Interactive influences of climate and parent material on soil microbial community structure in Bornean tropical forest ecosystems[J]. Ecological Research, 2011, 26(3) : 627–636. DOI: 10.1007/s11284-011-0822-7
[32] 贾申, 喻理飞. 喀斯特石漠化区石灰岩与白云岩土壤理化性质分析--以贵州兴义市为例[J]. 贵州科学, 2010, 28(3) : 29–33. Jia S, Yu L F. Soil properties and correlation analysis on karst rocky desertification areas of limestone and dolomite--a case study in Xingyi city of Guizhou[J]. Guizhou Science, 2010, 28(3) : 29–33.
[33] 朱守谦, 何纪星, 魏鲁明, 等. 茂兰喀斯特森林小生境特征研究[M]. 贵阳: 贵州科技出版社, 2003.
[34] Sheng R, Qin H L, O'Donnell A G, et al. Bacterial succession in paddy soils derived from different parent materials[J]. Journal of Soils and Sediments, 2015, 15(4) : 982–992. DOI: 10.1007/s11368-014-1058-2
[35] Ulrich A, Becker R. Soil parent material is a key determinant of the bacterial community structure in arable soils[J]. FEMS Microbiology Ecology, 2006, 56(3) : 430–443. DOI: 10.1111/fem.2006.56.issue-3
[36] Liang Y M, He X Y, Chen C Y, et al. Influence of plant communities and soil properties during natural vegetation restoration on arbuscular mycorrhizal fungal communities in a karst region[J]. Ecological Engineering, 2015, 82 : 57–65. DOI: 10.1016/j.ecoleng.2015.04.089
[37] Li X L, Gai J P, Cai X B, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient[J]. Mycorrhiza, 2014, 24(2) : 95–107. DOI: 10.1007/s00572-013-0518-7
[38] Öpik M, Vanatoa A, Vanatoa E, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota)[J]. New Phytologist, 2010, 188(1) : 223–241. DOI: 10.1111/j.1469-8137.2010.03334.x
[39] Dilworth M J, James E K, Sprent J I, et al. Nitrogen-fixing leguminous symbioses[M]. Netherlands: Springer, 2008.
[40] Lugo M A, Reinhart K O, Menoyo E, et al. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment[J]. Mycorrhiza, 2014, 25(2) : 85–95.
[41] Ehrenfeld J G, Ravit B, Elgersma K J. Feedback in the plant-soil system[J]. Annual Review of Environment and Resources, 2005, 30(1) : 75–115. DOI: 10.1146/annurev.energy.30.050504.144212
[42] Landis F C, Gargas A, Givnish T J. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas[J]. New Phytologist, 2004, 164(3) : 493–504. DOI: 10.1111/j.1469-8137.2004.01202.x
[43] Waldrop M P, Zak D R, Blackwood C B, et al. Resource availability controls fungal diversity across a plant diversity gradient[J]. Ecology Letters, 2006, 9(10) : 1127–1135. DOI: 10.1111/j.1461-0248.2006.00965.x
[44] Mirza B S, Potisap C, Nüsslein K, et al. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest[J]. Applied and Environmental Microbiology, 2014, 80(1) : 281–288. DOI: 10.1128/AEM.02362-13
[45] Patra A K, Abbadie L, Clays-Josserand A, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils[J]. Environmental Microbiology, 2006, 8(6) : 1005–1016. DOI: 10.1111/emi.2006.8.issue-6
[46] 张金屯. 数量生态学[M]. 北京: 科学出版社, 2004.
[47] 叶卫英, 尹林克, 钱翌, 等. 乌鲁木齐市周边荒山植物群落类型及其物种多样性[J]. 新疆农业大学学报, 2005, 28(1) : 44–48. Ye W Y, Yin L K, Qian Y, et al. Study on plant community types and species diversity of main barren hill in Urumqi[J]. Journal of Xinjiang Agricultural University, 2005, 28(1) : 44–48.
[48] 李为, 刘彦, 吴耿, 等. 桂林毛村不同地质背景主要元素迁移特征及与植物蒸腾作用的相关性[J]. 土壤, 2007, 39(5) : 746–752. Li W, Liu Y, Wu G, et al. Characteristics of main elements migration in soils under different geological backgrounds and their correlation to plant transpiration in Maocun, Guilin[J]. Soils, 2007, 39(5) : 746–752.
[49] 蒋忠诚. 广西弄拉白云岩环境元素的岩溶地球化学迁移[J]. 中国岩溶, 1997, 16(4) : 304–312. Jiang Z C. Element migration in karst geochemical processes of the dolomite in Nongla, Guangxi[J]. Carsologica Sinica, 1997, 16(4) : 304–312.
[50] 姚长宏, 蒋忠诚, 袁道先. 西南岩溶地区植被喀斯特效应[J]. 地球学报, 2001, 22(2) : 159–164. Yao C H, Jiang Z C, Yuan D X. Vegetation karst effects on the karst area of Southwest China[J]. Acta Geoscientia Sinica, 2001, 22(2) : 159–164.
[51] 侯满福, 蒋忠诚. 茂兰喀斯特原生林不同地球化学环境的植物物种多样性[J]. 生态环境, 2006, 15(3) : 572–576. Hou M F, Jiang Z C. Species diversity of karst original forest in different geochemical environments in Maolan[J]. Ecology and Environment, 2006, 15(3) : 572–576.
[52] 沈冰洁, 祝贞科, 袁红朝, 等. 不同种植方式对亚热带红壤微生物多样性的影响[J]. 环境科学, 2015, 36(10) : 3839–3844. Shen B J, Zhu Z K, Yuan H Z, et al. Effects of different plantation type on the abundance and diversity of soil microbes in subtropical red soils[J]. Environmental Science, 2015, 36(10) : 3839–3844.
[53] Aldrich-Wolfe L. Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community[J]. Ecology, 2007, 88(3) : 559–566. DOI: 10.1890/05-1177
[54] Lekberg Y, Koide R T, Rohr J R, et al. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities[J]. Journal of Ecology, 2007, 95(1) : 95–105. DOI: 10.1111/jec.2007.95.issue-1
[55] 陈重军, 张海芹, 汪瑶琪, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学, 2016, 37(7) : 2652–2658. Chen C J, Zhang H Q, Wang Y Q, et al. Characteristics of microbial community in each compartment of ABR ANAMMOX reactor based on high-throughput sequencing[J]. Environmental Science, 2016, 37(7) : 2652–2658.
[56] 端正花, 潘留明, 陈晓欧, 等. 低温下活性污泥膨胀的微生物群落结构研究[J]. 环境科学, 2016, 37(3) : 1070–1074. Duan Z H, Pan L M, Chen X O, et al. Changes of microbial community structure in activated sludge bulking at low temperature[J]. Environmental Science, 2016, 37(3) : 1070–1074.