2. 闽南师范大学化学与环境学院, 福建省现代分离分析科学与技术重点实验室, 漳州 363000;
3. 中国科学院城市环境研究所城市环境与健康重点实验室, 厦门 361021
2. Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China;
3. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
砷(As)作为一种有毒、非必需的类金属元素,是具有潜在危害的重要污染物,由于其难降解性、较强的生物毒性、生物累积性和生物放大作用被列为优先控制污染物[1, 2].在天然淡水中,As的浓度范围大致在0.5~5 000 μg·L-1;相关污染源附近,As含量甚至高达20 mg·L-1[3].As在淡水环境中主要以As (Ⅴ)形态存在[4, 5].
纳米二氧化钛(nano-TiO2)是应用最为广泛的工程纳米材料之一.Nano-TiO2比表面积大、反应活性高,也更易在环境中传递有毒有害污染物[6, 7],所以单纯的nano-TiO2毒性评估并不能说明它的环境健康风险.先前研究已表明nano-TiO2作为共存污染物的运输载体,可显著提高鱼、大型蚤等水生生物中重金属的累积.如文献[6, 8]首次报道了nano-TiO2与镉(Cd)和砷[As (Ⅴ)]对鲤鱼(Cyprinuscarpio)的生态毒性,发现nano-TiO2对As (Ⅴ)和Cd均具有较强的吸附能力,且能显著地增加鲤鱼体内As (Ⅴ)和Cd浓度.Li等[9]的研究表明nano-TiO2可作为载体增加大型蚤对As (Ⅴ)的累积.Yang等[10]研究发现nano-TiO2提高了莱茵衣藻(Chlamydomonas reinhardtii)对Cd的生物有效性.先前研究主要关注短期暴露下nano-TiO2对共存污染物生物有效性的影响,缺乏开展长期暴露的响应研究.
铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliquus)作为普遍存在的典型淡水藻种,对As (Ⅴ)具有较高耐受性和较强的生物富集与转化能力[11~13].因此,本文以铜绿微囊藻和斜生栅藻为研究对象,探讨长期暴露下nano-TiO2对斜生栅藻和铜绿微囊藻As (Ⅴ)的累积和转化的影响,促进对nano-TiO2如何影响淡水藻体砷的生物地球化学循环以及潜在生态风险的了解,提高对工程纳米颗粒生态风险的认识.
1 材料与方法 1.1 Nano-TiO2与As (Ⅴ)的配制采用nano-TiO2(粒径 < 25 nm,纯度>99.7%,锐钛矿型,Sigma)配制储备液.将nano-TiO2加入到超纯水(18.2 MΩ·cm)中,配制出1 g·L-1的悬浮液,超声30 min后放置在避光处备用.每次实验前,超声10~15 min.采用动态散射法(DLS)测定nano-TiO2储备液的平均粒径为(70.5±11.2) nm.由此储备液稀释成最终浓度为100 μg·L-1和2 mg·L-1的nano-TiO2试验组.采用Na3AsO4·12H2O (Fluka)配制As (Ⅴ)储备液(1 mmol·L-1),再稀释为最终试验浓度(20 μmol·L-1).
1.2 藻种来源与培养斜生栅藻和铜绿微囊藻均来自中国科学院水生生物研究所国家淡水藻种库,且已经在实验室经过长期保种培养.大约每两周接种一次.培养条件如下:控温25℃,光暗比16 h:8 h,光照强度115 μmol·(m2·s)-1,且每天定时摇动3次.培养基为BG11溶液,储存在4℃冰箱保存,备用.所有的实验操作均需在超净工作台中进行,且需定期镜检.
1.3 长期暴露试验取一定量处于对数生长期的新鲜斜生栅藻、铜绿微囊藻藻液分别接种到含0 μg·L-1、100 μg·L-1、2 mg·L-1 nano-TiO2和20 μmol·L-1 As (Ⅴ)的BG11培养液中, 使其初始细胞密度为106 cells·mL-1左右.在恒温恒湿摇床中进行为期30 d的吸收培养,来评价两种试验藻种在长期暴露下对As (Ⅴ)的累积、转化和释放.以不添加nano-TiO2、只含20 μmol·L-1 As (Ⅴ)的藻液作为对照(control).在接种30 d后采集水样、藻样,测定培养基和藻体中As的总量和形态.
每次取10 mL藻液,离心(3 020 g·min-1)后取上清液过膜(0.45 μm一次性醋酸纤维素注射器式过滤器),以测定培养基中的总砷(TAs)和As形态含量.TAs样品用10 mol·L-1的优级纯硝酸储备液进行酸化处理,确保样品的含酸量低于5%,保存在4℃冰箱.As形态水样储存在-20℃冰箱,确保在10 d内进行测定.取10 mL的藻细胞悬浮液3 020 g·min-1离心分离,藻体用无菌超纯水清洗两遍,然后用PBS冰磷酸盐缓冲液浸泡15 min,清除藻体胞外残留的砷.试验测定藻体中的TAs以及三价砷[As (Ⅲ)]、As (Ⅴ)、一甲基砷(monomethylarsonous acid,MMA)、二甲基砷(dimethylarsinous acid,DMA)这4种As形态.
总砷(TAs)含量的测定采用电感耦合等离子体质谱仪(ICP-MS).ICP-MS测定时在氦气模式下进行排除可能存在的40 Ar、35 Cl干扰.以115 In和103 Rh为内标来判断仪器稳定性能.对于质量控制,选取较低浓度的As标样作为回测,每隔10个样品回测一次,并使回收率在90%~110%范围内.分析测试过程中仪器偏差低于1.3%.通过能代表浮游植物组织的标准物质紫菜(GBW08521,国家标准物质研究中心)中TAs含量的测定作为消解过程和测定分析的质量控制.砷形态采用高效液相色谱-等离子体质谱联用(HPLC-ICP-MS)的方法,具体方法参照Zhu等[14]的方法进行分析测定.色谱柱选用Hamilton PRP-X100(250×4.1 mm,10 μm)阴离子交换柱,并配有相同填料的保护柱(11.2 mm,12~20 μm).实验温度为25℃,每天摇3次,每组3个平行.
1.4 数据分析数据以均值和标准偏差表示.均值比较采用Duncan's post hoc检验方法,其F值显著统计水平为P < 0.05.数据统计分析采用SPSS 11.5进行.
2 结果与讨论 2.1 藻体砷的累积与培养基中砷的含量铜绿微囊藻和斜生栅藻是一种良好的As生物吸附剂,对As (Ⅴ)具有较高耐受性和较强的生物富集能力[15].在30 d的暴露过程中,铜绿微囊藻和斜生栅藻经历指数生长后藻体生长呈现平衡状态,并无显示毒性效应;试验后期它们二者的细胞密度分别达到3.1×107 cells·mL-1、1.9×107 cells·mL-1.在长期暴露中,nano-TiO2可以促进铜绿微囊藻吸收累积培养基中的As,使得培养基中As含量降低(表 1).同时随着nano-TiO2含量的增加,铜绿微囊藻中累积的As含量也在增加(表 1).铜绿微囊藻在含As (Ⅴ)的培养液中培养15 d,藻体累积的As含量约为70 μg·g-1 [16],明显低于本研究30 d累积量355.954 μg·g-1,这表明铜绿微囊藻As富集能力超强,随着累积时间的增长,藻体内可累积更多的As.
![]() |
表 1 长期暴露下nano-TiO2对铜绿微囊藻砷累积与培养基中砷含量的影响1) Table 1 Accumulation of arsenic in Microcystis aeruginosa and changes of arsenic content in culture media influenced by long-term exposure to titanium dioxide nanoparticles |
对于斜生栅藻,nano-TiO2处理相对无纳米对照而言,藻体中累积的As含量增加,培养基As含量亦同样减少(表 2),表明nano-TiO2促进了斜生栅藻对As的吸收累积.其中,nano-TiO2含量的增加并未增强斜生栅藻中As的累积,但培养基中As的含量却随nano-TiO2浓度的增加而减少.2 mg·L-1 nano-TiO2处理下斜生栅藻As累积量低于100 μg·L-1的nano-TiO2处理(表 2).究其原因可能是由于nano-TiO2本身对As有很强的吸附能力,而斜生栅藻又极易沉降,使得浓度较高的nano-TiO2更易团聚,一些团聚后的nano-TiO2因沉降而使得培养基中的As含量降低,从而导致2 mg·L-1较高浓度的nano-TiO2处理下的斜生栅藻累积As含量低于100 μg·L-1的低浓度组[17].
![]() |
表 2 斜生栅藻砷的累积与培养基中砷的含量 Table 2 Accumulation of arsenic in Scenedesmus obliquus and changes of arsenic content in culture media influenced by long-term exposure to titanium dioxide nanoparticles |
由此可见,nano-TiO2可携带As (Ⅴ)进入藻体细胞[18],增加藻体对As的吸收累积,降低了培养基中As的含量.亦有nano-TiO2可以促进重金属在其它水生生物中累积的报道.2 mg·L-1 nano-TiO2提高了大型蚤铜(Cu)约18%~31%的累积[19].当nano-TiO2从0.5 mg·L-1增加到2 mg·L-1时,大型蚤Cd的干重浓度系数(DCF)可从11.0增加到16.9,而锌(Zn)从37.2增加到51.3.不同藻类之间对无机As的吸收能力有很大差异[20, 21].长期暴露下斜生栅藻比铜绿微囊藻累积的As要高约2~3倍,说明斜生栅藻对As (Ⅴ)的吸收富集能力更强,从而增加藻体As的累积量.同时,nano-TiO2比表面积大、表面能高[22, 23],从而导致nano-TiO2本身的反应活性远远大于其他物质,同时也更容易吸附结合其他物质且能作为载体携带其向生物圈转移[24, 25].重金属包括As是自然环境中普遍存在的重要危害性污染物,当重金属被nano-TiO2吸附后,势必影响到它在水环境中的生物利用性.因此,纳米颗粒对水环境中其他污染物的共同作用及其机制的相关研究不容忽视.
2.2 藻体中砷形态的变化藻体对As (Ⅴ)具有一定的生物转化能力.铜绿微囊藻暴露30 d后,藻体中累积的As主要以As (Ⅴ)的形式存在,可达80%左右;藻体中仍有7%的As (Ⅲ)[图 1(a)].2 mg·L-1 nanoTiO2组藻体中As (Ⅲ)含量明显增加,可能是nanoTiO2增加了铜绿微囊藻As (Ⅴ)在其体内的As (Ⅲ)还原累积所致.从有机砷含量来看,长期暴露后铜绿微囊藻中有机砷以DMA为主,且无nanoTiO2 < 100 μg·L-1 nanoTiO2 < 2 mg·L-1 nanoTiO2,说明nanoTiO2可以促进铜绿微囊藻将无机砷转化为有机砷.
![]() |
图 1 长期暴露下藻体砷形态的变化 Fig. 1 Changes of arsenic speciation in algaes under long-term exposure |
斜生栅藻暴露30 d后,藻体中累积的As仍以70%左右的As (Ⅴ)[图 1(b)],低于铜绿微囊藻中的As (Ⅴ)比例,说明斜生栅藻生物转化As (Ⅴ)的能力更强.斜生栅藻中As (Ⅲ)的含量达15%左右,有机砷以MMA为主[图 1(b)].斜生栅藻中As (Ⅲ)以100 μg·L-1组最高,其次为2 mg·L-1组,最后为无nanoTiO2,这可能与较高浓度的nano-TiO2在和斜生栅藻交互时更易凝聚,吸收累积的As较低而导致还原成As (Ⅲ)较低有关[26].另外,不同处理间斜生栅藻中有机砷差异不大,说明在长期暴露30 d,nano-TiO2并不能促进斜生栅藻将As (Ⅴ)转化为DMA和MMA.
不同藻类生物转化As (Ⅴ)成有机砷存在显著差别.本研究中,铜绿微囊藻中有机砷以DMA为主,而斜生栅藻中有机砷以MMA为主.Sun等[8]研究了铜绿微囊藻对As的累积、转化和释放的规律,As (Ⅴ)培养基中暴露15 d后,藻体中也只检测有DMA,与本研究结果一致.
2.3 长期暴露对培养基中砷形态的变化铜绿微囊藻暴露30d后,培养基中的As形态依然以As (Ⅴ)为主,可接近90%,而As (Ⅲ)含量几乎为零.有机砷的含量大小顺序为无nanoTiO2>100 μg·L-1 nanoTiO2>2 mg·L-1 nanoTiO2,分别为111.86、109.85、103.73 μg·L-1,并以DMA为主[图 2(a)].斜生栅藻的培养基中有90%的As (Ⅴ),As (Ⅲ)极少,而有机砷含量大小顺序为无nanoTiO2>2 mg·L-1 nanoTiO2>100 μg·L-1 nanoTiO2,分别为79.07、62.4、67.63 μg·L-1,并以DMA为主.无nano-TiO2组培养基中的有机砷含量较有nano-TiO2组多,说明nano-TiO2并不能促进两种研究藻体内甲基化的As释放到环境中,以加快As的代谢.As (Ⅴ)在藻体中的生物转化包含吸收累积、还原、排泄等复杂过程.本研究初步报道了长期暴露下nano-TiO2对典型藻体As累积与生物转化的影响,具体影响机制有待于深入研究.
![]() |
图 2 长期暴露下培养基中砷形态变化 Fig. 2 Changes of arsenic speciation in culture media under long-term exposure |
(1) Nano-TiO2可增加藻体对砷的吸收累积,降低了培养基中As的含量;不同的藻类对无机砷的吸收累积能力有很大差异;长期暴露下斜生栅藻比铜绿微囊藻累积的As要高出许多.
(2) Nano-TiO2可增加藻体对As (Ⅴ)的生化转化;不同藻类生物转化As (Ⅴ)成有机砷存在显著差别;铜绿微囊藻中有机砷以DMA为主,而斜生栅藻中有机砷以MMA为主.
(3)长期暴露中的nano-TiO2并不能促进铜绿微囊藻和斜生栅藻体内甲基砷释放到环境中,以加快As的代谢.
[1] | 许效天, 霍林, 左叶颖, 等. 铝改性粉煤灰漂珠吸附水溶液中砷的性能研究[J]. 中国环境科学, 2011, 31(18) : 1300–1305. Xu X T, Huo L, Zuo Y Y, et al. Performance research on arsenic adsorption from aqueous solution by aluminum-modified fly ash cenospheres[J]. China Environmental Science, 2011, 31(18) : 1300–1305. |
[2] | 张玉玺, 向小平, 张英, 等. 云南阳宗海砷的分布与来源[J]. 环境科学, 2012, 33(11) : 3768–3778. Zang Y X, Xiang X P, Zhang Y, et al. Distribution and sources of arsenic in Yangzonghai Lake, China[J]. Environmental Science, 2012, 33(11) : 3768–3778. |
[3] | Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5) : 517–568. DOI: 10.1016/S0883-2927(02)00018-5 |
[4] | 张楠, 韦朝阳, 杨林生. 淡水湖泊生态系统中砷的赋存与转化行为研究进展[J]. 生态学报, 2013, 33(2) : 337–347. Zhang N, Wei C Y, Yang L S. Advance in research on the occurrence and transformation of arsenic in the freshwater lake ecosystem[J]. Acta Ecologica Sinica, 2013, 33(2) : 337–347. DOI: 10.5846/stxb |
[5] | Rahman M A, Hassler C. Is arsenic biotransformation a detoxification mechanism for microorganisms?[J]. Aquatic Toxicology, 2014, 146 : 212–219. DOI: 10.1016/j.aquatox.2013.11.009 |
[6] | Zhang X Z, Sun H W, Zhang Z Y, et al. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles[J]. Chemosphere, 2007, 67(1) : 160–166. DOI: 10.1016/j.chemosphere.2006.09.003 |
[7] | Yang J K, Davis A P. Competitive photocatalytic oxidation of Cu (Ⅱ)-EDTA and Cd (Ⅱ)-EDTA with illuminated TiO2[J]. Environmental Science & Technology, 2001, 35(17) : 3566–3570. |
[8] | Sun H W, Zhang X Z, Niu Q, et al. Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles[J]. Water, Air, and Soil Pollution, 2007, 178(1-4) : 245–254. DOI: 10.1007/s11270-006-9194-y |
[9] | Li M T, Luo Z X, Yan Y M, et al. Arsenate accumulation, distribution, and toxicity associated with titanium dioxide nanoparticles in Daphnia magna[J]. Environmental Science & Technology, 2016, 50(17) : 9636–9643. |
[10] | Yang W W, Miao A J, Yang L Y. Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles[J]. PLoS One, 2012, 7(3) : e32300. DOI: 10.1371/journal.pone.0032300 |
[11] | Wang Z H, Luo Z X, Yan C Z, et al. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes[J]. Journal of Hazardous Materials, 2014, 276 : 393–399. DOI: 10.1016/j.jhazmat.2014.05.049 |
[12] | Yin X X, Chen J, Qin J, et al. Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria[J]. Plant Physiology, 2011, 156(3) : 1631–1638. DOI: 10.1104/pp.111.178947 |
[13] | 王振红, 张汉鹏, 罗专溪. 不同磷源下铜绿微囊藻的生长差异及对砷酸盐的响应[J]. 环境科学, 2016, 37(7) : 2570–2576. Wang Z H, Zhang H P, Luo Z X. Response of Microcystis aeruginosa growth to arsenate under different phosphorus regimes[J]. Environmental Science, 2016, 37(7) : 2570–2576. |
[14] | Zhu Y G, Sun G X, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science & Technology, 2008, 42(13) : 5008–5013. |
[15] | Wang Y, Wang S, Xu P P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae[J]. Reviews in Environmental Science and Bio-Technology, 2015, 14(3) : 427–451. DOI: 10.1007/s11157-015-9371-9 |
[16] | Wang Z H, Luo Z X, Yan C Z. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa[J]. Environmental Science and Pollution Research, 2013, 20(10) : 7286–7295. DOI: 10.1007/s11356-013-1741-7 |
[17] | Ge S J, Agbakpe M, Zhang W, et al. Heteroaggregation between PEI-coated magnetic nanoparticles and algae:effect of particle size on algal harvesting efficiency[J]. ACS Applied Materials & Interfaces, 2015, 7(11) : 6102–6108. |
[18] | Lin D H, Ji J, Long Z F, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.[J]. Water Research, 2012, 46(14) : 4477–4487. DOI: 10.1016/j.watres.2012.05.035 |
[19] | Fan W H, Cui M M, Liu H, et al. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna[J]. Environmental Pollution, 2011, 159(3) : 729–734. DOI: 10.1016/j.envpol.2010.11.030 |
[20] | Caumette G, Koch I, Estrada E, et al. Arsenic speciation in plankton organisms from contaminated lakes:transformations at the base of the freshwater food chain[J]. Environmental Science & Technology, 2011, 45(23) : 9917–9923. |
[21] | Markley C T, Herbert B E. Modeling phosphate influence on arsenate reduction kinetics by a freshwater cyanobacterium[J]. Environmental Modeling & Assessment, 2010, 15(5) : 361–368. |
[22] | Robichaud C O, Uyar A E, Darby M R, et al. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment[J]. Environmental Science & Technology, 2009, 43(12) : 4227–4233. |
[23] | Luo Z X, Qiu Z Z, Chen Z, et al. Impact of TiO2 and ZnO nanoparticles at predicted environmentally relevant concentrations on ammonia-oxidizing bacteria cultures under ammonia oxidation[J]. Environmental Science and Pollution Research, 2015, 22(4) : 2891–2899. DOI: 10.1007/s11356-014-3545-9 |
[24] | Luo Z X, Wang Z H, Wei Q S, et al. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment:its environmental implications[J]. Journal of Hazardous Materials, 2011, 192(3) : 1364–1369. DOI: 10.1016/j.jhazmat.2011.06.050 |
[25] | Gwinn M R, Vallyathan V. Nanoparticles:health effects-pros and cons[J]. Environmental Health Perspectives, 2006, 114(12) : 1818–1825. |
[26] | Zamani H, Moradshahi A, Jahromi H D, et al. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina[J]. Aquatic Toxicology, 2014, 154 : 176–183. DOI: 10.1016/j.aquatox.2014.05.012 |