环境科学  2017, Vol. 38 Issue (2): 510-516   PDF    
养鸡场空气中抗性基因和条件致病菌污染特征
高敏1 , 仇天雷1 , 秦玉成2 , 王旭明1,3     
1. 北京市农林科学院生物技术研究中心, 农业基因资源与生物技术北京市重点实验室, 北京 100097;
2. 北京市平谷区动物卫生监督所, 北京 101200;
3. 农业部都市农业(北方)重点实验室, 北京 100097
摘要: 集约化养殖场被认为是空气环境中抗性基因和致病菌的重要来源.本研究采集了养鸡场粪便和舍内外空气样本,对其抗生素抗性基因和条件致病菌的种类进行分析,包括五类抗生素(β-内酰胺类的23个基因、四环素23个基因、喹诺酮5个基因、磺胺类5个基因和红霉素2个基因)抗性基因、5种条件致病菌(肠球菌属、大肠杆菌属、葡萄球菌属、弯曲杆菌属和产气荚膜梭状芽胞杆菌属各1个基因)以及一类整合子(intI1)特异基因;并利用荧光定量PCR对检出率较高的典型基因浓度进行检测.结果显示,空气中5类抗生素抗性基因分别检出8、7、2、3和2个,同时检测到两种致病菌.目标基因在舍内空气中的检出率小于等于粪便样本.蛋鸡和肉鸡舍内空气中总细菌基因(16S rDNA)浓度为106copies·m-3,其他典型基因浓度约104copies·m-3,且在舍外的浓度要远低于舍内.抗生素抗性基因和条件致病菌基因在空气中所占比例高于粪便,舍内高于舍外.初步研究结果表明,粪便可能是舍内抗生素抗性基因、条件致病基因以及一类整合子的重要来源.本研究结果将为集约化养殖场抗生素抗性基因和致病菌的来源分析,以及养殖场对周边空气环境污染的风险评估提供基础数据.
关键词: 蛋鸡场      肉鸡场      生物气溶胶      抗生素抗性基因      条件致病菌     
Sources and Pollution Characteristics of Antibiotic Resistance Genes and Conditional Pathogenic Bacteria in Concentrated Poultry Feeding Operations
GAO Min1 , QIU Tian-lei1 , QIN Yu-cheng2 , WANG Xu-ming1,3     
1. Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
2. Pinggu Animal Health Inspection of Beijing, Beijing 101200, China;
3. Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
Abstract: Concentrated animal feeding operations (CAFOs) is considered a source of airborne human pathogens and antibiotic resistance genes. This study collected fecal samples and corresponding air samples from inside and outside atmospheric environments of layer and broiler feeding operations. We detected the types of 61 genes including five classes of antibiotics antibiotic resistance genes (23 genes of ampicillin, 23 genes of tetracycline, 5 genes of quinolones, 5 genes of sulfonamides and 2 genes of erythromycin), five conditional pathogenic bacteria (Enterococcus, Escherichia coli, Staphylococcus, Campylobacter and Clostridium perfringens) and class1 integron. Quantitative real time PCR was used to analyze concentrations of typical genes with relatively high detection rates. The results indicated that the detection rates of antibiotic resistance genes were 8, 7, 2, 3 and 2. At the same time, two kinds of pathogenic bacteria were detected. The detection rates of the target genes in the air were lower than those of the fecal sample. The total bacterial gene (16S rDNA) concentration in the air of layer and broiler was 106 copies·m-3, and that of the other typical genes was about 104copies·m-3. And the outdoor concentration was much lower than the indoor concentration. The proportions of antibiotic resistance genes and conditional pathogenic bacteria in the air were higher than those in the fecal samples and the outdoor proportions were lower than the indoor proportions. Preliminary results of this study indicated that feces was an important source of antibiotic resistance genes, conditional pathogenic bacteria and class1 integron. Aerosolization degrees of genes in feces were different. This study will provide the basic data for both source tracking of antibiotic resistance genes and pathogens from CAFOs and risk assessment of pollution of CAFOs in the surrounding air environment.
Key words: layer feeding operation      broiler feeding operation      bioaerosol      antibiotic resistance genes      opportunistic pathogens     

作为一个拥有14亿人口的国家,我国对肉蛋的需求量持续递增.截止到2010年,禽蛋产量达2 762.7万t,连续26年居世界第一[1].集约化养殖方式因其效率高、成本低等优点被广泛应用于养殖行业.然而,近年来集约化养殖场引发的环境污染问题受到越来越多的关注.

集约化养殖场被认为是空气环境污染物的重要来源[2, 3].在集约化养殖过程中,动物聚集在狭小空间内,每天产生大量粪便.其中大量微生物,包括条件致病菌,在动物活动和粪便处置过程中很容易被气溶胶化,逸散到空气中生成生物气溶胶[4].工人长期处于生物气溶胶污染环境中会引发诸多健康问题[5].据报道,养鸡场工人眼部、呼吸系统和皮肤疾病的发生率要远大于其他农业工人[6].除此之外,舍内空气中的生物气溶胶能够经由通风系统传播至舍外,对周边空气环境造成污染,对居民健康造成潜在危害[2].

为了明确养殖场生物气溶胶对人类和环境可能造成的危害,国内外研究人员对养鸡场空气中微生物的群落结构展开相关研究[6~8].近些年,随着抗生素在养殖业中的大量不规范使用,导致抗性基因在养殖环境中出现[9].国外研究人员分别在养鸡场内[2, 10, 11]和养牛场周边的空气中检测到抗性基因[12].目前,国内相关研究多集中于对养鸡场抗生素耐药菌[13~15]和条件致病菌[15~17],对空气中抗性基因和条件致病菌特异性基因的研究未见报道.

针对以上情况,本研究分别对集约化蛋鸡和肉鸡场空气和粪便中的抗生素抗性基因及条件致病菌的种类进行检测,对典型抗性基因和条件致病菌的浓度及比率进行分析,以期为养鸡场生物气溶胶中抗性基因和条件致病菌的来源,及其对人体健康和环境污染的危害评估提供基础数据.

1 材料与方法 1.1 采样方法

我国集约化养鸡场主要分为两种类型:笼养和网上养殖,分别用于饲养蛋鸡和肉鸡.本研究于2015年8~10月间,对北京地区两种类型的养鸡场取样.其中,蛋鸡和肉鸡养殖场各4家,每家取样一次.样本包括鸡舍内、舍外(舍外5 m处)的空气样本和相应舍内粪便,共计24个样本.蛋鸡舍内外空气样本,肉鸡舍内外空气样本,蛋鸡粪便样本和肉鸡粪便样本分别用EI、EO、MI、MO、EF和MF表示.两种养殖类型的粪便清理方式相同,清粪周期为2~3 d.肉鸡和蛋鸡的存栏时间分别40~50 d和400~500 d.在采样期间,所调查的8个养殖场均没有疫病暴发.鸡舍内温度在22~28℃之间(平均温度24.8℃),相对湿度在32%~63%之间(平均湿度44%).由于两种类型养殖场在采样期间均开启了通风换气系统,其鸡舍内温度和湿度没有统计学差异.每个鸡舍中蛋鸡和肉鸡的数量分别在4 500和7 000只左右,密度分别为9只·m-2和12只·m-2.鸡龄分别为25~34 d和198~400 d.

生物气溶胶的采集使用中流量TSP采样器(崂应,中国).采样高度1.5 m,采集时间分别为48 h,气体流量100L·min-1,每个采样点3个仪器同时采集,作为平行样本.空气温度和相对湿度用温湿度计(WD-35612,OAKTON,Germany)检测.鸡舍内的粪便采集采用五点法,之后将5个粪便样品混合均匀作为一个样本.粪便样品的含水率采用称重法测定.采集后的空气和粪便样本放置于-80℃冰箱中保存,用于后续DNA提取.

1.2 DNA提取

本研究样本的DNA提取采用PowerMax土壤提取试剂盒(Mobio Laboratory, 美国),按照试剂盒说明书提供方法提取样品的总DNA.其中空气样本的提取方法根据以往研究进行了改进[18].基于同种养殖类型养殖场的粪便和空气中生物群落结构相似[2]的研究结果,本研究将4种蛋鸡和肉鸡的样本分别混合后进行DNA提取.用1%的琼脂糖凝胶进行电泳验证.所得DNA置于-20℃冰箱保存.

1.3 PCR和荧光定量PCR

首先,利用普通PCR对粪便和空气中的抗性基因、条件致病菌基因和intI1进行检测.基因引物序列和PCR条件详见表 1.在此基础上,利用荧光定量PCR (ABI7500,美国)测定养鸡场空气和粪便中的总基因拷贝数(16S rDNA)、3类抗生素:四环素(tetWtetLtetX)、红霉素(ermB)和磺胺类(sul1)、一类整合子(intI1)和两种条件致病菌(StaphylococcusE. coli)的基因浓度.并采用标准质粒外标法对样品的丰度进行绝对定量[19].所制备的标准质粒浓度为1.75×1010~1.83×1011 copies·L-1.选取5个点,通过预实验选取标准品的10-3~10-7稀释液用于制备标准曲线. PCR反应体系为25 μL,12.5 μL的SybrGreen qPCR Master Mix (Applied Biosystems, USA),2 μL的DNA模板,0.5 μL的10 μmol·L-1上下游引物和9.5 μL灭菌超纯水.扩增效率在97.27%~117.17%之间,R2值在0.992 5~0.999 3之间.每个样品做3次重复,每次设置阴性对照实验.

表 1 本研究所检测的基因种类及参考文献 Table 1 Gene types detected in this research and related references

1.4 数据统计分析

采用SPSS 21.0软件中的Spearman相关系数分析,对蛋鸡和肉鸡粪便与舍内空气样本及舍内外空气样本中目标基因的相关性进行分析.当P值小于0.05时,表明在95%的置信区间内具有统计学意义上的显著差异;当P值小于0.01时,表明在99%的置信区间内具有统计学意义上的显著差异.

2 结果与讨论 2.1 蛋鸡养殖场粪便和空气中抗生素抗性基因及条件致病菌种类

首先,本研究对蛋鸡粪便以及相应鸡舍内空气样本中61种基因的种类进行检测,包括五类抗生素(β-内酰胺类、喹诺酮、四环素、磺胺类及红霉素)抗性基因、5种条件致病菌(肠球菌属、大肠杆菌属、葡萄球菌属、弯曲杆菌属和产气荚膜梭状芽胞杆菌属)以及一类整合子(intI1)特异基因.对比分析以上基因在蛋鸡粪和蛋鸡舍内空气样本的种类差异,结果如表 2所示.

表 2 蛋鸡粪便和空气中抗生素抗性基因、条件致病菌及一类整合子种类检出率1) Table 2 Detection rates of antibiotic resistance genes, pathogenic bacteria and class1 integron in the fecal and air samples from layer feeding operation

根据表 2可知,在所调查的61种基因中,5类抗生素抗性基因:β-内酰胺类、四环素、喹喏酮、磺胺类和红霉素在蛋鸡粪便中的检出率分别为9/23、15/20、4/5、4/5和2/2(检出基因数目/检测基因数目).在所检测的5种条件致病菌属中,蛋鸡粪便中检测出3种,分别为肠球菌、葡萄球菌和大肠杆菌属.磺胺类抗生素作为一种广谱抗生素在养殖业中的广泛使用[33],可能导致多种磺胺类抗性基因在蛋鸡粪便中被检出.

整体上,目标基因在蛋鸡舍内空气中的检出率小于等于粪便中相应基因的检出率. β-内酰胺类、四环素、喹喏酮、磺胺类和红霉素抗性基因的检出率分别为8/23、7/20、2/5、3/5和2/2.空气中检测到的两种致病菌气溶胶分别是肠球菌和葡萄球菌.其中,所有在蛋鸡舍内空气中检测到的基因均在蛋鸡粪便中检出. Hong等[2]在对猪舍空气和粪便中微生物的群落结构进行对比分析后发现,猪舍空气中微生物可能来自于猪粪便.目前,对于鸡舍空气中抗生素抗性基因来源的研究鲜见报道.基于抗性基因和致病菌基因的分布规律,本研究结果初步证明蛋鸡舍内空气中的抗生素耐药基因可能来自于粪便.整合子(class1 integron)被认为是抗性基因发生水平转移的一个指示基因.集约化养鸡场鸡粪和空气中多种抗性基因、致病菌和一类整合子的检出,表明养殖环境中存在抗性基因向致病菌水平转移的可能性.

2.2 蛋鸡和肉鸡养殖场粪便和空气中抗生素抗性基因和条件致病菌浓度

利用荧光定量PCR技术,本文对集约化养鸡场粪便及舍内外空气中的几种检出率较高的基因进行定量分析,包括总细菌基因拷贝数(16S rDNA),三类抗生素抗性基因:四环素(tetWtetLtetX)、红霉素(ermB)和磺胺类(sul1),一类整合子(intI1)以及两种条件致病菌(StaphylococcusE. coli)基因.结果如图 1所示.

图 1 蛋鸡和肉鸡养殖场粪便和舍内外空气中抗生素抗性基因、一类整合子及条件致病菌浓度 Fig. 1 Concentrations of antibiotic resistance genes, genes of pathogenic bacteria and classl integron in the fecal and air samples from layer and broiler feeding operations

整体上,两种粪便中16S rDNA基因浓度均在109 copies·g-1干粪左右.其他所检测基因的浓度远小于总的细菌基因浓度(以干粪计,下同),且浓度范围波动较大,在103~108 copies·g-1之间.其中,四环素两种抗性基因(tetWtetL)和磺胺类抗性基因(sul1)浓度较高,均在106~108 copies·g-1干粪左右,而红霉素抗性基因(ermB)浓度只有105 copies·g-1.值得注意的是,肉鸡粪便中一类整合子(intI1)浓度(1.04×108 copies·g-1)较蛋鸡粪便高两个数量级.调查中发现虽然肉鸡存栏期较短,但在整个饲养过程中饲料中均添加抗生素,可能导致一类整合子浓度较高.

蛋鸡和肉鸡舍内空气中总细菌浓度研究结果显示,二者浓度处于同一数量级,分别为1.34×106 copies·m-3和2.09×106 copies·m-3.其中,除了蛋鸡舍内tetXE. coli、肉鸡舍内的Staphylococcus,所考察目的基因在鸡舍内空气中浓度均高于104 copies·m-3. Just等[10]在2012年对加拿大肉鸡和蛋鸡舍内空气中StaphylococcusE. coli的浓度进行检测,分别为1.3×107 copies·m-3和3.7×105 copies·m-3及9.2×104 copies·m-3和1.2×104 copies·m-3,其浓度较本研究高2~3个数量级.养殖场舍内生物气溶胶的种类和浓度受多种因素影响,如温度、湿度、粪便处理方式[34]及管理方式等[35].由于现阶段关于国内养殖场舍内抗性基因和条件致病菌的研究鲜见报道,上述原因均可能导致检测浓度差异.目前,关于集约化养殖场空气中一类整合子(intI1)的研究仅限于养猪和牛场,其浓度在102 copies·m-3左右[3],远低于本研究对鸡舍的研究结果.

图 1所示,本研究所考察的目标基因在舍外的浓度低于舍内,其中部分基因(tetXE. coli)在蛋舍外未检出.这与国内外关于抗生素抗性菌的研究结果相似[15, 35].然而,部分舍外抗性基因和条件致病菌基因浓度仍高达102~104 copies·m-3.以往研究通过对猪和牛场空气中的tetXtetWintI1检测得出集约化养殖场是环境中抗生素和一类整合子重要来源[3].基于对不同类型鸡场空气样本研究结果,本研究初步证明集约化养鸡场是环境中抗生素抗性基因,一类整合子及条件致病菌的重要来源.

图 2所示,除E. coli(蛋鸡)和tetL(肉鸡),目标基因在16S rDNA中所占比例,空气均高于粪便.整体上,在所调查的蛋鸡和肉鸡舍内外空气中,2种四环素抗性基因(tetWtetL)、红霉素抗性基因(ermB)、磺胺类抗性基因(sul1)和一类整合子(intI1)所占比例较高,2种条件致病菌所占比率较低.除了蛋鸡场的Staphylococcus、肉鸡场的tetWintI1外,舍外空气中目标基因的比率均低于舍内.

图 2 蛋鸡和肉鸡养殖场粪便和舍内外空气中抗生素抗性基因、一类整合子及条件致病菌特异基因在16S rSNA的百分比 Fig. 2 Proportions of antibiotic resistance genes, pathogenic bacteria and classl integron in 16S rDNA in the fecal and air samples from layer and broiler feeding operations

为了进一步研究粪便、舍内外空气中抗性基因及条件致病菌的关系,对以上3种样本中目标基因的浓度和在总细菌基因所占百分比的相关性进行分析(表 3).浓度相关性分析结果显示,蛋鸡和肉鸡粪便同相应舍内空气样本, 舍内与相应舍外空气样本中目标基因的浓度均呈显著正相关.该部分研究结果进一步表明鸡舍粪便可能是舍内抗生素抗性基因、条件致病基因以及一类整合子的重要来源.这与以往关于生物气溶胶来源分析研究结果相一致[8, 14].对百分比相关性的考察结果显示,除了肉鸡粪便样本和肉鸡舍内空气样本中目标基因呈显著正相关之外,其他样本之间的相关性均无统计学意义,与图 2的结论相同.

表 3 蛋鸡和肉鸡粪便与舍内空气样本及舍内外空气样本中目标基因的相关性分析 Table 3 Correlation analysis of target genes between fecal and indoor air samples or indoor and outdoor air samples from layer and broiler feeding operations

3 结论

本研究对集约化蛋鸡和肉鸡养殖场的粪便和舍内空气样本中抗性基因和条件致病菌基因种类进行检测,对典型目的基因浓度进行分析.结果表明,所考察61种基因在蛋鸡舍内空气中的检出率小于等于粪便.蛋鸡和肉鸡舍内空气中总细菌基因浓度相似,约为106 copies·m-3,其他所考察目的基因浓度大多高于104copies·m-3,且舍外的浓度要远低于舍内.抗性基因和条件致病菌基因在空气中所占比例均高于粪便,且舍外比率整体上低于舍内.

参考文献
[1] 农业部.全国畜牧业发展第十二个五年规划(2011-2015年)[M].农牧发[2011] 8号.北京:农业部, 2011.
[2] Hong P Y, Li X Z, Yang X F, et al. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings[J]. Environmental Microbiology, 2012, 14(6) : 1420–1431. DOI: 10.1111/j.1462-2920.2012.02726.x
[3] Ling A L, Pace N R, Hernandez M T, et al. Tetracycline resistance and class 1 integron genes associated with indoor and outdoor aerosols[J]. Environmental Science & Technology, 2013, 47(9) : 4046–4052.
[4] Dungan R S. BOARD-INVITED REVIEW:fate and transport of bioaerosols associated with livestock operations and manures[J]. Journal of Animal Science, 2010, 88(11) : 3693–3706. DOI: 10.2527/jas.2010-3094
[5] Ko G, Simmons Ⅲ O D, Likirdopulos C A, et al. Investigation of bioaerosols released from swine farms using conventional and alternative waste treatment and management technologies[J]. Environmental Science & Technology, 2008, 42(23) : 8849–8857.
[6] Just N, Kirychuk S, Gilbert Y, et al. Bacterial diversity characterization of bioaerosols from cage-housed and floor-housed poultry operations[J]. Environmental Research, 2011, 111(4) : 492–498. DOI: 10.1016/j.envres.2011.01.009
[7] Just N, Blais Lecours P, Marcoux-Voiselle M, et al. Archaeal characterization of bioaerosols from cage-housed and floor-housed poultry operations[J]. Canadian Journal of Microbiology, 2013, 59(1) : 46–50. DOI: 10.1139/cjm-2012-0305
[8] Nehme B, Létourneau V, Forster R J, et al. Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect[J]. Environmental Microbiology, 2008, 10(3) : 665–675. DOI: 10.1111/emi.2008.10.issue-3
[9] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9) : 3435–3440. DOI: 10.1073/pnas.1222743110
[10] Just N A, Létourneau V, Kirychuk S P, et al. Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations[J]. Annals of Occupational Hygiene, 2012, 56(4) : 440–449. DOI: 10.1093/annhyg/mer105
[11] Létourneau V, Nehmé B, Mériaux A, et al. Human pathogens and tetracycline-resistant bacteria in bioaerosols of swine confinement buildings and in nasal flora of hog producers[J]. International Journal of Hygiene and Environmental Health, 2010, 213(6) : 444–449. DOI: 10.1016/j.ijheh.2010.09.008
[12] McEachran A D, Blackwell B R, Hanson J D, et al. Antibiotics, bacteria, and antibiotic resistance genes:aerial transport from cattle feed yards via particulate matter[J]. Environmental Health Perspectives, 2015, 123(4) : 337–343.
[13] 姚美玲, 张彬, 柴同杰. 鸡兔舍耐药大肠杆菌气溶胶向环境扩散的研究[J]. 西北农林科技大学学报(自然科学版), 2007, 35(8) : 60–64. Yao M L, Zhang B, Chai T J. Antibiotic resistance of airborne Escherichia coli from hen house and rabbitry and their spreading to surroundings[J]. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(8) : 60–64.
[14] 柴同杰, 赵云玲, 刘文波, 等. 鸡舍环境耐药细菌气溶胶及其向环境传播的研究[J]. 中国预防兽医学报, 2003, 25(3) : 209–214. Chai T J, Zhao Y L, Liu W B, et al. The resistance against antibiotics of bacteria from a poultry house and their spreading to surroundings of the house[J]. Chinese Journal of Preventive Veterinary Medicine, 2003, 25(3) : 209–214.
[15] 高敏, 贾瑞志, 仇天雷, 等. 集约化养鸡场空气环境中生物气溶胶特点研究[J]. 农业环境科学学报, 2015, 34(4) : 787–794. Gao M, Jia R Z, Qiu T L, et al. Characteristics of bioaerosols in air environment of confined poultry feeding operations[J]. Journal of Agro-Environment Science, 2015, 34(4) : 787–794.
[16] 段会勇, 柴同杰. 鸡舍内外环境中气载大肠杆菌同源性的分子鉴定[J]. 畜牧兽医学报, 2008, 39(5) : 614–620. Duan H Y, Chai T J. The homology molecular identification of airborne Escherichia coli isolated from indoor and outdoor air of chicken houses[J]. Acta Veterinaria et Zootechinic Sinia, 2008, 39(5) : 614–620.
[17] 钟召兵, 柴同杰, 段会勇, 等. 鸡舍环境金黄色葡萄球菌气溶胶产生及其传播的REP-PCR鉴定[J]. 畜牧兽医学报, 2008, 39(10) : 1395–1401. Zhong Z B, Chai T J, Duan H Y, et al. REP-PCR identification of airborne Staphylococcus aureus isolated from chicken houses and their spreading around the Farms[J]. Acta Veterinaria et Zootechinic Sinia, 2008, 39(10) : 1395–1401.
[18] Jiang W J, Liang P, Wang B Y, et al. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities[J]. Nature Protocols, 2015, 10(5) : 768–779. DOI: 10.1038/nprot.2015.046
[19] 李丽, 赵成萍, 李宏, 等. 质粒制备绝对定量PCR标准曲线方法的建立[J]. 农业生物技术学报, 2011, 19(6) : 1157–1162. Li L, Zhao C P, Li H, et al. Establishment of the plasmid standard curve generation method for absolute quantification PCR[J]. Journal of Agricultural Biotechnology, 2011, 19(6) : 1157–1162.
[20] Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism[J]. Journal of Antimicrobial Chemotherapy, 2002, 50(1) : 11–18. DOI: 10.1093/jac/dkf069
[21] Hartmann A, Locatelli A, Amoureux L, et al. Occurrence of CTX-M producing Escherichia coli in soils, cattle, and farm environment in France (Burgundy Region)[J]. Frontiers in Microbiology, 2012, 3 : 83.
[22] Shahid M. Citrobacter spp. simultaneously harboring blaCTX-M, blaTEM, blaSHV, blaampC, and insertion sequences IS26 and or f513:an evolutionary phenomenon of recent concern for antibiotic resistance[J]. Journal of Clinical Microbiology, 2010, 48(5) : 1833–1838. DOI: 10.1128/JCM.01467-09
[23] Knapp C W, Dolfing J, Ehlert P A I, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940[J]. Environmental Science & Technology, 2010, 44(2) : 580–587.
[24] Mendes R E, Kiyota K A, Monteiro J, et al. Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis[J]. Journal of Clinical Microbiology, 2007, 45(2) : 544–547. DOI: 10.1128/JCM.01728-06
[25] Poirel L, Walsh T R, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes[J]. Diagnostic Microbiology & Infectious Disease, 2011, 70(1) : 119–123.
[26] Reinthaler F F, Feierl G, Galler H, et al. ESBL-producing E. coli in Austrian sewage sludge[J]. Water Research, 2010, 44(6) : 1981–1985. DOI: 10.1016/j.watres.2009.11.052
[27] Robicsek A, Strahilevitz J, Sahm D F, et al. qnr prevalence in ceftazidime-resistant enterobacteriaceae isolates from the United States[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(8) : 2872–2874. DOI: 10.1128/AAC.01647-05
[28] Maurin M, Abergel C, Raoult D. DNA Gyrase-mediated natural resistance to fluoroquinolones in Ehrlichia spp.[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(7) : 2098–2105. DOI: 10.1128/AAC.45.7.2098-2105.2001
[29] Boerlin P, Travis R, Gyles C L, et al. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in ontario[J]. Applied and Environmental Microbiology, 2005, 71(11) : 6753–6761. DOI: 10.1128/AEM.71.11.6753-6761.2005
[30] Frank T, Gautier V, Talarmin A, et al. Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR)[J]. Journal of Antimicrobial Chemotherapy, 2007, 59(4) : 742–745. DOI: 10.1093/jac/dkl538
[31] Aminov R I, Garrigues-Jeanjean N, Mackie R I. Molecular ecology of tetracycline resistance:development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins[J]. Applied and Environmental Microbiology, 2001, 67(1) : 22–32. DOI: 10.1128/AEM.67.1.22-32.2001
[32] Wang F H, Qiao M, Lv Z E, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China[J]. Environmental Pollution, 2014, 184 : 247–253. DOI: 10.1016/j.envpol.2013.08.038
[33] Perreten V, Boerlin P. A new sulfonamide resistance gene (sul 3) in Escherichia coli is widespread in the pig population of switzerland[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(3) : 1169–1172. DOI: 10.1128/AAC.47.3.1169-1172.2003
[34] Whyte R T. Aerial pollutants and the health of poultry farmers[J]. World's Poultry Science Journal, 1993, 49(2) : 139–156. DOI: 10.1079/WPS19930012
[35] Brooks J P, McLaughlin M R, Scheffler B, et al. Microbial and antibiotic resistant constituents associated with biological aerosols and poultry litter within a commercial poultry house[J]. Science of the Total Environment, 2010, 408(20) : 4770–4777. DOI: 10.1016/j.scitotenv.2010.06.038