二
虽然二
基于以上现状,本研究选取广东某地为研究区域,在生活垃圾焚烧厂周边环境空气采样期间,对生活垃圾焚烧厂排放废气、轮胎加工厂环境空气及露天焚烧环境空气中二
研究区域为城乡结合部,现场调研发现区域内分布着以市政生活垃圾为主的焚烧厂、废旧轮胎加工厂,生活垃圾露天焚烧也是该区域典型的污染源.固定源监测点位于垃圾经炉膛焚烧后出口(前口)和布袋除尘后的烟气排放口(后口);周边环境空气采样点布设在焚烧厂区(厂区)、距离焚烧厂厂界200 m处(厂界外)、焚烧厂下风向1.2 km处(下风向)、上风向0.8 km处(上风向)、轮胎厂轮胎露天堆放、轮胎翻新厂宿舍2楼、轮胎翻新车间和无固定排放的露天焚烧处.采样点位布置见图 1.
![]() |
图 1 采样点分布示意 Fig. 1 Distribution of sampling sites |
采样方法参考HJ 77.2-2008,采样前在聚氨酯泡沫上添加13C标记的采样内标后收集气相,石英纤维滤膜收集颗粒相,两相态合并为一个样品.每个样品采集24 h,连续采样3 d;露天焚烧采样以焚烧残渣不再冒烟结束,整个采样期间只监测到1处露天焚烧.
1.2.2 烟气样品采集烟气采样方法参照HJ 77.2-2008,采样前在树脂筒内加入13C标记的采样内标,每个样品采集2 h,连续采集3个样品.
1.3 样品处理与仪器分析 1.3.1 实验材料甲苯、正己烷为高效液相色谱级溶剂(美国Heneyweii公司);二氯甲烷为高效液相色谱级溶剂(德国Merck公司);弗罗里硅土(美国Fluka公司);硅胶(德国Merck公司);碱性氧化铝(美国Sigma公司);无水硫酸钠、浓硫酸(广州化学试剂公司);采样内标、提取内标及进样内标(美国Wellingtog公司).
1.3.2 样品前处理空气样品用甲苯对石英纤维滤膜和聚氨基甲酸酯连续索氏抽提24 h.烟气样品滤筒和树脂也一并用甲苯连续索氏抽提24 h;冷凝水用二氯甲烷分别萃取3次后与抽提液合并.空气和烟气样品在抽提前加入13C标记的提取内标.
1.3.3 样品的净化样品经多段层析柱净化.层析柱填料从上到下为:2 g无水硫酸钠、40 g酸性硅胶、3 g中性硅胶、4 g碱性硅胶、3 g中性硅胶、3 g中性氧化铝、1 g弗洛里硅藻土、2 g无水硫酸钠.净化前用80 mL正己烷预淋洗层析柱,上样后依次用120 mL正己烷、30 mL正己烷:二氯甲烷混合液(95:5,体积比)洗脱去除干扰物;再用100 mL二氯甲烷继续淋洗脱,洗脱液旋转蒸发至2 mL,最后用高纯氮气吹扫浓缩至50 μL后加入13C标记的进样内标,待仪器分析.
1.3.4 仪器分析采用HP6890HRGC和AutoSpec Premier HRMS联用分析仪.色谱条件:DB-5MS (60 m×0.25 mm×0.25 μm)色谱柱对17种二
质谱条件:分辨率≥10 000;选用EI源,源温300℃,采用选择离子(SIM)测定,电离能为35 eV,离子化电流为600 μA.
1.4 质量保证与质量控制采用13C同位素内标稀释定量法对环境空气和烟气中二

从表 1看出,焚烧厂前口烟道气中17种二
![]() |
表 1 烟道气及各环境空气中二![]() |
进一步分析发现,垃圾焚烧厂前口烟道气中PCDFs与PCDDs比值为1.02,而后口烟道气PCDFs与PCDDs比值为0.700.有研究表明,若PCDFs/PCDDs>1,“从头合成”(De novo)反应占优势,若PCDFs/PCDDs < 1,前驱物反应占主导地位[15].据此可以判断,前口烟气二

从表 1可以看出,焚烧厂周边环境空气中二

对轮胎厂的调查发现,轮胎厂空气中二

露天焚烧空气中二
表 2列举了部分国内外生活垃圾焚烧厂烟道气及周边空气中可能的二
![]() |
表 2 部分国家或地区生活垃圾焚烧厂排放烟气以及周边环境空气中二![]() |
3 烟气与空气中二


烟道气与所有环境空气中二
![]() |
图 2 烟道气与空气中二![]() |
同样从图 2(b)可见,焚烧厂周边环境空气中二
轮胎厂二
根据本研究空气中17种二
![]() |
图 3 环境空气中主要毒性贡献体与总毒性相关性分析 Fig. 3 Correlation analysis between main homologs and total toxic concentration in air |

运用主成分分析法分析焚烧厂烟道气、周边环境空气、轮胎厂空气以及露天焚烧空气中二
![]() |
图 4 烟道气与空气中二![]() |
进一步对焚烧厂排放烟气与周边环境空气中17种二
![]() |
图 5 烟道气与空气中二![]() |
通过上述主成分与聚类综合分析可知,垃圾焚烧厂对厂区、下风向及露天焚烧环境空气中二
(1)垃圾焚烧厂烟道气二
(2)所有样品中二
(3)所有空气样品中主要贡献单体为2, 3, 4, 7, 8-PeCDF、2, 3, 4, 6, 7, 8-HxCDF、1, 2, 3, 7, 8-PeCDD和1, 2, 3, 6, 7, 8-HxCDD,对应的线性相关系数分别为0.28、0.75、0.95和0.37.这说明所有空气样品中1, 2, 3, 7, 8-PeCDD和2, 3, 4, 6, 7, 8-HxCDF具有更强的线性相关性.
(4)主成分分析和聚类分析表明垃圾焚烧厂可能对周边环境空气产生一定影响,轮胎厂对上风向影响较大,露天焚烧对较近的厂界外监测点影响较小.
[1] | Wang J B, Wang M S, Wu E M Y, et al. Approaches adopted to assess environmental impacts of PCDD/F emissions from a municipal solid waste incinerator[J]. Journal of Hazardous Materials, 2008, 152(3) : 968–975. DOI: 10.1016/j.jhazmat.2007.07.090 |
[2] |
李佳玲, 张正洁.
再生铝生产过程中二 |
[3] |
孙鹏程, 李晓璐, 成钢, 等.
焦炉烟气中二 |
[4] | Chen T, Guo Y, Li X D, et al. Emissions behavior and distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) from cement kilns in China[J]. Environmental Science and Pollution Research, 2014, 21(6) : 4245–4253. DOI: 10.1007/s11356-013-2356-8 |
[5] |
杨忠灿.垃圾焚烧过程中氯源对HCl和二 |
[6] | Shih Y H, Kasaon S J, Tseng C H, et al. Health risks and economic costs of exposure to PCDD/Fs from open burning:a case study in Nairobi, Kenya[J]. Air Quality, Atmosphere & Health, 2016, 9(2) : 201–211. |
[7] | Bastian L W, Yano J Y, Hirai Y H, et al. Behavior of PCDD/Fs during open burning of municipal solid waste in open dumping sites[J]. Journal of Material Cycles and Waste Management, 2013, 15(2) : 229–241. DOI: 10.1007/s10163-012-0114-5 |
[8] | Conesa J A, Gálvez A, Mateos F, et al. Organic and inorganic pollutants from cement kiln stack feeding alternative fuels[J]. Journal of Hazardous Materials, 2008, 158(2-3) : 585–592. DOI: 10.1016/j.jhazmat.2008.01.116 |
[9] | Aylón E, Murillo R, Fernández-Colino A, et al. Emissions from the combustion of gas-phase products at tyre pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2006, 79(1-2) : 210–214. |
[10] |
查建宁.
江苏省二 |
[11] | Zhang T T, Fiedler H, Yu G, et al. Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries[J]. Chemosphere, 2011, 84(7) : 994–1001. DOI: 10.1016/j.chemosphere.2011.04.070 |
[12] |
黄文, 张素坤, 杜国勇, 等.
医疗废物焚烧炉周边环境介质中二 |
[13] |
余莉萍, 李会茹, 孟祥周, 等.
电子垃圾焚烧排放的二 |
[14] | Chen T, Gu Y L, Yan J H, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans in flue gas emissions from municipal solid waste incinerators in China[J]. Journal of Zhejiang University-Science A, 2008, 9(9) : 1296–1303. DOI: 10.1631/jzus.A0720144 |
[15] |
张刚.城市固体废物焚烧过程二 |
[16] |
刘劲松, 刘维屏, 巩宏平, 等.
城市生活垃圾焚烧炉周边环境空气及土壤中二 |
[17] | Li H R, Yu L P, Sheng G Y, et al. Severe PCDD/F and PBDD/F pollution in air around an electronic waste dismantling area in China[J]. Environmental Science & Technology, 2007, 41(16) : 5641–5646. |
[18] | Wevers M, De Fré R, Desmedt M. Effect of backyard burning on dioxin deposition and air concentrations[J]. Chemosphere, 2004, 54(9) : 1351–1356. DOI: 10.1016/S0045-6535(03)00253-4 |
[19] | Wu Y L, Lin L F, Hsieh L T, et al. Atmospheric dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of municipal solid waste incinerators[J]. Journal of Hazardous Materials, 2009, 162(1) : 521–529. DOI: 10.1016/j.jhazmat.2008.05.075 |
[20] | Oh J E, Choi S D, Lee S L, et al. Influence of a municipal solid waste incinerator on ambient air and soil PCDD/Fs levels[J]. Chemosphere, 2006, 64(4) : 579–587. DOI: 10.1016/j.chemosphere.2005.11.012 |
[21] |
齐丽, 任玥, 李楠, 等.
垃圾焚烧厂周边大气二 |
[22] | Wang Y H, Rao G W, Chen M L, et al. Investigation on dioxin level of flue gas, ambient air, vegetation and soil nearby large-scale MSWI in Taiwan[J]. Advanced Materials Research, 2013, 781-784 : 2508–2516. DOI: 10.4028/www.scientific.net/AMR.781-784 |
[23] | Meng B, Ma W L, Liu L Y, et al. PCDD/Fs in soil and air and their possible sources in the vicinity of municipal solid waste incinerators in northeastern China 7(2):355-262. |
[24] | Shih S I, Lee W J, Lin L F, et al. Significance of biomass open burning on the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air[J]. Journal of Hazardous Materials, 2008, 153(1-2) : 276–284. DOI: 10.1016/j.jhazmat.2007.08.048 |
[25] | Zhong J J, Zhang G, Hai J, et al. Polychlorinated Dibenzo-p-dioxins and dibenzofurans from a grate-type municipal solid waste incinerator in China[J]. Advanced Materials Research, 2014, 878 : 616–621. DOI: 10.4028/www.scientific.net/AMR.878 |
[26] | Zhang M W, Zhang S K, Zhang Z Q, et al. Influence of a municipal solid waste incinerator on ambient air PCDD/F levels:a comparison of running and non-running periods[J]. Science of the Total Environment, 2014, 491-492: : 34–41. DOI: 10.1016/j.scitotenv.2014.03.100 |
[27] | Gao L R, Zhang Q, Liu L D, et al. Spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls around a municipal solid waste incinerator, determined using polyurethane foam passive air samplers[J]. Chemosphere, 2014, 114 : 317–326. DOI: 10.1016/j.chemosphere.2014.04.100 |
[28] | Mi H H, Wang W J, Lin S L, et al. Long-term monitoring and modeling of polychlorinated dibenzo-p-dioxins and dibenzofurans from municipal solid waste incinerators and surrounding area in northern Taiwan[J]. Environmental Science and Pollution Research, 2014, 21(18) : 10751–10764. DOI: 10.1007/s11356-014-3019-0 |