2. 湖南城市学院市政与测绘工程学院, 益阳 413000
2. School of Municipal and Mapping Engineering, Hunan City University, Yiyang 413000, China
含氟废水主要来源于钢铁制造业、有色金属冶炼、含氟化学肥料的生产、有机氟化学产品和半导体行业等工业生产过程产生废水,这类工业废水氟浓度一般可达到几十到几千mg·L-1[1].适量的氟对机体牙齿、骨骼的钙化、神经兴奋的传导和酶系统的代谢均有促进作用,但是长期饮用高氟水会导致氟斑牙和氟骨症,严重者会导致骨骼变形、关节僵硬、筋腱钙化、行走困难,甚至瘫痪等[2].因此,世界卫生组织规定饮用水中氟含量不超过1.5 mg·L-1;我国《污水综合排放标准》(GB 8978-1996)中一级排放标准规定废水中氟含量不超过10 mg·L-1[3].而工业废水氟含量一般都超过数百mg·L-1,常采用化学沉淀法[4]进行处理,但处理后废水氟含量仍然有20~30 mg·L-1,需要对出水进行二次处理以达到排放的要求.
含氟废水深度处理方法主要有膜过滤、反渗透、离子交换和吸附等[5].吸附法因具有操作简单、成本低、环境友好等特点而备受关注.高效吸附剂的获得是吸附技术关键,常见的吸附剂主要有沸石[6]、骨炭[7]、陶瓷[8]和类水滑石金属复合氧化物[9]等,但这些吸附剂因较低吸附能力或机械强度低而难以推广应用.因此开发吸附效果好和机械强度高的除氟吸附剂迫在眉睫.稀土金属[10]因具有较高的吸附性能和环境友好被应用到污水处理中,但有稀土金属价格较贵.水滑石经高温煅烧制得金属复合氧化物是含氟废水处理热门吸附剂之一,将稀土金属添加到水滑石中有助于提高其吸附能力.王红宇等[11]用Mg-Zn-Al焙烧产物作为吸附剂处理含高氯酸废水,取得较好的效果.笔者采用共沉淀法制备Mg-Al-Me (Me=La、Ce、Zr)金属复合物,利用SEM、XRD等手段对其物理性能进行表征,并探讨其除氟性能,以期为开发高效价廉的除氟材料提供支持.
1 材料与方法 1.1 试剂盐酸、氢氧化钠、氯化镁、氯化铝、氯化氧锆、氯化铈、氯化镧、氟化钠、硝酸钠和柠檬酸钠均为分析纯.
1.2 吸附剂的制备按照Mg:Al:Me (Me=La、Ce、Zr)=20:1:4称取一定量的氯化镁、氯化铝、稀土金属氯化物制备成300 mL盐溶液,另称取一定量的氢氧化钠和碳酸钠制备成300 mL碱溶液.先在三口烧瓶中加入400 mL蒸馏水,以一定速度用蠕动泵将盐溶液和碱溶液同时滴加到三口烧瓶中,控制反应pH 9~10,水浴温度60℃,并不断搅拌,滴加结束后,继续搅拌,晶化24 h,抽滤水洗至中性,在80℃恒温干燥箱烘烤24 h,在500℃马弗炉中煅烧5 h,研磨过100目筛,获得吸附材料,将添加La、Ce、Zr的吸附材料分别记为Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr.
1.3 吸附动力学实验分别配置一系列质量浓度为120 mg·L-1的100 mL模拟含氟废水置于100 mL聚氯乙烯瓶中,分别加入5 g·L-1的Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr,调节初始pH为6.0,在30℃水浴振荡器上振荡吸附至设定时间后,0.22 μm滤膜过滤取滤液测定氟质量浓度.每个实验设3个平行样,瞬时吸附量Qt(mg·g-1)取为3个平行样的平均值.
1.4 等温吸附实验设置氟初始质量浓度为20~500 mg·L-1,投加量5 g·L-1,初始pH=6.0,水浴温度30℃,吸附时间24 h,0.22 μm滤膜过滤取滤液测定氟质量浓度.每个实验设3个平行样,平衡吸附量Qe(mg·g-1)为3个平行样的取平均值.
1.5 共存离子对吸附影响实验设置氟初始为60 mg·L-1,初始pH=6.0,吸附剂投加量5 g·L-1,CO32-、HCO3-、PO43-、SO42-、Cl-、NO3-等酸根离子浓度分别为0.01 mol·L-1和0.1 mol·L-1,吸附时间24 h,0.22 μm滤膜过滤取滤液测定氟质量浓度.每个实验设3个平行样,平衡吸附量Qe(mg·g-1)为3个平行样的取平均值.
1.6 分析方法用X射线衍射仪(D/max2550VB+,日本理学株氏会社)对样品结构进行表征,Cu靶,Kα辐射源,λ=0.154 06 nm,管电压36 kV,管电流30 mA,扫描速率8(°)·min-1,10°~80°扫描;样品形貌特征由场发射扫描电子显微镜(Nano SEM 230,FEI公司)拍摄观察,工作电压5 kV,放大倍数1万倍,溶液中氟离子采用氟离子选择电极进行分析.
2 结果与讨论 2.1 吸附剂性能表征 2.1.1 SEM分析图 1是Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr煅烧前、煅烧后和吸附后电镜图,其中,图 1(a)、1(d)、1(g)是新鲜制备经80℃烘箱烘烤24 h过100目筛样品;图 1(b)、1(e)、1(h)是经500℃马弗炉煅烧后5 h的样品;图 1(c)、1(f)、1(i)是在一定氟浓度吸附后的样品.
![]() |
(a)新鲜制备的Mg-Al-La,(b)新鲜制备的Mg-Al-Ce,(c)新鲜制备的Mg-Al-Zr,(d)煅烧的Mg-Al-La,(e)煅烧的Mg-Al-Ce,(f)煅烧的Mg-Al-Zr,(g)吸附后的Mg-Al-La,(h)吸附后的Mg-Al-Ce,(i)吸附后的Mg-Al-Zr 图 1 Mg-Al-La, Mg-Al-Ce, Mg-Al-Zr的电镜图 Fig. 1 SEM images of the Mg-Al-La, Mg-Al-Ce, Mg-Al-Zr samples |
由图 1可以看出,La、Ce、Zr对合成吸附材料的结构有一定的影响,其中新鲜制备的Mg-Al-La和Mg-Al-Zr均表现较为层状片状结构.材料煅烧后,层状结构消失,3种材料出现不同程度的亚颗粒团聚体;吸附后3种材料表现出类水滑石良好记忆性能,都会恢复了层状结构,但掺Zr的层片较大.
2.1.2 XRD分析图 2分别是Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr在500℃马弗炉煅烧5 h后的样品.
![]() |
煅烧条件:温度500℃,时间5 h 图 2 煅烧后Mg-Al-La, Mg-Al-Ce, Mg-Al-Zr的XRD图谱 Fig. 2 XRD patterns of Mg-Al-La, Mg-Al-Ce, Mg-Al-Zr |
由图 2可知,3种吸附材料煅烧后Mg主要是以为MgO形式存在,La主要以La2O2CO3、La2CO5形式存在,Ce主要以CeO2形式存在.没有发现Al和Zr的特征峰,推测Al和Zr主要以无定形的氧化物形式存在.
2.2 吸附动力学图 3是氟的初始质量浓度为120 mg·L-1,pH=6.0时的吸附动力学曲线.从中可以看出,吸附开始阶段的120 min内,3种材料对氟的吸附都很快;至吸附120 min内,3种材料对氟的吸附量分别为11.68、9.65、11.56 mg·g-1.随着吸附时间推移吸附量增加逐渐变小;240 min时,Mg-Al-La、Mg-Al-Ce和Mg-Al-Zr对氟基本达到吸附平衡,其吸附量分别为11.88、11.41、11.83 mg·g-1.在吸附初期,3种吸附材料上空余吸附位点的数量相对较多;同时,由于溶液中氟的质量浓度与吸附材料上的相差较大,造成吸附系统固-液界面处较大的浓度梯度,形成较大的传质推动力,有利于吸附反应的快速进行.随着时间的延长,吸附材料上活性吸附位点不断减少、浓度梯度逐渐变小,吸附反应变得越来越平缓,最终达到平衡.
![]() |
图 3 吸附动力学曲线 Fig. 3 Adsorption kinetic curves |
为了分析Mg-Al-La、Mg-Al-Ce和Mg-Al-Zr对氟吸附速率情况,分别采用准一级动力学和准二级动力学方程对实验数据进行拟合,准一级动力学方程和准二级动力学方程[12]线性表达式如下.
准一级动力学方程:
![]() |
准二级动力学方程:
![]() |
式中,Qt为t时刻的吸附容量,mg·g-1;t为吸附时间,min;Qe为平衡吸附容量,mg·g-1;k1为准一级动力学方程吸附常数,min-1;k2为准二级动力学方程吸附常数,g·(mg·min)-1.
拟合结果如图 4和表 1所示.由表 1可知,利用准二级动力学方程对实验数据进行拟合的相关系数均大于0.999,并且通过此模型计算得到的Qe与实验Qt值十分接近,k2值的大小次序是Mg-Al-Zr>Mg-Al-La>Mg-Al-Ce,说明Mg-Al-Zr对氟的吸附速率最大,Mg-Al-La次之,Mg-Al-Ce最小.说明准二级动力学方程非常适合描述氟在3种吸附剂上的吸附,该吸附过程受化学吸附机制的控制,化学键的形成是吸附过程的关键,涉及到吸附剂与吸附质之间的电子共用或电子转移.
![]() |
图 4 Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr吸附氟的动力学 Fig. 4 Kinetic of fluoride adsorption onto Mg-Al-La, Mg-Al-Ce and Mg-Al-Zr |
![]() |
表 1 吸附动力学参数 Table 1 Parameters and coefficients of the kinetics equations |
为进一步了解3种吸附剂对氟的吸附速率限制步骤,采用动边界模型对实验数据进行拟合分析.吸附过程分为3个阶段[13, 14]: ①膜扩散,氟从液膜边界扩散到吸附剂的表面;②颗粒内扩散,氟从吸附剂表面扩散到吸附剂孔隙中;③吸附反应阶段,氟在吸附剂内表面进行吸附.动边界模型[15]的膜扩散、颗粒扩散和化学反应控制方程可分别表示如下.
膜扩散:
![]() |
吸附反应控制方程:
![]() |
颗粒内扩散:
![]() |
式中,F=Qt/Qe,Qt为t(min)时吸附量,Qe为平衡吸附量,mg·g-1;kf、kc、kp分别为液膜扩散、吸附反应和颗粒扩散的速率常数.
用动边界模型拟合的吸附速率控制步骤的相关参数见表 2,从中可知,对于Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr,其吸附反应速率和颗粒内扩散速率均低于膜扩散速率,这说明3种材料对氟的吸附反应速率控制步骤主要是颗粒内扩散和吸附反应过程.
![]() |
表 2 吸附速率控制步骤 Table 2 Adsorption rate-controlling steps |
2.3 吸附等温线
吸附等温线是在恒定温度下平衡吸附容量和吸附质平衡浓度的关系曲线,反映了吸附剂的表面性质、孔结构及吸附质与吸附剂之间的相互作用[16],作为优化筛选吸附剂的重要依据.考察Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr对氟的等温吸附特征.实验结果如图 5所示.
![]() |
图 5 吸附等温线 Fig. 5 Adsorption isotherm curves |
Mg-Al-La、Mg-Al-Ce和Mg-Al-Zr吸附氟的Langmuir、Freundlich等温线的各参数以及相关系数列于表 3和图 6.可以看出,3种吸附剂对氟的吸附,Langmuir等温线的相关系数较Freundlich等温线高;表明3种吸附剂对氟吸附的实验数据更符合Langmuir等温线方程;说明3种吸附剂对氟吸附为单层吸附,提供的吸附位点具有相同的吸附能,对氟具有相同的亲和力.计算的Qe与实验值较为接近. 3种吸附对氟吸附的Freundlich等温线参数n均大于2,表明3种吸附剂较易吸附氟. 表 4显示,实验制备的Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr复合吸附剂优于大多数已报道的吸附剂除氟能力,说明实验制备的复合吸附剂可以应用到工业含氟废水的深度处理中.
![]() |
表 3 吸附等温线参数 Table 3 Parameters and coefficients of isotherms equations |
![]() |
图 6 Mg-Al-La、Mg-Al-Ce、Mg-Al-Zr对氟的吸附等温线 Fig. 6 Adsorption isotherms of fluoride onto Mg-Al-La, Mg-Al-Ce, Mg-Al-Zr |
![]() |
表 4 不同吸附剂最大氟吸附容量比较 Table 4 Comparison of maximum fluoride adsorption capacity of different adsorbents |
2.4 共存离子对吸附的影响
含氟废水通常会含有CO32-、HCO3-、PO43-、SO42-、Cl-、NO3-等多种阴离子;已有报道指出[17, 18],这些离子存在会和氟产生竞争吸附,为考察这些离子对氟吸附影响,实验结果如图 7所示.
![]() |
(a) Mg-Al-La; (b) Mg-Al-Ce; (c) Mg-Al-Zr 图 7 共存离子对吸附的影响 Fig. 7 Effect of co-ions on fluoride adsorption |
由图 7可知,CO32-、HCO3-、SO42-、PO43-对3种材料吸附氟有一定的影响,而Cl-和NO3-影响甚微. CO32-、HCO3-、SO42-、PO43-这4种阴离子之所以对材料除氟性能产生影响,是因为这4种阴离子在溶液体系中同氟离子形成竞争吸附,减少了吸附氟离子的活性位点.阴离子对氟离子吸附的影响可能与材料对它们的吸引力有关.阴离子所带电荷越多,材料对其吸引力越大.
3 结论(1) 通过双滴共沉淀-煅烧法制备的Mg-Al-La、Mg-Al-Ce和Mg-Al-Zr这3种金属复合吸附剂层状结构明显,颗粒大小不一.
(2) 3种吸附剂对氟的等温吸附特征可用Langmuir等温线方程描述,计算3种材料对氟的饱和吸附容量分别为54.22、51.65、50.89 mg·g-1.
(3) 3种材料对氟的吸附动力特征可用准二级动力学方程描述,其对氟的吸附速率主要受到颗粒内扩散和吸附反应共同控制.
(4) 共存离子CO32-、HCO3-、SO42-、PO43-对制备的复合吸附剂除氟有一定的影响,而Cl-和NO3-影响甚微.
[1] | Liu Q, Zhang L J, Yang B C, et al. Removal of fluoride from aqueous solution using Zr (Ⅳ) immobilized cross-linked chitosan[J]. International Journal of Biological Macromolecules, 2015, 77 : 15–23. DOI: 10.1016/j.ijbiomac.2015.03.008 |
[2] | Yu Y, Yu L, Chen J P. Adsorption of fluoride by Fe-Mg-La triple-metal composite: adsorbent preparation, illustration of performance and study of mechanisms[J]. Chemical Engineering Journal, 2015, 262 : 839–846. DOI: 10.1016/j.cej.2014.09.006 |
[3] | Wu H X, Wang T J, Chen L, et al. Granulation of Fe-Al-Ce hydroxide nano-adsorbent by immobilization in porous polyvinyl alcohol for fluoride removal in drinking water[J]. Powder Technology, 2011, 209(1-3) : 92–97. DOI: 10.1016/j.powtec.2011.02.013 |
[4] | Jiang K, Zhou K G, Yang Y C, et al. A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor[J]. Journal of Environmental Sciences, 2013, 25(7) : 1331–1337. DOI: 10.1016/S1001-0742(12)60204-6 |
[5] | Poursaberi T, Hassanisadi M, Torkestani K, et al. Development of zirconium (Ⅳ)-metalloporphyrin grafted Fe3O4 nanoparticles for efficient fluoride removal[J]. Chemical Engineering Journal, 2012, 189-190 : 117–125. DOI: 10.1016/j.cej.2012.02.039 |
[6] | Miretzky P, Cirelli A F. Fluoride removal from water by chitosan derivatives and composites: a review[J]. Journal of Fluorine Chemistry, 2011, 132(4) : 231–240. DOI: 10.1016/j.jfluchem.2011.02.001 |
[7] | Rojas-Mayorga C K, Bonilla-Petriciolet A, Aguayo-Villarreal I A, et al. Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104 : 10–18. DOI: 10.1016/j.jaap.2013.09.018 |
[8] | Chen N, Zhang Z Y, Feng C P, et al. Fluoride removal from water by granular ceramic adsorption[J]. Journal of Colloid and Interface Science, 2010, 348(2) : 579–584. DOI: 10.1016/j.jcis.2010.04.048 |
[9] | Koilraj P, Kannan S. Aqueous fluoride removal using ZnCr layered double hydroxides and their polymeric composites: batch and column studies[J]. Chemical Engineering Journal, 2013, 234 : 406–415. DOI: 10.1016/j.cej.2013.08.101 |
[10] | Rodrigues E, Pereira P, Martins T, et al. Novel rare earth (Ce and La) hydrotalcite like material: synthesis and characterization[J]. Materials Letters, 2012, 78 : 195–198. DOI: 10.1016/j.matlet.2012.03.025 |
[11] | 王红宇, 刘艳. 类水滑石Mg/Zn/Al焙烧产物对高氯酸盐的吸附[J]. 环境科学, 2014, 35(7) : 2585–2589. Wang H Y, Liu Y. Adsorption of perchlorate by calcined Mg/Zn/Al layered double hydroxides[J]. Environmental Science, 2014, 35(7) : 2585–2589. |
[12] | Qiu H, Lv L, Pan B C, et al. Critical review in adsorption kinetic models[J]. Journal of Zhejiang University Science A, 2009, 10(5) : 716–724. DOI: 10.1631/jzus.A0820524 |
[13] | Tang D D, Zhang G K. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283 : 721–729. DOI: 10.1016/j.cej.2015.08.019 |
[14] | 郭俊元, 王彬. HDTMA改性沸石的制备及吸附废水中对硝基苯酚的性能和动力学[J]. 环境科学, 2016, 37(5) : 1852–1857. Guo J Y, Wang B. Preparation of HDTMA-modified zeolite and its performance in nitro-phenol adsorption from wastewaters[J]. Environmental Science, 2016, 37(5) : 1852–1857. |
[15] | 孙德帅, 郑强强, 张晓东, 等. 粉煤灰对阴离子水溶性混合染料的吸附动力学[J]. 环境科学, 2014, 35(7) : 2590–2595. Sun D S, Zheng Q Q, Zhang X D, et al. Adsorption kinetic mechanism of ionic soluble dye mixture on fly ash[J]. Environmental Science, 2014, 35(7) : 2590–2595. |
[16] | 张伟, 陈静, 张高生. 铁镧复合氧化物纳米吸附剂的制备、表征及As (Ⅲ)吸附性能研究[J]. 环境科学, 2014, 35(11) : 4198–4202. Zhang W, Chen J, Zhang G S. Preparation and evaluation of Fe-La composite oxide nanoadsorbent for As (Ⅲ) removal from aqueous solutions[J]. Environmental Science, 2014, 35(11) : 4198–4202. |
[17] | He J S, Siah T S, Chen J P. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water[J]. Water Research, 2014, 56 : 88–97. DOI: 10.1016/j.watres.2014.02.030 |
[18] | Dong S X, Wang Y L. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal[J]. Water Research, 2016, 88 : 852–860. DOI: 10.1016/j.watres.2015.11.013 |
[19] | Xiang W, Zhang G L, Zhang Y L, et al. Synthesis and characterization of cotton-like Ca-Al-La composite as an adsorbent for fluoride removal[J]. Chemical Engineering Journal, 2014, 250 : 423–430. DOI: 10.1016/j.cej.2014.03.118 |
[20] | Zhang Z J, Tan Y, Zhong M F. Defluorination of wastewater by calcium chloride modified natural zeolite[J]. Desalination, 2011, 276(1-3) : 246–252. DOI: 10.1016/j.desal.2011.03.057 |
[21] | Ma Y X, Shi F M, Zheng X L, et al. Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): batch and column studies[J]. Journal of Hazardous Materials, 2011, 185(2-3) : 1073–1080. DOI: 10.1016/j.jhazmat.2010.10.016 |
[22] | Paudyal H, Pangeni B, Inoue K, et al. Adsorptive removal of trace concentration of fluoride ion from water by using dried orange juice residue[J]. Chemical Engineering Journal, 2013, 223 : 844–853. DOI: 10.1016/j.cej.2013.03.055 |
[23] | Mandal S, Tripathy S, Padhi T, et al. Removal efficiency of fluoride by novel Mg-Cr-Cl layered double hydroxide by batch process from water[J]. Journal of Environmental Sciences, 2013, 25(5) : 993–1000. DOI: 10.1016/S1001-0742(12)60146-6 |
[24] | Ghosh A, Chakrabarti S, Biswas K, et al. Agglomerated nanoparticles of hydrous Ce (Ⅳ)+Zr (Ⅳ) mixed oxide: preparation, characterization and physicochemical aspects on fluoride adsorption[J]. Applied Surface Science, 2014, 307 : 665–676. DOI: 10.1016/j.apsusc.2014.04.095 |
[25] | Nur T, Loganathan P, Nguyen T C, et al. Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling[J]. Chemical Engineering Journal, 2014, 247 : 93–102. DOI: 10.1016/j.cej.2014.03.009 |
[26] | Kameda T, Oba J, Yoshioka T. Continuous treatment of boron and fluoride in aqueous solutions using a column loaded with granulated Mg-Al layered double hydroxides intercalated with nitrates[J]. Journal of Water Process Engineering, 2015, 8 : 195–201. DOI: 10.1016/j.jwpe.2015.10.009 |